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1. Abstract

The quest for finding optimum solutions to engineering problems has existed for a long time. In the
last decade several optimization techniques have been applied to structural design of wing composite
structures. Generally many of these proposed procedures have dealt with different disciplines such as
aerodynamics, structures, or dynamics separately. However an aeronautical design process is multidis-
ciplinary involving strong couplings and interactions between, for instance, aerodynamics, dynamics,
flight mechanics and structures. Generally the main problem in a multidisciplinary aircraft design is
the development of an efficient method to integrate structures or structural properties, which can be
considered both as “global” and “local” design variables. This paper describes an integrated aerody-
namic/dynamic/structural optimization procedure for a composite wing-box design. The procedure
combines an aeroelastic optimization of a composite wing based on a general purpose optimizer such as
the Sequential Quadratic Programming (SQP) and a composite optimization using Genetic Algorithm
(GA). Both the optimization are implemented through a multilevel decomposition technique.

2. Keywords: Structural Optimization, Multilevel Optimization, Genetic Algorithm.

3. Introduction

A wing composite structure is composed of a large number of panels, which have to be designed simulta-
neously to obtain optimum structural design. Usually the design of each panel requires a large number
of design variables to describe its geometry, ply composition and laminate stacking sequences. In view of
these considerations, designing all the panels simultaneously constitutes an extremely large optimization
problem, requiring also a very detailed structural model of the entire wing, that appears to be beyond
the present computational capabilities. In general the wing box design process is a multidisciplinary one,
involving couplings and interactions among several disciplines such as aerodynamics, structural analysis,
dynamics, and aeroelasticity. The optimization problem, related to a wing-box design, involves multiple
objectives and constraints pertaining to the design criteria associated with each one of these disciplines.
These couplings and interactions can be explored by optimization procedure if all the disciplines are
accounted for simultaneously rather than sequentially [1, 2]. Therefore, the development of multidisci-
plinary design optimization (MDO) techniques, in which different disciplines and design parameters are
coupled into a closed loop numerical procedure, seems appropriate to address such a complex problem.
For a wing box optimization it is very important to have an efficient method to integrate structures or
structural properties into the procedure itself. Usually, structural properties are included in one of two
ways, either as a local design variable (indirectly affecting the response of the wing) or as global design
variable (directly affecting the response of the wing). When local design variables are used, the detailed
dimensions of the structural members at one or more wing-span locations are used to generate structural
properties. When global design variables are used, structural properties are the design variables. Both
types of design variables have limitations. Using local variables can lead to a large number of parameters
that can be computationally expensive. Furthermore this choice is not practical from a traditional design
point of view in which chord, stiffness, and mass distribution along the wing-span are determined and
then a structure is designed which matches these distributions. Using global quantities such as stiffness
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and mass properties in optimization procedure has also disadvantages. When, for example, flexural and
torsional stiffness distributions are used as design variables, they are treated as independent quantities.
In reality, these stiffnesses are not independent, and no guarantees can be given that a set of thicknesses,
section geometries can be found that will simultaneously give these stiffnesses.
In the last years many researchers in aerospace industries as well as in aerospace research centers have
introduced the multilevel decomposition technique in MDO. The idea is to incorporate aerodynamics,
dynamics and structures in an integrated optimization procedure using both local and global design
variables. With a multilevel decomposition approach [3, 4] a large complex optimization problem is
broken into a hierarchy of smaller optimizations subproblems. This hierarchy can be thought of as a
level of increasing details. At the upper level, the subproblem is formulated in terms of global quantities
which describe the overall behavior of the entire system. On the lower level, the subproblems are stated
in terms of local quantities and local constraints which have only a small impact on the entire system.
Each subproblem uses local design variables to reduce the violation of constraints which are unique to
that subproblem. The coupling between the upper level subproblems and the lower ones is preserved
through a coordination procedure such as that described in [5]. This coupling represents a dialogue
between the levels that upon the convergence establishes compatibility between the two levels. Fig. 1(a)
(from reference [2]) illustrates a two level optimization procedure.

Upper level analysis

subproblem1
opt. opt. opt.

subproblem2 subproblem3

design var.
sub 1

design var. design var.
sub 2 sub 3

coordination
procedure between

lower levels
upper level and

upper level
optimization

cycle=cycle+1

(a) (b)

Figure 1: (a) General multilevel optimization procedure with two levels; (b) Wing-box optimization
criterion.

As shown in Fig. 1(a) the analysis proceeds from the upper to the lower level while the optimization
proceeds from the lower to the upper level. As a first step, the upper level analysis initializes all the
global quantities and responses and provides information to each of the lower level subproblem. In
a second step each individual lower level optimization problem is performed. These procedures must
reduce local constraint violations as much as possible and must provide information to the coordination
procedure. In a third step the upper level optimization occurs. We must consider these three steps as
one cycle of the entire process. Convergence occurs when all the constraints (both upper level and lower
level) are satisfied and the upper level objective function is minimized.
For a composite wing structure design it is also possible to consider a two level optimization procedure.
At a global level, individual wing-panels are modeled without many details, and few design variables
can be used to define each panel. Global constraints, such as stress or strain limits and also maximum
flutter or divergence aeroelastic velocities can be enforced for instance using finite element structural
optimization programs. These global parameters obtained by such optimization are used as input to
panel design optimization programs. These programs obtain detailed geometry and ply compositions
for each panel individually, enforcing for example buckling constraints and/or various strength failure
constraints.
Usually the integration of the two levels, the local and global one, is difficult and must be handled mostly
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by ad-hoc methods, which are awkward and suboptimal.
In this work a method to characterize composite panels of a wing box structure will be presented. A
two level approach will be also used for a MDO; in the first one, very few global quantities, such as
the degree of anisotropicity of the material will defined for the global aeroelastic optimization process,
while, at the second level optimization process, an efficient procedure will be introduced to obtain the
ply composition and the stacking sequences for the laminate composite plates.

3.1. A two level optimization approach for aeroelastic optimization
The aeroelastic optimization here presented is relevant to the determination of the orientation of different
layers which constitute the composite panels of a wing box structure, that realizes the maximum flutter
speed. Strength constraints for the composite panels are also applied. For the conventional approach
we can address the problem directly by using, as design variables, the ply orientations of the layers at
one or more span locations along the wing.
By using a multilevel approach the aeroelastic optimization problem can be decomposed into one sub-
problem affecting the global response of the wing and several independent subproblems affecting portions
of the wing. For the case under concern the flutter velocity is used to describe the global response of the
wing. Quantities such as stresses, due to applied loads if any, are instead detailed response quantities
since only a portion of the wing must be analyzed to obtain these ones. Therefore a two level decomposed
wing optimization problem can be defined as shown in Fig. 1(b).
The upper level optimizes the wing by changing global quantities, in this case defined through some
parameters related to the degree of anisotropicity of the material (see Sections 5.2 and 5.3). These
parameters are treated as independent quantities even if they are not. The reconciliation between these
quantities and the real design variables is done on the lower level. The lower level consists of independent
subproblems at different stations along the wing, which optimize the lay-up angles to reconcile the upper
level independent variables. This reconciliation is improved further by a set of upper level coordination
constraints (see Section 5.4).

4. Governing equations

4.1. Wing structure
In this work the wing is assumed to consist of a wing-box stiffened composite structure [6, 7]. A
plate model is used to represent the wing box. The planform geometry of this plate is assumed to be
trapezoidal, with arbitrary sweep angle Λ, with respect to the wind direction, and a non dimensional
non-orthogonal coordinate system (u, η) is adopted as illustrated in Fig. 2(a) and reported in Eq. (1).
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Figure 2: (a) Wing planform geometry; (b) Wing-box section.











η(X,Y ) = Y/L; 0 ≤ η ≤ 1

u(X,Y ) = −
1

2
+

X − tan ΛY

c
; −1/2 ≤ u ≤ 1/2

(1)
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A generic point M of the wing is detected by: η(M) = A0M0/L and u(M) = OM/C0C1. So coordinate
lines of the new system are the horizontal lines η =const. (coinciding with the lines Y =const. of the
first system) and the dotted lines u=const. Furthermore, the orthogonal and nonorthogonal systems are
connected by the following differentiation rule:

∂φ

∂X
=

1

c

∂φ

∂u
;

∂φ

∂Y
=

1

L

∂φ

∂η
−

θ

c

∂φ

∂u
. (2)

As far as the elastic properties are concerned, they are described by a matrix H (relevant to the mate-
rial distribution along the thickness z of the wing). So the constitutive equations can be expressed as
{σ} = [H] {ǫ} where the coefficient Hjk = Hjk(u, η, z).

4.2. General Considerations and Kinematics
The wing is assumed to be of uniform cross section, although the model is capable of modeling also non
uniform one. The presence of ribs, insuring the transfer of shear stress between the upper and lower skins
is assumed in order to neglect the shear deformations of the cross-sections (see Fig.2(b)). The upper
and lower skins are made of several layers that are assumed to have the same mechanical properties with
different orientations; furthermore the upper and lower skins and the corresponding layers are assumed
to be symmetric about the middle plane of the wing. The anisotropic plate bending stiffness matrix D

is evaluated by means of the classical laminated theory. Stringers laying span-wise on u=const. lines
and symmetrically placed with respect to the middle plane of the wing, are represented as axial elements
discretely attached to the skins.
As it is well known, in a z−symmetric plate, the only elastic displacement to be taken into consideration
is the midplane transversal displacement w = w(X,Y ) = w(u, η), if shear flexibility in the xz− and yz−
planes (not necessary rotary inertia) is neglected. In this work we will use a special formulation of finite
element method to describe the aeroelastic equations of the composite wing [8]. The kinematics of the
plate is described as follows:

ǫx(z) = z(∂2w/∂x2) ; ǫy(z) = z(∂2w/∂y2) ; γxy(z) = 2z(∂2w/∂x∂y) . (3)

Thus the operation

∫ h/2

−h/2

z σ dz, yields the elasticity equation for the plate:

M = D [2 ] Θ , (4)

where MT = [Mx My Mxy] is the moment-vector, ΘT =
[

∂2w/∂x2; ∂2w/∂y2; ∂2w/∂x∂y
]

is the
curvature vector, D is the plate stiffness matrix, whose generic component is:

Djk = Djk(u, η) =

∫ ht

−ht

z2Hjk(u, η, z)dz; ht = h(u, η)/2 , (5)

(so as to include also the case of z-varying elasticity: in case of stepwise variation of H, the integral must
proceed stepwise). Finally [2 ] is the matrix diag [1, 1, 2], introduced so as to cope with the expression
of γxy. The kinematics of the stringer is described through their axial displacements v(η), whereas the
elasticity equation for the string is assumed as follows:

N = E A
dv

dy
, (6)

being E the Young’s module and A the cross sectional area of the stringer.

4.3. Finite Element Method
A modified finite element method [8] is used to obtain the total energy E associated to the analytical
model. This energy is as follows:

E = (U − T + L) , (7)

where U and T denote the strain energy and the kinetic energy of the system and L denote the work
done by the external loads (e.g. aerodynamic loads). Note that aerodynamic loads are nonconservative
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body and surfaces forces. These forces are not derivable from a potential function and they are regarded
as known function of the time and position.
The modified finite element method is based on assuming a span-wise finite element discretization of the
wing elastic displacement w, while a power expansion is assumed chord-wise, the relevant kinematics is
as follows:

w(u, η) = w0(η) + u w1(η) + u2 w2(η) + . . . + uN wN (η) . (8)

With this representation the displacement w is assumed differentiable along the chord as many times
as necessary, furthermore wk (k = 0, . . . , N) and its derivative ∂wk/∂η are assumed continuous. This
assumption has the advantage to provide the analyst, directly, global chord-wise quantities such as
flexural displacements w0, torsional rotations w1, mean-line curvature w2 etc., which are meaningful
from the aerodynamic stand point.
For the sake of brevity all the analytical details relevant to this methodology and its use to evaluate via
the classical FEM theory the mass matrix, the stiffness matrix and consequently the dynamic behavior
of a composite swept wing are omitted and can be found in [6]. Suffice here to say that the final form
is as follows:

MẌ + KX = Fext , (9)

where M and K are the mass matrix and the stiffness matrix of the structure and Fext is the vector of
the external forces.

4.4. Aerodynamic model
For the present study it is necessary to have an aerodynamic tool that can adequately describe the
aerodynamic unsteady loads acting on the wing. One of the most popular method that can be used
to determine aerodynamic forces in subsonic compressible flow is the Kernel Function Method (KFM),
which is able to characterize the aerodynamic pressure in some wing colocated points. One of the
major advantages of KFM is that few colocated points (control points) are able to well describe the
pressure distribution on the wing, so that few aerodynamic degrees of freedom are needed [9]. For the
sake of simplicity we will consider here the case of quasi-steady aerodynamics which means that: (i)
aerodynamic derivatives do not have a time variation, and (ii) they can be evaluated by using the steady
part of KFM. The equation of KFM here considered is as follows:

w(x, y)

U∞

=
1

8πq∞

∮

Σ

G(x, y, x̄, ȳ;M∞) ∆p(x̄, ȳ) dΣ , (10)

where (x, y) and (x̄, ȳ) are the coordinates of a generic control point and of the doublet singularity point

respectively and

∮

here denotes Hadamard’s principal value of the integral. The idea of the KFM is

to approximate the unknown pressure distribution ∆p(x̄, ȳ) in chord-wise and span-wise directions by
prescribed functions with unknown coefficients. The right side of Eq. (10) is then evaluated for as many
control points Pmn as the unknown coefficients and is equated to the known downwash angle at each
control point. A set of simultaneous equations is thus obtained which may be solved to determine the
unknown constants.
Then the constants are used to define the pressure distribution. The final expression of the pressure
distribution reads:

∆p̄(v, η) = 8π q∞ ΓT (v, η) A−1 J , (11)

where ΓT (v, η) is the aerodynamic shape function vector, A−1 is the inverse matrix of the algebraic
solving system (depending on Mach number M∞), and J is the vector of down-washes evaluated at the
aerodynamic control points Pmn [9].

4.5. Aeroelastic equations
The relationship between aerodynamics and structure can be found by evaluating the work performed
by aerodynamic forces on the generalized displacements:

Lj =

∫

Sj

wj(u, η) ∆pj(u, η) du dη , (12)
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where wj is the displacement of the j-th wing element of area Sj (if the domain of integration is
discretized according to the FEM rules) and ∆pj(u, η) is the pressure distribution given by Eq. (11).
The vector form of the aerodynamic forces acting on the wing box to be used with FEM formulation
reads as follows:

Fext = q∞ R J , (13)

being R the so-called aerodynamic matrix.
The vector of down-washes J can be divided into two parts: the one relevant to geometric incidence αg

and the one relevant to elastic incidence αe:

J = αg + αe . (14)

The elastic incidence can be expressed through the deflection of the structural points of finite element
discretization: αe = QX, being Q the matrix which transforms the structural degrees of freedom into
the aerodynamic ones. Combining Eqs. (13) and (14) and substituting into Eq. (9) the final aeroelastic
equation is obtained:

MẌ + KX = q∞ R{αg + QX} = Faer . (15)

The above equation is the basic formula for studying the aeroelastic phenomena (both static and dy-
namic) on elastic wings.
Let us now consider the case of flutter analysis which, as well known, studies the stability behavior
of the wing under dynamic aerodynamic loads. In particular, flutter conditions are those particular
flight conditions (i.e. a particular flight velocity U∞) in which a wing structure (with its geometry and
mechanical properties) has a dynamic unstable behavior when perturbed from its equilibrium position.
As it is well known a very efficient method of solution for investigation of dynamic behavior of the
structures is represented by the dynamic response in harmonic time-variation. For this approach the
solving equation can be derived from Eq. (15) as follows:

(−ω2MX̄ + jωCX̄ + KX̄) = F̄aer , (16)

where F̄aer is the transform of Faer, X̄ is the transform of X in the frequency domain ω and C is the
matrix of the structural damping here introduced to describe the real dynamic behavior of the structure.
Following standard procedure, free vibration frequencies and corresponding eigenmodes of the wing can
be obtained neglecting the right term of the above linear dynamic equation. These eigenmodes can be
used to define a small subspace of size ℜM2 (with M2 denoting the number of eigenmodes) where the
flutter analysis of the wing can be solved. Let’s consider the first M2 normal modes of the structure,
Φr(x, y) (r = 1, 2, . . . ,M2), and let X = ΦT (x, y)Y, where Φ is the vector of the Φr’s, and Y is the
vector of modal amplitudes. Then the generalized aerodynamic forces vector (e.g the right term in
Eq.(15)), as projected on the normal modes, can be written in the following form:

Faer = q∞(LAY + LB αg) , (17)

where LA and LB are the matrices of aerodynamic forces in the subspace ℜM2 of the eigenmodes not
reported here for the sake of brevity. Defining the matrix Ω = diag(ω1, ω2, . . . , ωM2

), where ωj = j-th
circular eigenfrequency of the structure, the aeroelastic Eq. (15) in the frequency domain can be written
as follows:

[

Ω2 − ω2 I + 2jω ΩC − q∞ LA

]

Y = 0 , (18)

where I is the unit M2 × M2 matrix and C is the matrix of the structural damping. The right term
connected to the geometric incidences αg has been neglected for the case of flutter and/or divergency
velocity evaluation. Note that these problems are relevant to the study of the wing-structure stability
so the associated system of equations is an homogeneous one. The condition:

det
[

Ω2 − ω2 I + 2jω ΩC − q∞ LA

]

Y = 0 (19)

is the working form of the flutter equation. In fact, Eq. (19) constitutes a system of two equations (real
part = imaginary part = 0) which yields the values of q∞ = qcr and of the flutter eigen-frequencies for
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a given wing geometry, flight conditions (i.e ρ∞ and M∞), and wing material properties (i.e. flexural
stiffness of the wing-box and axial stiffness of the stringers). With Eq. (19) it is also possible to analyze
the aeroelastic static response in both subcritical and critical flight regimes.

5. Wing-Box optimization

5.1. Composite laminate
The composite laminate design process typically involves the optimization of the following three param-
eters: (i) Ply (or lamina) material; (ii) Ply thickness, and (iii) Ply orientation.
The optimization of a composite laminate, simultaneously considering the coupling effects of the design
parameter mentioned above, is a mathematical challenge in structural optimization procedure. The
optimization of the parameter “ply material” is, perhaps, the most complex of all, because of the
inherent possibility of designing a hybrid laminate consisting of two or more material types. As far
as items (ii) and (iii) are concerned, numerous analytical techniques are available to optimize the ply
thickness and orientation of a composite laminate [10, 11]. The majority of the commercially available
structural optimization codes treat ply thickness and orientation as continuous design variable, although
recently some codes have been enhanced to handle them as a discrete and/or a continuous variable
during the laminate design process [12].
In this paper it has only been considered the optimal orientation problem of a two-dimensional linearly
elastic structure, characterized by the following constitutive law ∗:







σ1

σ2

τ12







=





H11 H12 H16

H21 H22 H26

H31 H32 H36











ǫ1
ǫ2
γ12







= [H]j







ǫ1
ǫ2
γ12







, (20)

where σ1, σ2, τ12 are stress components, ǫ1, ǫ2 and γ12 are strain components and Hj is the rotated
orthotropic stiffness matrix for the j-th lamina of the composite laminate. The relationship between
rotated stiffness matrix Hj and unrotated orthotropic stiffness matrix H0 (note that in the following
work all the layers have been assumed to be made by the same material) can be established through the
standard rotation matrix T(θj) where θj is the angle of orientation of the j-th lamina with respect to
the laminate reference frame:

Hj = TT (θj)H0T(θj) , (21)

where H0 and T(θj) are as follows:

H0 =





H0
11

H0
12

0
H0

12
H0

22
0

0 0 H0
66



 ; T(θj) =





c2

θ s2

θ −2cθsθ

s2

θ c2

θ 2cθsθ

cθsθ −cθsθ c2

θ − s2

θ





j

, (22)

where cθ = cos θj and sθ = sin θj . Expanding Eq. (21) follows:

Hj = H00 + H01 cos 2θj + H02 cos 4θj + H10 sin 2θj + H12 sin 4θj (23)

where the matrix H00 and the matrices Hlk (l = 0, 1 and k = 0, 1, 2) contain the invariants w.r.t the
rotation operation, e.g terms that are not dependent on ply orientation. For the case under concern
follows:

H00 =





U1 U4 0
U4 U1 0
0 0 U5



 ; H01 =





U2 0 0
0 −U2 0
0 0 0



 ; H02 =





U3 −U3 0
−U3 U3 0

0 0 −U3



 ; (24)

H10 =





0 0 U2/2
0 0 U2/2
U2/2 U2/2 0



 ; H12 =





0 0 U3

0 0 −U3

U3 −U3 0



 ; (25)

where U1, U2, U3, U4, U5 are material parameters defined in [14].

∗Note that this constitutive law will be used for calculating the stiffness matrix K of the wing box structure.
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From the expression of the matrix Hj , Eq. (23), it is possible to observe that its coefficients are harmonic
functions of the orientation angle θ. This is a complicating factor for the optimization process of the
composite laminate structure, since design functions have revealed the presence of multiple optima [13].

5.2. Laminate plate theory: local variables vs. global variables
Let us now consider the case of symmetric orthotropic laminate, where the equilibrium equation is given
by Eq. (4), the orthotropic plate bending stiffness matrix [D], is defined as follows:

D =

N
∑

j=1

z̄3

j − z̄3

j−1

3
Hj , (26)

where z̄j = 1/2(zj + zj−1) is the position of the j-th layer, N = number of layers. It is also assumed
that Hj is constant from zj−1 to zj which is the thickness domain of the ply number j.

By substituting expression (23) into Eq. (26) the matrix of bending stiffness D is obtained as follow:

D = D00 + H01ζ3 + H02ζ1 + H10ζ4 + H12ζ2 , (27)

where the terms ζk (k = 1, . . . , 4) are functions of the orientation of the layers of laminate, of their
thickness and of their stacking sequence:

ζk = ζk(θ1, θ2, . . . , θN ; z0, z1, . . . , zN−1); k = 1, . . . , 4 . (28)

(the expressions of D00 and of functions ζk are reported in Appendix A).
By using the decomposition in Eq. (27) it was possible to isolate terms which explicitly depend on the ply
orientation from the ones that do not. Note also that the matrix D00 depends only on the ply thickness
and on the ply material and do not depend on the ply angle. This decomposition is very important in
the view of the optimization process described later.

5.3. Aeroelastic optimization
As mentioned in Section 1, the goal of this optimization investigation is to improve the aeroelastic
performance of an airplane wing by using composite tailoring, i.e. the determination of the optimal
orientation of the composite laminates which maximizes the aerodynamic pressure q∞ following certain
composite failure constraint conditions.
Before doing this, let us now introduce global quantities necessary to describe the mechanical behavior
of a wing like-plate composite structure, that will be used at the first level of the optimization procedure.
By decomposing the flexural stiffness matrix D as performed in Eq. (27), it is clear that all the angle
ply design variables, i.e. the variables θj (j = 1, . . . , N), appropriately weighted with terms that depend
on the cubic power of their thickness, appear globally in the functions ζk (k = 1, . . . , 4).
It is possible now to describe the degree of anisotropicity of the composite laminate only by means of
four global terms instead of all the possible combinations of the ply orientations. Although these four
functions are not independent from each other, these can be considered as the only parameters (global
parameters) that must be taken into account at the first level of the aeroelastic optimization process. By
doing this two different effects are obtained: the first one is the reduction in the number of design vari-
ables for the optimization of the composite panel, since, at least at this level, different layer orientations
do not have to be considered. In fact the stiffness matrix of the composite panels is only function of the
ζk’s: D = D(ζ1, ζ2, ζ3, ζ4); and secondly, which is more important from a numerical point of view, the
problem to determine the “optimum” of a function which depends harmonically on the design variables
θj (see Eq. (23)) has been eliminated, which on your turn could lead to find a local optimum instead of
the global one.

5.4. First level optimization
The first level optimization consists of finding the maximum value of flutter velocity for assigned values of
global design variables ζk along the wing-span. In the following, due to the mechanical characteristics of
the generic layer used in this paper, the matrices containing the terms U2, e.g. H01 and H10 in Eq. (27),
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are assumed equal to zero. For this reason, the design variables for the composite panel become only
two: ζ1 and ζ2.
The formulation of the problem may be stated as follows:

Find (X ) to maximize FI(X )

subject to gk(X ) ≤ 0; and hk(X ) = 0; k = 1, . . . , NL; Xl ≤ X ≤ Xu ;

where FI(X ) is the flutter velocity obtained from Eq. (19), X is the design variable vector, containing
the global design variables in an assigned number NL of wing-span locations; the subscripts l and u
represent lower and upper limit on design variables respectively, and gk and hj are inequality and equal-
ity constraints respectively as defined in Section 5.6. Notice that once the thicknesses of the layers of
composite panels have been assigned, the upper and lower bounds Xl and Xu can be easily determined
by using Eq. (36) (see Appendix A).

5.5. Second Level Optimization: from global variables to local variables
This section of the paper describes the lower level analysis and lower level optimization procedure. The
purpose of each lower level optimization is to assess whether the composite panel at a given wing-span
location can be tailored to provide the stiffness required by the upper level optimization and have the
strength to withstand loads calculated by the upper level analysis. The lower levels optimizations can be
done in parallel since they are independent. The lower level design variables are the orientation angles
θj , (j = 1, . . . , N) of each ply of the laminate. The objective function is a measure of the difference
between the functions ζ̄1 and ζ̄2 required on the upper level and those determined by prescribing the
lower design variables θk as reported in Appendix A:

FII =
(ζ1 − ζ̄1)

2

ζ̄2
1

+ ζ̄2
2

+
(ζ2 − ζ̄2)

2

ζ̄2
1

+ ζ̄2
2

, (29)

where barred quantities denote upper level design variables.
As far as the lower level constraints are concerned they can be considered as side constraints:

−90◦ ≤ θj ≤ +90◦; j = 1, . . . , N . (30)

After the minimization of the objective function (29) the process returns to the upper level for the next
optimization cycle. Note that the number of second level optimizations is equal to the number NL of
wing-span sections in which the the wing planform will been divided for the first level optimization.

5.6. Coordination between upper and lower levels
The coordination between upper and lower levels is implemented by upper levels constraints. Specifically,
these constraints, one for each second level optimization, have been implemented in two different ways:
the first one, which is called as direct constraint coordination procedure, consists of imposing the following
equality constraints condition:

hk = FL
II,k = 0; k = 1, . . . , NL , (31)

where FL
II,k is the most recent value of the k-th second level objective function, and NL is the number

of the lower levels. The second type of constraint is inherent to the strength of the composite panel,
and it can be imposed by using the classical composite failure criteria such as the Tsai-Hill criteria or
Tsai-Wu criteria [14].
The Tsai-Hill constraint, which is evaluated at the upper layer of the laminate, has the following form:

gk =

(

σ1

σ∗

1

)2

−

(

σ∗

2

σ∗

1

)(

σ1σ2

σ∗

1
σ∗

2

)

+

(

σ2

σ∗

2

)2

+

(

τ12

τ∗

12

)2

− 1 ≤ 0; k = 1, . . . , NL , (32)

where starred quantities σ∗

1
, σ∗

2
and τ∗

12
denote the strength values along the Principal Material Direc-

tions, whereas no starred quantities are the stresses associated to an external load. It is important to
observe that in order to apply the Tsai-Hill constraint relationship it is necessary to evaluate the stresses
acting on the layers of the laminate in the Principal Material reference frame. So it is necessary to use

9



the results of lower level optimizations, e.g. the angles θj (j = 1, . . . , N) of the layers, to rotate the
stress components from the wing reference frame to the lamina reference frame. As far as the stress σ1,
σ2 and τ12 are concerned they are in this work evaluated through the static aeroelastic equation:

(K − qS
∞

R Q) X = qS
∞

R Q {αg} , (33)

when the dynamic pressure qS
∞

and the geometric incidence vector αg are assigned. Here X is the vector
of the elastic generalized displacement from which through classical FEM rules it is possible to evaluate
interlaminate strains and stress.

6. Optimization and numerical results

A gradient based optimization technique based on Sequential Quadratic Programming (SQP) and on the
method of feasible directions [15] has been used coupled with a stochastic approach represented by the
Genetic Algorithm (GA) [16, 17]. The first one has been employed on the solution of the optimization
problem at the upper level, i.e. find the maximum flutter velocity, and the latter has been used to solve
the different optimization problems at a the lower level related in the finding of the laminate composite
stacking sequence for some prescribed wing-span locations. The GA method has been chosen to solve
these problems due to two principal reasons: make possible a more comprehensive scan on the search
space and avoid been trapped at local optima. Moreover, since the GA method presents an inherent
parallel nature, the computational performance of solving the different problems at the lower level could
be improved, as mentioned before.
The GAs are essentially optimization algorithms whose solutions evolve somehow from the science of
genetics and the processes of natural selection - the Darwinian principle [16, 17]. As a class of general
purpose search methods, the GA approach gives a remarkable balance between exploiting the promising
regions of the search space and exploring the search space. They differ from more conventional opti-
mization techniques since they work on whole populations of encoded solutions, called individuals, and
each possible solution is encoded as a set of genes.
The most important phases in standard GAs are selection (competition), reproduction (recombination),
mutation, and fitness evaluation. Selection is an operation used to decide which individuals to use for
reproduction in order to produce new search points. Reproduction or crossover is the process by which
the genetic material from two parent individuals is combined to obtain one or more offspring. Mutation
is normally applied to one individual in order to produce a new version of it where some of the original
genetic material has been randomly changed. Fitness evaluation is the step in which the quality of an
individual is assessed. By conducting the search in a global domain, the GA approach reduces the chance
of converging to local optima and makes it possible to solve problems involving many parameters. Other
advantages of using GA are that it is a self-start method with no special requirement on the initial value
of unknown parameters, other than defining a search range, and also it does not need information such
as gradients or derivatives of the function to be optimized.
Concerning the wing-box structure, it is a 24 ply GR/EP composite material structure with the fol-
lowing structural properties: E11 = 65 GPa, E22 = 65 GPa, ν12 = 0.31, ν21 = 0.31, G12 = 6.9 Gpa,
ρ = 1650 Kg/m3, Tensile strength σ1 = 527 MPa, Tensile strength σ2 = 490 MPa, Tensile strength
τ12 = 55 MPa, NPLY=24, stringers Young’s modulus E = 72 GPa, stringers mass density
ρ = 2800 Kg/m3 and width of stringers l = 3.5 cm. The stacking sequence consists of six sub-groups of
layers as follows:

Θ = [θ1/ θ2/ θ3/ θ4/ θ5/ θ6] , (34)

where each sub-group θk(k = 1, . . . , 6) consists of four layers oriented in the same way. This sequence
of angles, considering the range defined in Eq. (30), has been used for encoding the individuals for the
GA. Thus each angle represents a gene in the total individual.
In the GA implementation adopted here, the algorithm operates on a fixed-sized population which
is randomly generated initially. The members of this population are fixed-length and integer-valued
strings that encoded the orientation angles as defined in Eq. (34). The replacement scheme is based
on the steady-state approach [18], where a newly created and improved offspring immediately replaces
another solution, usually the worst, in the population. The evolutionary operators employed in this
work are: Tournament Selection [16, 19], Two-point Crossover [16, 18] and Non-uniform Mutation [19].
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For the minimization of the objective function FII , Eq. (29), it has been set a population size of 150
individuals, 20% mutation rate, 100% crossover rate and as stopping criteria a number of 400 consecutive
generations without improvement of the fittest solution has been adopted.
As far as the static analysis is concerned, it has been performed at thesecond level to calculate the
strength of the composite wing-box, and it is based: (i) on applying static aerodynamic loads at a free
stream velocity equal to the 80% of the flutter velocity evaluated at the first level; (ii) on considering
the geometric incidence αg constant along the wing-span, αg = 5◦, and (iii) on considering the Tsai-Hill
criterion applied at the upper ply of the wing-panels as a strength constraint for the composite panel.
Before illustrating the numerical results relevant to the optimization procedure let us see the effect of
the anisotropicity parameters ζ1 and ζ2, here considered as independent variables, on the flutter velocity.
Fig. 3(a) shows the flutter velocity for a swept wing of Λ = 30◦ and aspect ratio λ = L/c = 7, where L
is the Y −wise semi-span, and c is the chord, here considered as a constant along the wing-span. The
wing-box height is here h = 14 cm whereas the thickness of the composite laminate is hl = 4 mm and
the width of the stringers is a = 3.5 cm. As one can observe the flutter velocity changes almost linearly
for negative values of ζ1 and for all the values of ζ2 that are in the range of their feasibility. For positive
values of ζ1 we observe strong variations on flutter velocity, in particular the relative maximum values
of flutter move from positive to negative values of ζ2 as the parameter ζ1 increases.
The above results, obtained for a parametric variation of anisotropicity parameters, cannot be realistic
since the values of ζ1 and ζ2 could not be feasible e.g., it does not exist a combination of lamination
angles θk that satisfies Eqs. (36).
Now let us consider the case of a two-level optimization applied to the same wing of the above example.
The wing-box is divided into five equal parts along the wing-span, each part is here considered as a
sub-level of the second level optimization procedure as shown in Fig 1(a). For the case under concern
there are 5 × 2 global design variables (ζ1 and ζ2) and 5 × 6 local variables (θk; k = 1, . . . , 6) for a total
of 40 design variables.
As far as the second level optimization procedure is concerned and the determination of the angles θk of
the stacking sequences Θ different situation have been analyzed according different choices of the angle
variation ∆θk. In particular results obtained for ∆θk equal to 1◦, 5◦, 10◦, 15◦, 20◦, 25◦ and 30◦ will be
discussed. First of all the case of 10◦ lay-up sequence variation has been considered.
Fig. 3(b) shows a typical flutter diagram. In this figure the real parts of the first five eigenvalues of
the aeroelastic system as function of the velocity for three different values of the optimization cycles
are reported. It of interest to observe that aeroelastic instability, which onset when the real part of
the eigenvalues become positive (i.e. the aerodynamic damping becomes positive), at the beginning
of the optimization is related to the third aeroelastic mode (which in this case is mainly a torsional
mode for the wing), whereas at the end of the optimization the second and the third aeroelastic mode
become unstable practically at the same value of velocity. This is due the fact that the changing of
the anisotropicity coefficients of the composite materials produce a change of the torsional and flexural
behavior of the composite wing [6] this in turns affect its aeroelastic stability margins. In this case the
“torsional” mode, that initially is unstable at a lower velocity value, approaches during the optimization
the “flexural” mode, whereas the second mode (mainly a flexural mode), which at the beginning is
“more” stable, approaches the “torsional” mode becoming “less” stable.
Fig. 4(a) shows the flutter velocity vs. the iteration number of the first level optimization. It is possible
to observe that: (a) the flutter velocity increases almost parabolically till a value of approximately 300
m/s is reached, and (b) when this value is exceeded the increase on the the value of the objective function
is very small and practically linear with a very low slope. The explanation for this behavior can be found
by observing the trend of the constraints during the optimization process. Figs. 4(b) and 5(a) show the
Tsai-Hill conditions, which represent also the constraints for the first level optimization, evaluated at
5%, 30%, 50%, 70%, and 90% of the wing span.
In particular at the 5% (Fig. 4(b)) of the wing length a great spread on the numerical values of the
Tsai-Hill condition can be observed, which means that as the velocity increases the aerodynamic loads
also increase and, since they produce maximum stresses near the clamped end of the wing-box structure,
it appears that around the maximum value of the flutter velocity, for some lay-up configurations, the
composite wing suffers a failure. At this point the second level optimization based on GA tries to find
a lay-up sequence for which the Tsai-Hill failure criterion is not violated.
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The authors have in fact observed that at the second level the GA may find very different lay-up
sequences in correspondence to small variations on the parameters ζ1 and ζ2 coming from the first
level. Unfortunately the internal interlaminate stresses associated to some of these sequences violate the
Tsai-Hill criterion. As a matter of fact with the proposed coordination procedure between the first and
the second levels based on Eqs. 31–32 it is possible to force the overall aeroelastic optimization to find
the lay-up sequence which satisfy the Tsai-Hill criterion. Fig. 5(b) shows the angular lay-up sequence
corresponding to the first wing-box bay for different optimization cycles note the great variations on
the angles also in correspondence of the last cycles of the optimization. Tab 1(a) shows the final lay-up
sequences for the five wing-span locations.

Table 1: (a) Lay-up sequency for five wing-box sub-section, ∆θk = 10◦, Vf=304 m/s, Λ = 30◦, λ = 7;
(b) Lay-up sequency for five wing-box sub-section, ∆θk = 1◦, Vf=316 m/s, Λ = 30◦, λ = 7.

(a)

Sub-level Lay-up
1 [ 60/50/40/60/-20/-20]
2 [ 20/30/-60/30/-50/-30]
3 [-90/20/-80/40/20/20]
4 [ 90/-70/10/0/-50/-70]
5 [-10/-50/80/-70/-80/20]

(b)

Sub-level Lay-up
1 [ 58/48/-27/77/-36/-34]
2 [-60/-42/-67/-48/43/30]
3 [-62/-45/-58/-54/26/-78]
4 [ 14/-78/-89/10/-74/14]
5 [-70/-84/-77/11/-85/-77]

It is now of interest to analyze the effects of the angle variations ∆θk applied at the second level on the
optimized flutter velocity. Fig. 6(a) shows flutter velocity vs. the cycles of optimization for the case of
∆θk = 1◦. The results are very similar to the case of ∆θk = 10◦ although the optimized flutter velocity
Vf is 316 m/s. This value of Vf is 4% higher than the one obtained when ∆θk = 1◦. This result can be
easily explained if considering that with a step of 1◦ in the search of the best lamination sequence we
have in the range [−90◦, 90◦], for each lamina, a number of possible choices, made by the GA, ten times
greater than the one relevant to the case of ∆θk = 10◦. Tab1(b) shows the relevant lay-up sequence for
each of the five wing-box sub-sections.
Similar results were obtained for ∆θk = 5◦, 10◦, 15◦, 20◦, 25◦ and 30◦ which are not reported here
for sake of brevity. Nevertheless, as summary, in Fig. 6(b) are reported the optimized flutter velocities
obtained by varying the lay-up sequences with the above values of ∆θk. Furthermore, different wing-box
sweep angles were also considered: Λ = 0◦, 20◦ and 30◦.
It is worth to note that as ∆θk increases the maximum value on the optimized flutter velocity Vf

decreases. This is true till ∆θk = 15◦ once this value is exceeded Vf starts to climb again till a value of
∆θk = 25◦ after that Vf decrease again. It is also interesting to observe that this trend is approximately
similar for all the values of the sweep angles here considered. According to the authors this behavior
could be explained as combination of two main factors: one related to the periodicity on the values of the
parameters ζ1 and ζ2 with the lamination angles (see Eq. 36) and second on the fact that the first level
optimization process tries to find the best combinations of ζ1 and ζ2 which gives the maximum value on
Vf under the condition that all the constraints (especially the structural constraints) are satisfied. As
far as the latter condition is concerned, it is clear that with the increasing of ∆θk it may results difficult,
for the second level optimization process, to find a combination of the angle-plies orientation that fit
both with the values of ζ1 and ζ2 and with the Tsai-Hill conditions.
In particular, the Tsai-Hill conditions result always in contrast with the increase of the flutter velocity.
This is due to the fact that the aerodynamic static loads, and consequently the stresses on the composite
wing, are evaluated at 80% of Vf as said before. Therefore, as the the flutter velocity goes on to the
maximum the Tsai-Hill constraints tend to be violated.
During the optimization it is also possible to highlight two different phases. The first phase is mainly
ruled by the first level optimization, in fact the flutter velocity increases very quickly till the quasi-
optimum value. The second phase is, instead, ruled by the second level optimization or better by the
Tsai-Hill constraints here evaluated. This is clearly visible in Figs. 7(a) and 7(b) where flutter velocity
and Tsai-Hill constraints are reported versus the optimization cycles for the wing-box with Λ = 0◦.
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7. Conclusions

A two level composite wing-box aeroelastic design optimization has been presented and demonstrated.
The procedure is based on a continuous optimization technique used at the upper level (first level)
for the determining the optimal anisotropicity parameters, here defined for describing the aero-elastic
composite properties of the wing-box. At the second level a discrete optimization based on a genetic
algorithm technique was used to determine the composite laminate angles associated to the first level
anisotropicity parameters. A communication criterion, based on Tsai-Hill strength condition and on the
second level objective functions, was also introduced between the two optimization levels. The results
here presented have been shown that this procedure can be used to find a optimal wing design, at least
from the flutter analysis here considered.

Objective function Vf vs. anisotropicity
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Figure 3: (a) Flutter Velocity [m/s] vs. anisotropicity parameters: no optimization procedure; (b) Aeroe-
lastic damping coefficients vs. air-velocity at different optimization iterations, Λ = 30◦, L/c = 7.
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Figure 4: (a) Flutter velocity [m/s] vs. iterations, Λ = 30◦, L/c = 7; (b) Second level optimization:
Tsai-Hill coordination conditions vs. cycles, locations 1-2 of wing-span, Λ = 30◦, L/c = 7.
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Figure 5: (a) Second level optimization: Tsai-Hill coordination conditions vs. iterations, locations 3-5 of
wing-span, Λ = 30◦, L/c = 7; (b) Lamination sequence vs. iterations, location 1 of wing-span, Λ = 30◦,
L/c = 7.
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Figure 6: (a) Flutter velocity [m/s] vs. iterations, Λ = 30◦, L/c = 7, ∆θk = 1◦; (b) Flutter Velocities
vs. ∆θ ply orientation for different Wing-Box Sweep Angles.

 150

 200

 250

 300

 350

 400

 450

 0  200  400  600  800  1000  1200  1400

 

Iterations

Vf

Flutter  Velocity  vs. Iterations 

(a)

 0

 1

 2

 3

 4

 5

 6

 0  200  400  600  800  1000  1200  1400

 

5% wing-span
20% wing-span

T
sa

i−
H

ill
 s

tr
en

gt
h 

co
nd

iti
on

s 
  

Coordination procedure:inequality constraints vs. Iterations

Iterations

Boundary value for 
the wing strength

(b)

Figure 7: (a) Flutter velocity [m/s] vs. iterations, ∆θk = 1◦, Λ = 0◦, L/c = 7; (b) Second level
optimization: Tsai-Hill coordination conditions vs. cycles, locations 1-2 of wing-span, ∆θk = 1◦, Λ = 0◦,
L/c = 7.
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8. Appendix A

In the following are presented the expressions of the global quantities appearing in Eq. (27):

D00 =

N
∑

j=1

z̄3

j − z̄3

j−1

3
H00 ; (35)

ζ1 =

N
X

j=1

z̄3

j − z̄3

j−1

3
cos 4θj ; ζ2 =

N
X

j=1

z̄3

j − z̄3

j−1

3
sin 4θj ; ζ3 =

N
X

j=1

z̄3

j − z̄3

j−1

3
cos 2θj ; ζ4 =

N
X

j=1

z̄3

j − z̄3

j−1

3
sin 2θj .

(36)
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