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Abstract. This paper describes the research carried out within the framework 
of the Ecological Economical Zoning of Minas Gerais (ZEE-MG) to model 
vegetation vulnerability derived by a number of spatial inference methods. 
Methods based on weighted overlay, fuzzy logic, and neural networks were 
compared in terms of visual similarity between maps, the degree of 
restrictiveness concerning vulnerability, and the easiness of implementation. It 
was concluded that weighted overlay is the best approach to be used within 
the ZEE-MG. 

Resumo. Este artigo descreve os estudos realizados durante os trabalhos do 
Zoneamento Ecológico Econômico de Minas Gerais para modelar a 
vulnerabilidade da vegetação derivada de vários métodos de inferência 
espacial. Métodos baseados em sobreposição ponderada, lógica fuzzy e redes 
neurais foram comparados em função da similaridade visual entre os mapas, 
do grau de restrição em relação à vulnerabilidade e da facilidade de 
operacionalização. Foi concluído que o método de sobreposição ponderada é 
a melhor alternativa para ser usada no ZEE-MG. 

1. Introduction 
The growing concern with natural resources brought a number of mechanisms able to 
guide human activities and reduce environmental impacts. Environmental studies have 
been used as the basis for the definition of laws that regulate land use practices. 
Ecological Economical Zonings are examples of such mechanisms based on the 
proposal of zones, which are subject to a certain model of use according to degrees of 
natural vulnerability and social potentiality (MMA, 2005).  

  Among the various actions to be implemented by the Government of Minas 
Gerais State within the framework of its Structural Project PE 17, the Action no P322 
(Zoneamento Ecológico-Econômico do Estado de Minas Gerais – ZEE-MG) aims at 
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supporting policy making related to environmental management by means of a statewide 
diagnosis of economical, social, ecological and biophysical sustainability. 

 Indicators of natural vulnerability are used within the ZEE-MG to determine the 
susceptibility of natural systems to human impacts. Natural vulnerability is defined in 
the present study as the capacity that a certain land unit has to resist and or to recover 
from impacts caused by human activities considered normal, i.e. not subject to 
environmental licensing. It is assumed that if the land unit presents a certain level of 
vulnerability to human activities considered normal, it will also present the same or a 
higher level of vulnerability to an activity subject to licensing. The concept takes into 
account the present condition of biotic and physical aspects of the land unit, where 
already disturbed areas are less vulnerable than well preserved ones. 

 Due to the great importance of modeling vulnerable areas for the ZEE-MG, 
research on alternative methods for integrating the various indicators has been carried 
out. In this study, the approach implemented to combine the main factors driving 
vegetation vulnerability will be presented and compared to other methods. 
Vulnerabilities of flora and fauna form the biotic component of natural vulnerability 
within the ZEE-MG. Weighted overlay was initially selected by the ZEE-MG team and 
used for most map combinations in previous studies of the biotic (Carvalho and 
Louzada, 2007) and abiotic components. As a further development, our main objective 
in the present paper was to investigate alternative methods of spatial inference, viz. 
fuzzy logic and neural networks, to generate maps of vegetation vulnerability for the 
State of Minas Gerais, Brazil, and evaluate their suitability to be used instead of 
weighted overlay. 

2. Study site and data sets 
The study area comprises the whole State of Minas Gerais. The data compiled and 
included in the ZEE-MG were structured in a GIS using the raster data model (Burrough 
& Mcdonell, 1998). Spatial resolution, determined by the pixel size, was defined for the 
ZEE-MG as 270x270 m, representing about 7 ha on the ground. 

 A set of specific indicators derived from variables that represent environmental 
aspects might determine different levels of vegetation vulnerability. In a higher 
hierarchical level, vegetation vulnerability of a certain region is one of the factors 
determining the natural vulnerability of this area. The variables used to derive indicators 
of vegetation vulnerability comprised a 30x30 m resolution land cover map for the State 
(Scolforo & Carvalho, 2006) and a map relative to areas of special ecological interest 
devised by a number of vegetation specialist from Minas Gerais (Drummond et al., 
2005). 

 The following indicators of vegetation vulnerability were used in the present 
study: regional relevance of physiognomies, conservation degree, spatial heterogeneity 
of physiognomies and conservation priority. 

2.1. Indicators 1 to 9: Regional relevance of physiognomies 

Regional relevance of physiognomies (Figure 1) was defined for a pixel as the ratio 
between the actual area of a certain physiognomy (e.g. forest) in that pixel and the total 
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area of the same physiognomy in a certain region. The physiognomy area for a ZEE-MG 
pixel (270x270 m) is determined by simply counting the number of 30x30 m pixels 
within the ZEE-MG pixel. The regions considered in this study correspond to the 
administrative boundaries of the Regional Councils of Environment (COPAM). In this 
case, high values of regional relevance were obtained for areas of vegetation remnants in 
regions with very little vegetation representing that physiognomy. 

   

   

   
Figura 1. Regional relevance of (a) grass land, (b) rocky grass land, (c) open 
savanna, (d) savanna stricto sensu, (e) savanna woodland, (f) savanna palm 
land, (g) deciduous forest, (h) semi deciduous forest, and (i) evergreen forest. 

2.2. Indicator 10: Degree of conservation 

Following the same idea of the previous indicator, the degree of conservation (Figure 
2a) was determined by counting the number of 30x30 m pixels covered by natural 
vegetation within each 270x270 m pixel of the ZEE-MG. Hence, well preserved areas 
are considered highly vulnerable to human impacts. 

2.3. Indicator 11: Spatial heterogeneity 

Again, this indicator (Figure 2b) was calculated by counting the number of different 
physiognomies that occur within each ZEE-MG pixel. This indicator captures transition 
areas between different physiognomies, which are thought to be highly important and, 
consequently, vulnerable as well.  

(a) (b) (c) 

(g) (h) (i) 

(d) (e) (f) 
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2.4. Indicator 12: Conservation priorities 

The last indicator of vegetation vulnerability (Figure 2c) was obtained by reclassifying 
and rasterizing vector maps relative to priority areas defined by expert knowledge. In the 
work of Drummond et al. (2005), vegetation specialists from all over Minas Gerais have 
indicated areas of relevant species endemism, the occurrence of rare or threatened 
species, areas of high biodiversity, ecological corridors, unique combinations of biotic 
and abiotic associations, and areas that lack floristic studies. 

 The reclassification scheme is presented in Table 1. Conservation priority classes 
were adjusted to fit the legend used within all outputs of the ZEE-MG project. 

Table 1. Class correspondence between classification systems. 

Conservation priority classes (Drummond et al., 2005) ZEE-MG vulnerability classes 
None Very low 
Corridor Low 
Potential Medium 
High High 
Very high Very high 
Extreme Very high 
Special Very high 

 

   
Figura 2. (a) Degree of conservation, (b) spatial heterogeneity, and (c) 
conservation priorities. 

3. Methodology 
All input data sets as well as the model outputs were registered to the Albers Conic 
Equal Area Projection (datum SAD-69) and resampled to 270x270 m using a nearest 
neighbor algorithm when necessary. 

 Spatial inference to come up with final maps of vegetation vulnerability was 
carried out by using weighted overlay, fuzzy logic, and neural networks, as detailed in 
the next sections. Vulnerability represented by the models outputs were classified as (1) 
Very low, (2) Low, (3) Medium, (4) High, and (5) Very high. 

3.1. Weighted Overlay  
Models based on overlay operations using weights allow a more flexible map 
combination when compared to operations based on Boolean logic. Modeling via 
Boolean logic, which has been for long used to analyze physical variables, involves the 
combination of binary maps generated by the application of operators (AND for 

(a) (b) (c) 
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intersection, OR for union, and NOT for inclusion)  that indicate two distinct conditions. 
Nevertheless, due to its crisp classification nature, the involved variables are considered 
to have the same importance to the problem at hand and the combination output will be 
described by a simple binary number, 1, vulnerable, or 0, not vulnerable, when 
vulnerability is the characteristic to be modeled. 

 Weighted overlay was used in this study because it is a simple and 
straightforward technique for spatial inference using multiple multi-class maps (ESRI, 
2002). Furthermore, weights in the model represent the relative importance of each 
variable included in the analysis, as well as the relative importance of the classes of each 
variable according to a given objective. Meirelles et al. (2007a) state that the use of 
weighted overlay allows the inclusion of expert knowledge and the adjustment of 
intrinsic characteristics of each variable in the model. However, it must be highlighted 
here that the weights are considered constant for each variable and or class over the 
whole study area, which is not the case for most real world phenomena. 

 Following the framework of the ZEE-MG, all 12 indicators were input to the 
weighted overlay model with weights defined according to Table 2. 

Table 2. Weights defined for each indicator of vegetation vulnerability. 

Indicator Indicator weight Class Class weight 
Regional relevance 8 Very low 1 
  Low 6 
  Medium 10 
  High 12 
  Very high 12 
Degree of conservation 12 Very low 1 
  Low 6 
  Medium 10 
  High 12 
  Very high 12 
Spatial heterogeneity 4 Very low 1 
  Low 6 
  Medium 10 
  High 12 
  Very high 12 
Conservation priority 12 Very low 1 
  Low 2 
  Medium 6 
  High 12 
  Very high 12 

3.2. Fuzzy Logic  
Methods based on fuzzy logic are very similar to weighted overlay, with the advantage 
that the combination rules are more flexible, thus promoting an improvement in the 
linear nature of the latter technique. 

 Instead of classifying geographical information in classes defined by exact 
boundaries and thereafter attributing weights to each class, one might reproduce the 
input data in a continuous scale using the assumption of continuous membership values. 
For each x value of the indicator variable, a µ(x) value is generated by a membership 
function, the so called fuzzyfication process, where the pair (x, µ(x)) is known as the 
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fuzzy set. Membership functions are not necessarily linear; they can assume any 
analytical or arbitrary form that is appropriate to the problem under consideration. 

 Semantic models can be represented through various types of membership 
functions. The models of fuzzy classification used for environmental data are extensions 
of the functions that were generated by Kandel (1986). In the present paper, the 
symmetric fuzzy models were defined as followed: 

 

( ){ }21/1)( bxdxAFPx −+== µ           for 0 � x � N 

Where, 
FPx = Fuzzy membership function; 

µA(x) = Fuzzy membership level; 

d = Parameter that is responsible for the function type; 

b = Parameter that defines the domain of X according to the central concept. 

 After fuzzyfication of each variable through the membership functions, fuzzy 
operators were applied in order to combine the different layers. These operators allow 
distinct ways of manipulating simultaneously a set of layers containing fuzzy values 
through a process of fuzzy overlay. 

 Operator Fuzzy Gamma: 

( ) ( ) yy
combinação PAFSAF −= 1*µ  

( )icombinaçãoSAF µµ −Π−== 11  

icombinaçãoPAF µµ Π==  

Where, 
SAF = Fuzzy Algebraic Sum; 

PAF = Fuzzy algebraic product; 

µcombination = Membership value of the themes combination  

µI = Fuzzy membership value for the map that stands in that order;  

∏ = Theme maps (indicators) considered in the analyses of the phenomenon.  

y = chosen parameter in the interval [0,1] 

 When y equals 1, the resulting map is identical to the result of fuzzy algebraic 
sum, and when y equals 0, the resulting map is identical to the result of fuzzy algebraic 
product. By varying the value of y, it is possible to obtain output values that assure 
certain flexibility between the tendency of growth of the fuzzy algebraic sum and the 
tendency of decrease of the fuzzy algebraic product. According to Meirelles et al. 
(2007b), modeling via fuzzy algebraic sum considers that if two evidences (e.g. 
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indicators of vulnerability) point to the same researched hypothesis, one will reinforce 
the other, and the resulting combination will have more support than the input 
evidences. Hence, the result of this operation is always a value greater or equal to the 
largest input value of fuzzy membership. On the other hand, the combination using the 
fuzzy algebraic product produces results that are always smaller or equal to the smallest 
input fuzzy membership value. As the goal of the present study is the maximization of 
vegetation vulnerability, two values of the parameter y were used for the operator fuzzy 
gamma: y = 0.75 and y = 0.95. 

 Operator Fuzzy Convex Sum: 

 If A1,.....,Ak are subsets of X, and w1,......,wk are non negative weights then the 
convex combination of A1,....,Ak is: 

AjjA w µµ �∆  

Where,    1=� jw  

 This procedure of defining weights is very similar to modeling via weighted 
overlay, but the class values are continuous in the interval [0,1]. The convex sum is 
generally used when the effects of the indicators are not equal. In the present study, 
weights were defined for the operator convex sum according to Table 2 as well. 

3.3. Neural Networks 
Neural networks are problem solving algorithms of the machine learning field. They use 
methods and techniques inspired on historical facts and models of biological neurons 
and networks. These biologically inspired models are extremely efficient when the 
pattern of classification is not a simple and trivial one (Barreto, 2002). Neural networks 
have shown to be helpful in the solution of practical problems as well as capable of 
classifying highly complex data (Kanellopolous et al., 1997). 

 Self Organizing Maps 
 For the present work three different types of networks were used. Unsupervised 
neural networks called Self Organizing Maps (SOM) (Kohonen, 1990), were used to 
create vulnerability maps. SOM was implemented in two configurations: coupled and 
uncoupled with a k-means clustering algorithm. Unsupervised learning does not need 
input samples for pattern recognition.  This perfectly fits the scope of this work since 
there was no collection of training data representing vulnerability classes.  

 The parameters presented in Table 3 were chosen after a number of trials and 
following empirical knowledge. 

Table 3. SOM neural network parameters. 

Parameter SOM (without k-means) SOM (with k-means) 
Input layer neurons 12 12 
Output layer neurons 9 36 
Initial neighborhood radius 5.24 9.49 
Minimum learning rate 0.5 0.5 
Maximum learning rate 1 1 
Iterations 874,080 628,992 
Quantization Error 0.0241 0.0187 
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 Fuzzy ArtMap 
 For Mather (1999) the use of soft classification paradigms with neural networks 
is adequate when we want to avoid errors of classification due to ambiguity of the 
generated classes. The third type of network considered in the present study was based 
on the ART (Adaptative Resonance Theory) (Carpenter et al., 1991), which exhibits a 
high degree of stability in order to preserve significant past learning, but remain enough 
adaptable to incorporate new information whenever it might appear (Carpenter, 1989).  
Fuzzy ArtMap is a clustering algorithm that operates on vectors with fuzzy analog input 
patterns (real numbers between 0 and 1) and incorporates an incremental learning 
approach which allows it to learn continuously without forgetting previous learned 
patterns. The Fuzzy ArtMap parameters used to estimate vegetation vulnerability in this 
study are summarized in Table 4. Again, the parameters were defined after a number of 
tests and according to previous expert knowledge. 

Table 4. Fuzzy ArtMap neural network parameters. 

Parameter Fuzzy ArtMap 
F1 layer neurons 24 
F2 layer neurons 6 
Choice parameter 0.01 
Learning rate 1 
Vigilance parameter 0.95 
Iterations 48,923 

4. Results and Discussions 
The process of combining indicators of vegetation vulnerability generated a number of 
raster maps according to different inference models. For comparison purposes, the 
results for an example area within the State of Minas Gerais are illustrated in Figures 3 
and 4. 

4.1. Weighted overlay x Fuzzy logic 

In Figure 3, models based on fuzzy logic are compared to the model generated via 
weighted overlay.  

 When comparing the maps of vegetation vulnerability generated by weighted 
overlay (Figure 3a) and the operator Fuzzy Gamma (y=0,95) (Figure 3b), it is observed 
that vulnerability classes are different for some regions. Some areas classified as 
medium and high vulnerability by the operator Fuzzy Gamma (y=0,95) were classified 
as low and very high vulnerability when using weighted overlay. Hence, the former 
seems to be less restrictive then the latter. This pattern might be due to the fact that 
weighted overlay uses a constant weight for the entire map extent. By decreasing the 
value of y, the output also shows a decrease in the values of fuzzy memberships 
probably due to the tendency of minimization that is characteristic when y approaches 
zero. Among all other fuzzy operators, the Fuzzy Gamma (y=0,75) is the most similar to 
the output generated by weighted overlay. 

 On the other hand, the Fuzzy Algebraic Sum (Figure 3c), maximized 
membership values when compared to the other operators used in the analysis. More 
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classes of very high vulnerability were obtained in this case showing that it is the most 
restrictive model. 

 Fuzzy Convex Sum (Figure 3d) showed results that are very close to the ones 
obtained with Fuzzy Gamma (y=0,95), except for some areas that were classified as 
having medium vulnerability by Fuzzy convex sum and low vulnerability by Fuzzy 
Gamma. The other classes remained constant between the two operators. Weighting 
performed by Fuzzy Convex Sum probably caused this difference. This evidence shows 
the flexibility of this operator while using weights during the classification process.  

          
(a)                                                                            (b) 

          
(c)                                                                            (d) 

Figura 3. Vegetation vulnerability maps generated by the following models: (a) 
Weighted overlay, (b) Fuzzy Gamma (y = 0,95), (c) Fuzzy Algebraic Sum, and (d) 
Fuzzy Convex Sum. 

4.2. Weighted overlay x Neural networks  

In Figure 4, models based on neural networks are compared to the reference model 
generated via weighted overlay (Figure 4a). 
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 The map produced using Fuzzy ArtMap (Figure 4b) showed patterns similar to 
the results of Fuzzy Algebraic Sum maximizing most of the membership values and 
leading to a more restrictive scenario characterized by homogeneous zones. These 
patterns show a strong influence of the indicator related to conservation priorities. On 
the other hand, the map produced using SOM without k-means was not influenced by 
this indicator at all. It is noticed that the degree of conservation was the most important 
factor driving vegetation vulnerability when this model was implemented. Vulnerability 
was either very low or very high, with a few areas showing intermediate values. 

 Finally, the map produced using SOM with k-means clustering (Figure 4c) was 
similar to the reference map produced using weighted overlay (Figure 4a). It showed a 
better balance while representing the influence of each indicator. SOM with k-means 
also presented smoother transitions between classes. Nevertheless, neural networks have 
been criticized because of its “black box” nature. In fact, it is difficult for a non-expert 
to understand and set the network parameters, leading to an arbitrary result of 
vulnerability classes and less control of the indicators influences. 

          
(a)                                                                            (b) 

          
(c)                                                                            (d) 

Figura 4. Vegetation vulnerability maps generated by the following models: (a) 
Weighted overlay, (b) Fuzzy Artmap, (c) SOM k-means, e (d) SOM. 
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4.3. Comparison criteria 

As no reference data was available for estimating the accuracy of vegetation 
vulnerability maps, comparison criteria were empirically defined based on the visual 
similarity between maps, the degree of restrictiveness concerning vulnerability, and the 
easiness of implementation. Evaluation of these criteria led to the choice of weighted 
overlay as the most robust inference method considered in the present study, and thus 
kept within the framework of the ZEE-MG. SOM k-means, Fuzzy Gamma, and Fuzzy 
Convex Sum, showed similar results to the weighted overlay procedure, approaching 
patterns of vulnerability thought to be closer to reality according to the knowledge of 
experts involved in the project. Even so, weighted overlay was chosen because it is 
easier to be implemented with complete control over the involved indicators. 

  In Figure 5, the vegetation vulnerability map produced using weighted overlay is 
presented for the entire State of Minas Gerais.  

 
Figura 5. Vegetation vulnerability map obtained via weighted overlay and 
chosen according to the defined comparison criteria. 

5. Conclusions 
In this paper, a number of inference methods were implemented to produce maps of 
vegetation vulnerability. Methods based on fuzzy logic and neural networks were 
compared to weighted overlay, which was considered to be the reference map because it 
was already implemented during previous phases of the ZEE-MG. 
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 We concluded that weighted overlay will not be replaced by any of the other 
tested methods. They are less intuitive, dependent on a number of arbitrary parameters, 
demand more computational power, and do not provide significant improvements when 
compared to the map produced using weighted overlay. 

 Nevertheless, fuzzy logic seems to be a promising approach and further research 
will be carried out in order to test different fuzzification methods, as well as different 
fuzzy operators to produce maps of vegetation vulnerability and to combine them with 
other biotic and physical components of natural vulnerability. 

 Neural networks provided interesting results, but due to the difficulties in setting 
the network parameters the method will be disregarded within the ZEE-MG. 

 Finally, a framework to collect field data concerning vegetation vulnerability 
classes will be developed to provide a robust base to carry out vulnerability map 
comparisons. 
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