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The appropriated modeling of convection terms is a key
point for reproducing complex physical phenomena in fluid
dynamics problems, particularly in hyperbolic nonlinear con-
servation laws and related fluid flow problems. In this con-
text, the objective of this work is to present/compare two new
high-order upwind schemes for approximating convective
terms, namely the Six-Degree Polynomial Upwind Scheme
of C1 Class (SDPUS-C1) and the “Esquema teste” scheme.
“Esquema teste” has the same properties of the SDPUS-C1
scheme, but it is of C2 class. These schemes are based on
normalized variable diagram of Leonard [2] and the TVD
principle of Harten [1, 2]. In summary, the schemes are:

– SDPUS-C1 [2]:

φ̂f=


(−24 +4γ)φ̂6

U + (68− 12γ)φ̂5
U +(−64 + 13γ)φ̂4

U+
(20− 6γ)φ̂3

U + γφ̂2
U + φ̂U , φ̂U ∈ [0, 1],

φ̂U , φ̂U /∈ [0, 1],
(1)

where γ is a free parameter; or in flux-limiter notation,

ψ(r) = max
{

0,
0.5(|r|+ r)(4r2 + 12r)

(1 + |r|)4

}
, (2)

where r = φ̂U/[1− φ̂U ] is a local shock sensor.

– “Esquema teste”:

φ̂f=


−4(λ−24)φ̂8

U+16(λ−23)φ̂7
U +(528−25λ)φ̂6

U

+(19λ− 336)φ̂5
U+(80−7λ)φ̂4

U+λφ̂3
U+φ̂U , φ̂U ∈ [0, 1],

φ̂U , φ̂U /∈ [0, 1],
(3)

where λ is a free parameter; or in flux-limiter notation

ψ(r) =
0.5(|r|+r)[(2λ−32)r4+(160−4λ)r3+2λr2]

(1 + |r|)7
. (4)

The performance of the SDPUS-C1 and "Esquema teste"
schemes are assessed by solving 1D/2D Burgers, Shallow
Water and Euler equations. The schemes are then used for
simulating incompressible fluid flow involving moving free
surfaces. In particular, in this abstract, we present only some

numerical results for 1D/2D Euler equations. These prob-
lems are simulated by using the CLAWPACK code of LeV-
eque [1] with the Godunov method equipped with a correc-
tion term containing as the flux-limiter. When the Mono-
tinized Centered (MC) of van Leer (see [1] pp. 115) is em-
ployed as the flux-limiter, we obtain the reference solution
for this work; and when our SDPUS-C1 (with γ = 12) and
“Esquema teste” (with λ = 96) schemes are used as flux-
limiters, we derive the numerical solutions.
– 1D Euler equations: these equations are given by φt +
F (φ)x = 0, where φ = [ρ, ρu,E]T is the vector of conserved
variables and F(φ) = [ρu, ρu2 + p, u(E + p)]T is the flux
function vector; ρ, u, ρu, E and p are the density, the veloc-
ity, the momentum, the total energy and the pressure, respec-
tively. The ideal gas equation of state p = (γ−1)(E− 1

2ρu
2)

is consider to close the system with γ = 1.4. We consider
a Riemann problem involving multiple interactions of strong
shocks. The problem is solved in [0, 1] with initial conditions

[ρ0, u0, P0]T=

 [1, 0, 1000]T , if 0 ≤ x ≤ 0.1,
[1, 0, 0.01]T , if 0.1 < x ≤ 0.9,
[1, 0, 100]T , if 0.9 < x ≤ 1

(5)

and zero-order extrapolation as boundary conditions. This
Riemann problem is solved using a mesh size of 2000 com-
putational cells, at Courant number θ = 0.5, to obtain the
reference solution, and solved using a mesh size of 1000
computational cells, at θ = 0.8, for the numerical solutions.
Figure 1 depicts the reference and numerical solutions for
ρ, at time t = 0.38. We observed, from this figure, that
both schemes SDPUS-C1 and "Esquema teste" are in a good
agreement with the reference solution, being that the “Es-
quema teste” scheme provided the best numerical result.
– 2D Euler equations: these equations are given by φt +
F (φ)x +G(φ)y = 0, where the vector of conserved variable
is φ = [ρ, ρu, ρv, E]T and the flux functions are F (φ) =
[ρu, ρu2 + p, ρuv, (E + p)u]T and G(φ) = [ρv, ρuv, ρv2 +
p, (E + p)v]T ; [u, v]T and [ρu, ρv]T being the velocity and
momentum vectors, respectively. In order to close the sys-
tem, we consider p = (γ − 1)(E − 1

2ρ(u
2 + v2)), with

γ = 1.4. Another interesting Riemann problem is the intera-
tion of two oblique shocks (states a and c) with two normal
shocks (states b and d) (see [2]). This problem is solved in



Figure 1 – 1D Euler equations: comparison of solutions for ρ.

domain [0, 1]× [0, 1], with initial conditions

[ρ0, u0, v0, p0]T=


[1.5, 0, 0, 1.5]T a,
[0.137, 1.206, 1.206, 0.029]T b,
[0.532, 1.206, 0, 0.3]T c,
[0.532, 0, 1.206, 0.3]T d

(6)

and zero-order extrapolation as boundary conditions. The
reference (at θ = 0.5) and numerical (at θ = 0.8) solutions
are solved in a mesh size of 200 × 200 computational cells.
We report in Figure 2 the solutions for p on y = x line, and in
Figure 3 the p contours, at t = 0.8. One can see, from these
figures, that both the schemes solved satisfactory the com-
plex structure, with the “Esquema teste” scheme providing
the best result.

Figure 2 – 2D Euler equations: solutions for p on y = x.
From this short presentation, one can conclude that the

SDPUS-C1 and “Esquema teste” schemes are good tools for
capturing shocks and complex structures. For the future, we
will compare these upwinding schemes in the scenario of in-
compressible fluid flow involving free surfaces. We thank
the financial support given by FAPESP (Grants 2008/07367-
9 and 2009/16954-8) and CNPq (Grants 300479/2008-5).
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Figure 3 – 2D Euler equations: solutions of the contours of p.
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