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“We plan for days and days and when the time comes, we proceed to
improvise”.

Pietro Maximoff
in “Amazing X-Men #2”, 1995
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ABSTRACT

The correlation between convective activity and the occurrence of lightning has
been exploited in several works. The monitoring and tracking of convective activity
is conventionally achieved by the use of weather radars, but many countries, like
Brazil, lack an extensive coverage of such radars. On the other hand, Brazil has a
network of lightning detectors that covers most of its territory and such detectors
are quite less expensive than weather radars. Assuming that convective activity and
lightning are correlated to some degree, lightning data is currently employed to
monitor and track convective activity by means of the EDDA software in the Center
for Natural Disasters Monitoring and Alert in Brazil. Besides this correlation, some
works also address a quantitative relationship between the number of lightning and
the precipitated mass. While some approaches were proposed to estimate rainfall
using lightning data, they seem to have poor accuracy and to be limited to the
same region and conditions where their specific parameters were obtained, limiting
the application of lightning-estimated rainfall. This thesis proposes a new and more
reliable approach to estimate the accumulated rainfall mass and distribution from
lightning occurred in a preceding interval of time for a defined grid. The estimation
of the rainfall mass is accomplished by a function inferred using grid points covered
by weather radar data. This function is then mapped to the remaining grid points
based on Brazilian rainfall statistics of recent years, making it applicable outside the
range of weather radars. Rainfall spatial distribution is also estimated based on the
density of occurrence of lightning. Rainfall estimation in this thesis is implemented
by the Edda-chuva software that is being evaluated in the same center. Besides
convective rainfall amount and distribution, the software presented in this thesis
also allows to estimate the amount and distribution of the total rainfall, including
thus the stratiform rainfall. Test results show an improvement of the accumulated
rainfall monitoring over most of the Brazilian territory covered by the network of
electrical discharge detectors.
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ESTIMAÇÃO DE PRECIPITAÇÃO ATRAVÉS DE DADOS DE
DESCARGAS ELÉTRICAS ATMOSFÉRICAS NUVEM-SOLO

RESUMO

A correlação entre a atividade convectiva e a ocorrência de descargas elétricas at-
mosféricas foi explorada em vários trabalhos. O monitoramento e rastreamento de
atividade convectiva é convencionalmente feita por meio de radares meteorológicos,
mas muitos países, como o Brasil, não têm uma extensa cobertura de tais rada-
res. Por outro lado, o Brasil tem uma rede de detectores de descargas elétricas
atmosféricas que cobre a maior parte de seu território e esses detectores são muito
menos caros do que radares meteorológicos. Supondo-se que a atividade convectiva
e descargas elétricas atmosféricas estejam correlacionadas em algum grau, dados de
descarga elétrica são atualmente empregados para monitorar e rastrear a atividade
convectiva por meio do software EDDA no Centro Nacional de Monitoramento e
Alertas de Desastres Naturais (Cemaden), no Brasil. Além dessa correlação, alguns
trabalhos também abordam uma relação quantitativa entre o número de descargas
elétricas atmosféricas e a massa precipitada. Alguns trabalhos propuseram estimar
precipitação a partir de dados de descargas, mas seus resultados foram imprecisos
e limitados a mesma região e condições na qual foram obtidos, limitando o uso de
precipitação estimada por descargas. Esta tese propõe uma nova metodologia para
estimar a precipitação acumulada a partir do número de descargas ocorridas em um
intervalo de tempo anterior para uma grade definida. Esta estimaçã é realizada por
uma função inferida usando pontos de grade cobertos pelos dados de radar meteoro-
lógico e foi mapeada para os pontos de grade restantes com base em estatísticas de
precipitação no Brasil para anos recentes, sendo utilizavel fora do alcance de rada-
res meterorológicos. A distribuição espacial da precipitação também é estimada com
base na densidade de ocorrência das descargas. A estimação de precipitação é imple-
mentada neste tese pelo software EDDA-chuva que está sendo avaliado no mesmo
centro. Além da quantidade e distribuição da precipitação convectiva, o software
permite estimar a quantidade e distribuição da precipitação total, incluindo por-
tanto a precipitação estratiforme. Os resultados do teste mostram uma melhoria do
monitoramento precipitação acumulada sobre a maior parte do território brasileiro
coberto pela rede de detectores de descargas elétricas atmosféricas.
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1 INTRODUCTION

The monitoring and tracking of convective activity is conventionally achieved by the
use of weather radars, but many countries of America, Africa and Asia, as is the
case of Brazil, lacks an extensive coverage of such radars. On the other hand, Brazil
has a ground-based lightning detector network called RINDAT (Brazilian Integrated
Lightning Detection Network), one of the largest in the world (PINTO et al., 2006).
This network is currently being expanded in order to cover most of the Brazilian
territory. Lightning detectors have a lower cost in comparison to weather radars.
Assuming that convective activity and cloud-to-ground (CG) lightning are correlated
to some degree, a software that generates fields of density of occurrence of lightning
named EDDA (STRAUSS et al., 2013) is currently being employed to monitor and
track convective activity at the Center for Natural Disasters Monitoring and Alert
(CEMADEN) in Brazil. The EDDA name stands, in Portuguese, for estimation of
density of atmospheric electrical discharges.

Convective activity is related to the convection suffered by a parcel of air that is at
a higher temperature that the surrounding atmosphere. This implies in an instable
condition that may lead to the raising of the parcel. As it raises it may reach the con-
densation level and generate a cumulonimbus cloud that has a high vertical extension
and presents intense updrafts and downdrafts favoring the occurrence of lightning
and presenting heavy rainfall. Such phenomenon is called a thunderstorm (AHRENS,
1988). Thunderstorms may cause flash floods, damage urban infrastructure and pro-
perties, and cause landslides, resulting in deaths or injuries to the inhabitants of the
affected area (KATZ; MURPHY, 1997). The real time or near real time monitoring of
thunderstorms is critical for civil defense in order to take precautionary measures.
This monitoring is typically performed using weather radar and meteorological sa-
tellites. Another thread is weather forecasting using numerical models that simulate
the state of the atmosphere. Weather forecasts are issued by meteorologists using
model outputs along with current meteorological data and images trying to predict
the occurrence of thunderstorms and to identify the associated risks (AFANDI et al.,
2013).

The focus of this work is the estimation of the amount and distribution of rainfall,
which may cause floods and landslides. Rainfall estimation in near real time is ty-
pically performed from weather radar data. However, Brazil is a huge country that
has over 8.5 million km2 with less than 15% of its area is covered by weather ra-
dar. Alternatively, rainfall estimations can be obtained from meteorological satellites
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like those of the Tropical Rainfall Measuring Mission (TRMM), National Oceanic
Atmospheric Administration (NOAA) or Geostationary Operational Environmen-
tal Satellite (GOES) satellite series, but the accuracy of the corresponding rainfall
estimations can be poor (RAMIREZ-BELTRAN et al., 2008; LIAO; MENEGHINI, 2009).

However, assuming that convective rainfall can be correlated to cloud-to-ground
lightning, some approaches proposed rainfall estimation from lightning data for areas
without weather radar coverage. The most common approach is the computation of
a constant-valued rainfall–lightning ratio (RLR) that expresses the convective rain-
fall mass per CG lightning flash (TAPIA et al., 1998). Nevertheless, such ratio may
depend heavily on seasonal and geographical factors, local climatology, convective
regime, storm type, lightning patterns or intensity, dominant lightning polarity of
CG lightning, intracloud to CG ratio and thunderstorm life cycle (BUECHLER; GO-

ODMAN, 1990; SOULA; CHAUZY, 2001; LANG; RUTLEDGE, 2002). Such dependency
may explain why some former approaches failed to provide values of RLR with low
variability (SIST et al., 2010).

A number of studies were performed since 1998 to estimate the rainfall mass directly
from CG lightning observations. Petersen and Rutledge (1998) used the total rainfall
mass and the density of CG lightning to examine their relationship on a number
of spatial and temporal scales for different parts of the world. The lightning flash
incidence is more intense in clouds associated to high-level precipitation, as the
electrification increases with altitude as in the case of tall cumulonimbus (SIINGH et

al., 2010). The most known work of Tapia et al. (1998) computed the RLR as being
the median of a set RLR values obtained for particular thunderstorms. Assuming
a circular distribution of rainfall around each lightning flash, the overall spatial
distribution of rainfall is assumed as the summation of the distribution of the flashes,
which was checked against weather radar data. In addition, Kempf and Krider (2003)
presented a compilation of RLR values including some obtained from other similar
works, and found values ranging from 38× 106 kg to 72× 106 kg per flash for isolated
thunderstorms in Florida, Spain and France, and values as high as 5000× 106 kg per
flash for mesoscale thunderstorms in Australia and Central United States. Molinie et
al. (1999) found values as low as 3× 106 kg per flash for the Pyrenees, while Williams
et al. (1992) found value composed of up to 500× 106 kg per flash for Australia.

The correlation between convective activity and CG lightning has been exploited
in several works (BATTAN, 1965; KINZER, 1974; PIEPGRASS et al., 1982; BUECHLER;

GOODMAN, 1990; WILLIAMS et al., 1992; WILLIAMS; RENNO, 1993; ZIPSER, 1994;
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CHÈZE; SAUVAGEOT, 1997; TAPIA et al., 1998; PETERSEN; RUTLEDGE, 1998; MOLINIE

et al., 1999; SOULA; CHAUZY, 2001; LANG; RUTLEDGE, 2002; KEMPF; KRIDER, 2003;
SIST et al., 2010; SIINGH et al., 2010). An algorithm to select thunderstorms to obtain
such correlation is also described in this thesis (GARCIA et al., 2012).

This methodology presented in this work may overcome the shortcomings of the
former approach to estimate rainfall from lightning data. The current work proposes
a simpler approach in order to estimate the rainfall mass from lightning data, that
seems to be more accurate, the windowed-RLR function (WRLR), which employs
a temporal sliding-window to scan both CG lightning and rainfall data. This was
presented in Garcia et al. (2013), as part of this thesis, being based on the assumption
that convective activity is correlated to electrically active cells that correspond to
areas with high density of CG strokes. It is a way to tackle the high variability of
the RLR, to extend rainfall estimation for different regions and conditions and to
map the rainfall-lightning correlation for different windows in space and time.

As already mentioned, such density is calculated by the EDDA software that imple-
ments standard kernel estimation (STRAUSS et al., 2013).

A set of thunderstorms that occurred in the year of 2009 to 2013 in the Southeastern
Brazil was selected from weather radar data to estimate aWRLR function. Typically,
the radar and lightning data are partitioned into training and test sets. The former
are used to infer the WRLR function, while the latter, to test it. For instance, data
corresponding to the coverage of one weather radar was used as training data, and
data of a different radar, as test data. Evaluation tests demonstrated that a 50 km ×
50 km sliding window with a temporal resolution of 30 min approximately presents
the lower error for rainfall estimation. Therefore, a 50 km spatial grid was defined to
cover the part of Brazil under lightning detector coverage. The WRLR function was
inferred for a region covered by two specific weather radars, composed of 49 squares
with 50 km edges in a superposition scheme detailed in Chapter 4. This function
is mapped to the remaining of the grid using Brazilian rainfall statistics of recent
years. Rainfall spatial distribution is derived from the density of occurrence of cloud-
to-ground lightning. This approach for rainfall estimation is already implemented
by the Edda-chuva software (“chuva” stands for rain, in Portuguese) that is being
currently evaluated at CEMADEN. In addition to the convective rainfall amount and
distribution, the software allows to estimate the amount and distribution of the total
rainfall, i.e. convective plus stratiform rainfall. Test results show an improvement of
the accumulated rainfall monitoring over the part of the Brazilian territory covered
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by the network of lightning detectors.

Lightning data is acquired and processed, being available at CEMADEN in near
real time. This assures that Edda-chuva have a reasonable monitoring capability of
thunderstorms. Additionally, nowcasting using numerical models can be improved
for forecasting purposes, since the meteorologist have additional information to is-
sue his/her forecast. It is worth to note that the approach proposed in this work
is not related to the prediction of thunderstorms. For this matter, there are stan-
dard approaches like Model Output Statistics (MOS) that constitute the backbone
of the current rainfall prediction. MOS techniques provide objective forecasting of
rainfall by establishing a statistical relationship between a predicate (occurrence of
rainfall) and the variables outputted by a numerical model forecast (GLAHN; LO-

WRY, 1972). MOS techniques typically employ an extensive historical time series
of weather data using similar atmospheric physical states to statistically correct
a current forecast (HAMILL; WHITAKER, 2006). Rainfall estimations obtained from
weather radar and meteorological satellites images are used to supplement the rain
gauge data acquired in ground meteorological stations. However, rainfall estimati-
ons obtained from meteorological satellites like TRMM, NOAA or GOES, can be
inaccurate (RAMIREZ-BELTRAN et al., 2008; LIAO; MENEGHINI, 2009).

Therefore, the main objective of this work is to show the proposed approach to
estimate rainfall from CG lightning data, to present the EDDA-chuva software that
implements this approach and to analyze its performance for rainfall estimation
being operationally employed at CEMADEN.

The main contributions of this work can be viewed as the use of a temporal sliding-
window to compute rainfall averages and the corresponding lightning data, the op-
timization of window size and temporal resolution to minimize rainfall estimation
errors, the proposal of a function of the number of CG lightning occurrences to es-
timate rainfall, the spatial mapping of this function to grid points outside weather
radar coverage using available rainfall statistics, and the inference of the total rain-
fall (convective plus stratiform) amount and spatial distribution from the convective
ones.

Chapter 2 exposes the meteorological data used in this work. Chapter 3 is about
techniques and methodologies that are related to the current work, but were not
developed by the author. Chapter 4 presents the techniques and methodologies pro-
posed for this research, while Chapter 5, the results of the numerical tests. Finally,
Chapter 6 shows the conclusions and final remarks.
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2 METEOROLOGICAL DATA

The meteorological data employed in this work is composed of weather radar data,
lightning data acquired by a network of ground-based lightning detectors, and quar-
terly rainfall averages provided by a network of rain gauges and presented in a
isohyets map. Isohyets are lines that have the same amount of accumulated rain-
fall. Rainfall estimations are inferred from the number of cloud-to-ground lightning
occurrences for different periods and locations using the WRLR function. These
estimations are then compared to the corresponding estimations obtained from we-
ather radar data, which are assumed as references. For this purpose, a grid of 50
km resolution was adopted, covering most of the Brazilian territory. Since most of
this territory is not covered by weather radars, the WRLR function is mapped to
the other grid points using the quarterly rainfall averages. Weather radar are for
the years of 2009, 2010 and 2013, lightning data are for the years 2007 to 2010 and
2013, and quarterly rainfall averages are for the years of 1977 to 2006.

Figure 2.1 shows the superposed areas of the Brazilian territory that correspond to
the different data. Quarterly rainfall averages are available for the entire territory,
while the blue rectangle refers to the standard coverage of the RINDAT lightning
detector network, and the red circles, to the standard coverage of the four weather
radars. In the case of RINDAT, the standard coverage is defined by a probability
of detection above 80%. This coverage is detailed in Figure 2.6. In the case of the
weather radars, by a range of 150 km considered as a limit for rainfall detection.
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Figure 2.1 - Coverages of the Brazilian territory for the different meteorological data em-
ployed in this work: (i) quarterly rainfall averages (entire area), (ii) RINDAT
lightning detection network (blue rectangle), and (iii) weather radars (red
circles).

2.1 Rainfall

Rainfall is liquid water in the form of droplets that have condensed from atmosphe-
ric water vapor and then precipitated. This work focuses on the convective and
stratiform rainfall associated with thunderstorms. Convective rainfall occurs from
convective clouds, i.e., cumulonimbus or cumulus congestus. It falls as showers with
rapidly changing intensity, and occurs over a certain area for a relatively short time
during the earlier stages of a thunderstorm, as convective clouds have limited ho-
rizontal extension. Stratiform rainfall falls out of nimbostratus clouds and, in the
cases studied in this work, occurs in later stages of a thunderstorm. It occurs over a
larger area than convective rainfall, over a longer period and has lower intensity.

Figure 2.2 shows a lateral schematic view of a thunderstorm. The advancing front
side of the cloud (right) has high vertical development and produces convective
rainfall, while the tail part (left) presents weaker stratiform rainfall over a larger
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area. The associated cloud is commonly referred as anvil, due to its shape.

Figure 2.2 - Schematic view of a thunderstorm cloud, with the convective (right) and stra-
tiform (left) rainfall.

2.2 Lightning

Lightning is a massive electrostatic discharge that occurs between the electrically
charged regions within clouds or between a cloud and the surface of the Earth. The
charged regions within the atmosphere temporarily equalize themselves through a
lightning flash. There are three primary types of lightning, that occurs inside a cloud
(IC), from one cloud to another (CC) and between a cloud and the ground (CG)
(AHRENS, 1988).

Many factors affect the frequency, distribution, strength, and physical properties of
a “typical” lightning flash in a particular region of the world. These factors include
ground elevation, latitude, prevailing wind, relative humidity, proximity to warm
and cold bodies of water, etc. To a certain degree, the ratio between IC, CC and
CG lightning occurrence may also vary by season or region.

A typical CG lightning flash culminates in the formation of an electrically conduc-
ting plasma channel through the air from within the cloud to the ground surface.
The resulting discharge is then the final stage of a very complex process. A typical
thunderstorm produces, at its peak, three or more CG lightning per minute. CG
lightning is more frequent near the convective portion of a thunderstorm.
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2.3 Weather radar data

Radar is an acronym forRAdio Detection And Ranging, which was coined during the
Second World War. Such devices emit electromagnetic pulses in a given frequency,
typically on the S band, and acquire the signal that is backscattered by the target.
The corresponding delay is used to estimate target distance, altitude, size, relative
speed and direction. In Meteorology, such targets are the hydrometeors like rain-
drops, snow or hail. The larger the raindrops and their number, the higher is the
backscattered energy that allows to estimate the rainfall amount and distribution
over the covered range and to track and characterize thunderstorms. Weather radar
data amount is typically huge, and a single day of data from raw readings can go
over 4 GB for each radar in a network (NATIONAL WEATHER SERVICE, 2007). Some
low-altitude obstacles may generate false echoes, like buildings or even airplanes,
birds or insects. Other limitation is a nearby intense thunderstorm blocking a more
distant rainfall.

The energy backscattered by hydrometeors is measured by the reflectivity factor Z
(in dBZ). The corresponding rainfall rate (in mmh−1) is then estimated using the
Z–R relationship, presented in Equation 2.1, whose parameters A and b are derived
using rain gauge data as a reference of the actual rainfall.

Z = A×Rb (2.1)

This work adopted the Z–R relationship as described by Calheiros and Gomes (2010)
for the radars of Bauru and Presidente Prudente located in the Brazilian state of
São Paulo, as it was obtained for those radars, with A = 32 and b = 1.65.

However, for the other weather radars, Pico do Couto and São Roque, this work uses
the pair of Z-R relationships adopted by CEMADEN for convective and stratiform
rainfall, respectively, the Woodley (MARSHALL; PALMER, 1948) and the Marshall-
Palmer (MARSHALL; PALMER, 1948) relationships. Considering Equation 2.1, the
first one is given by A = 300 and b = 1.4 for Z > 35, while the second, by A = 200
and b = 1.6 for Z ≤ 35. The limit reflectivity of Z = 35 to distinguish between
convective and stratiform rainfall is a specific value adopted by CEMADEN.

Weather radar data employed in this work correspond to Constant Altitude Plan
Position Indicator (CAPPI) images for an altitude of 3 km. These images are obtai-
ned by successive sweeps of the radar for different elevations, in a mode called PPI
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(Plan Position Indicator). Each sweeps corresponds to a fixed elevation angle, but
varying the azymuthal angle from 0◦ to 360◦, resulting in a particular PPI image.
The composition of the set of PPI images for a given altitude gives the corresponding
CAPPI image (ATLAS, 1990). Therefore, a CAPPI image correspond to a horizontal
cut of the atmosphere at a given altitude and allow to employ standard coordina-
tes, instead of the cylindrical coordinates composed of the elevation and azymuthal
angles. Figure 2.3 shows a vertical cut of the atmosphere highlighting the CAPPI
at the 3 km altitude. It is worth to note that a weather radar has the capability
of sweeps varying both the elevation and azimuthal angles. Therefore, it is possible
to acquire a set of volumetric data and some weather forecast centers provide post
processing that allows 3D visualizations.
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Figure 2.3 - Schematic view of radar pulses in a vertical plane for different elevation angles
various, with the gray band highlighting the 3 km altitude CAPPI.

Weather radar networks are used worldwide, and operation examples include NEX-
RAD in the United States, OPERA1 in Europe, and the Canadian weather radar
network. However, many countries of continents like Central and South America,
Africa and Asia generally lack a weather radar coverage, if any.

2.3.1 Weather radar range limitation

One of the weather radar limitations is an immediate consequence of Earth’s cur-
vature. A radar pulse may be considered as emitted tangent to the Earth surface
at the radar location. The altitude of the pulse increases rapidly as the pulse moves
away from the radar. Figure 2.4 shows this altitude distortion. Equation 2.2 allows

1OPErational program for weather RAdar networking
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to correct the altitude of the target (RINEHART, 1997) as

H = ha − aeke +
√
r2 + (aeke)2 + 2daeke sin Θe, (2.2)

where,
H: altitude correction,
ae: Earth radius at the radar location,
ha: target height relative to the radar,
ke: refraction coefficient of the air,
d: distance to the target,

Θe: elevation angle.
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Figure 2.4 - Altitude distortion due to the curvature of the Earth.

The farthest measurable radar readings are typically over 450 km from the radar.
At this distance, radar pulses are above the height of rain clouds, which cannot be
detected. The typical useful radar range for S band radars is about 240 km, but
for rainfall detection the range is limited here to 150 km (CALHEIROS; D’OLIVEIRA,
2007).

A radar pulse may detect a nearby target, but also a more distant target in the
same direction, since part of the energy of the pulse is backscattered or absorbed by
the nearby target, but the remaining part may reach the other target being backs-
cattered later. However, a nearby intense thunderstorm may block all target behind
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it (AHRENS, 1988). In some extreme cases of strong thunderstorms occurring just
above the radar, all readings may be impaired. Similarly, variations on atmospheric
density may cause refraction. In the case of super-refraction, the pulse is deflected
downwards to the ground. In the case of under-refraction, it is deflected upwards.
The pulse may also be reflected multiple times, causing artifacts (LEMON, 1998). In
addition, some low-altitude obstacles may generate false echoes, as in the case of
buildings or even airplanes, birds or insects.

2.3.2 Weather radar metadata

This work uses data acquired by four weather radars located in the Southwest of
Brazil, in Bauru, Presidente Prudente and São Roque, in the state of São Paulo,
and Pico do Couto, in the state of Rio de Janeiro. Their coordinates and altitudes
are shown in Table 2.1.

Table 2.1 - Location of the weather radars used in this work.

Code Radar Latitude Longitude Altitude
BRU Bauru 22◦21′30′′S 49◦01′42′′W 640m
PI Pico do Couto 22◦27′51′′S 43◦17′50′′W 1771m
PPR Presidente Prudente 22◦10′30′′S 51◦22′30′′W 493m
RQ São Roque 23◦36′07′′S 47◦05′39′′W 1148m

All four used radars are Doppler radars and emit RF pulses in the S-band that is
defined by frequencies from 2.0GHz to 4.0GHz, but considered All weather radar
data employed in this work were acquired by four Doppler radars that emit RF
pulses in the S-band. This band is defined by frequencies from 2.0GHz to 4.0GHz,
but these particular four radars have frequencies ranging from 2.7GHz to 3.0GHz.
Figure 2.5 shows the boundaries of the 150 km range for the four weather radars.

In general, the related CAPPI 3 km data files are available in two formats, binary
files with single precision matrices or ASCII files containing sparse matrices. The
spatial resolution for all radar data is 1 km, and maximum radar range is 240 km for
the Bauru and Presidente Prudente radars and 250 km for the Pico do Couto and
São Roque radars. The temporal resolution for the Bauru and Presidente Prudente
radars is 7.5 min, but due to particularities of the data processing system such data
is presented alternating intervals of 7 min and 8 min. The radars of Pico do Couto
and São Roque have a temporal resolution of 15 min.
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Figure 2.5 - Coverage of the 150 km range of the weather radars used in this work.

The ASCII files correspond to data of the radars of Bauru and Presidente Prudente
for the years 2009 and 2010. Data is stored in compressed files using three columns
per line. The first and second columns contain line and column number, respectively,
and the third, the corresponding reflectivity value in dBZ, if not null. A sparse
matrix results, since most of the grid points have zero reflectivity. These files follow
the standard notation for images, with the first pixel being the uppermost-leftmost
one. Additional ASCII files contain the latitude and longitudes corresponding to the
line and column numbers. The corresponding months and years of data employed in
this work are shown in Table 2.3.2.

The remaining data for the radars of Bauru and Presidente Prudente and the data of
the radars of Pico do Couto and São Roque are presented in binary files. All this data
is from the first three months of 2013. Each radar dataset requires a world file, an
ASCII data file used by Geographic Information Systems (GIS) to georeference raster
map images. Those files are stored with the bottommost-leftmost pixel being the
first data point. A simple coordinate transformation allows to match the coordinates
of CAPPI images of different radars.
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Table 2.2 - Months/years of weather radar data in ASCII files for the radars of Bauru and
Presidente Prudente.

2009 2010
January • •
February • •
March • •
April • •
May • •
June • •
July • •
August • •
September • •
October •
November •
December •

2.4 Lightning data

Lightning is a massive electrostatic discharge between electrically charged regions
of the atmosphere that occurs within clouds, between clouds or between a cloud
and the Earth’s surface. A lightning flash occurs when the electric potential diffe-
rence between particles of opposite charges exceeds the insulating capacity of the
surrounding air. Each lightning flash is defined as one or more transient high-current
discharges known as strokes, which may have an extent of kilometers (UMAN; KRI-

DER, 1989). The strokes that compose a flash usually last less than a millisecond
and typically repeat themselves so rapidly that an observer cannot detect the mul-
tiple events. Sometimes, such repetition is slow enough in a way that the lightning
appears to flicker. A lightning stroke acts as an electromagnetic emitter, and its
RF signal can be measured even at great distances (NACCARATO et al., 2006). The
number of strokes composing a single flash is called multiplicity.

Lightning flashes are classified into three classes, cloud-to-ground (CG), intracloud
(IC) and cloud-to-cloud (CC). While CC flashes correspond to most of the lightning
occurrences (UMAN; KRIDER, 1989), the CG flashes are better correlated with con-
vective activity, and therefore are much more monitored due to the potential harm
that they may cause to persons and properties (CUMMINS et al., 1998).

Each flash may also be classified according to the negative or positive polarity of
its electrical charge. Negative CG flashes are more frequent as thunderclouds tend
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to be negatively charged at the bottom, near the ground. Since thunderclouds are
positively charged at their tops, positive CG flashes are usually more intense as the
distance to the ground is larger.

Lightning data is presented in the Universal ASCII Lightning Format (UALF), a
format developed by the Finnish company Vaisala that sells lightning detectors and
weather radars, among other products. The information about each flash/stroke is
stored in a separate line of the compressed ASCII file that is generated for a given
time interval. Each attribute of the stroke is stored in one of the 25 separate co-
lumns. Columns include attributes such as time and location of occurrence, polarity
and type (CG, IC or CC) that were employed in this work. Other columns include
the estimated peak current and rise/decay time of the corresponding waveform that
allow to estimate the electrical charge of the stroke. Table 2.4 lists the 25 columns
of the UALF format. Columns 2 to 8 refer to the time of occurrence of the light-
ning flash/stroke, while columns 9 to 10, to the location of its occurrence. In this
work, lightning data was provided by the RINDAT network, described in the next
section. In this case, each line corresponds to a stroke and thus the column 12 (flash
multiplicity) is always 1.

2.4.1 The RINDAT lightning detection network

RINDAT stands for National Integrated Network for Atmospheric Discharge De-
tection, or Rede Integrada Nacional de Detecção de Descargas Atmosféricas (in
Portuguese). Its is an integrated network of lightning detectors and processing cen-
ters that allow to detect in real time lightning occurrences in part of the Brazilian
territory. This network is due to a cooperation between two Brazilian electric system
operators, CEMIG (Companhia Energética de Minas Gerais) and FURNAS (Furnas
Centrais Elétricas) and two research institutions, INPE and SIMEPAR (Sistema Me-
teorológico do Paraná). Lightning data used in this work was acquired by RINDAT
for the months/years shown in Table 2.4.1.

RINDAT has 5 processing centers, in the cities of Belém, Belo Horizonte, Curitiba,
Rio de Janeiro and São José dos Campos. It employs a proprietary relational data-
base (Sybase) and the LtraX (Real-time Lightning Tracking software) visualization
and analysis environment from Vaisala. Additionally, RINDAT develops integrated
visualization and analysis of lightning data (RINDAT, 2011). RINDAT is a hybrid
sensor network composed of 25 sensors, from which 8 are IMPACT type and 17 are
LPATS (Lightning Position and Tracking System) type, also from Vaisala. LPATS
sensors are designed to detect CG flashes/strokes, but not CC ones, while IMPACT
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Table 2.3 - Description of the columns of the Universal ASCII Lightning Format (UALF).

Column Description
01 Version
02 Year
03 Month
04 Day
05 Hour
06 Minute
07 Second
08 Nanosecond
09 Latitude
10 Longitude
11 Estimated peak current
12 Flash multiplicity
13 Number of employed lightning detectors
14 Degrees of freedom
15 Ellipse angle
16 Length of semi-major axis of ellipse
17 Length of semi-minor axis of ellipse
18 Chi-square from location optimization
19 Rise time of the waveform
20 Peak-to-zero time of the waveform
21 Maximum rate-of-rise of the waveform
22 Type of lightning (CG or CC)
23 Angle indicator
24 Signal indicator
25 Timing indicator

Table 2.4 - Months/years of RINDAT data employed in this work.

2007 2008 2009 2010 2013
January • • • • •
February • • • • •
March • • • • •
April • • • • •
May • • • • •
June • • • •
July • • • •
August • • • •
September • • • •
October • • •
November • • •
December • • •
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Figure 2.6 - Location of the current 25 detectors of RINDAT (two sensors are superposed,
in central Paraná). The blue dashed line represents the range of the RINDAT
with probability of detection above 80% (RINDAT, 2011).
SOURCE: Naccarato et al. (2006)

sensors are able to detect both CG and CC flashes/strokes. CC lightning occur th-
ree times higher than CG lightning (UMAN, 2001), but the latter is important in
the scope of this work, since its occurrence is correlated to convective activity. The
location of the current RINDAT lightning detectors and the approximate coverage
above 80% detection efficiency for the same network appears in Figure 2.6.

In the case of the LPATS sensors, a processing center receives data of a set of
lightning detectors synchronized by the Global Position System (GPS), supplying
time information with a 100 nanosecond resolution as well as its location, polarity
and maximum return stroke current. An algorithm based on the time of arrival of
the RF signal emitted by the lightning allows to define its location, but requires
at least 3 detectors. On the other hand, IMPACT sensors also employ magnetic
direction finding and require only 2 detectors. If a flash/stroke is detected by a
suitable number of lightning detectors, RINDAT can provide its location with an
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error up to 500 m and can differentiate two different strokes that occurred with a
300 ns delay.

2.5 Isohyetal map of quarterly rainfall for Brazil

Another source for rainfall data for this work are the quarterly rainfall averages
obtained from the Pluviometric Atlas of the Brazilian Geological Service (CPRM -
Serviço Geológico do Brasil, in Portuguese). Rainfall averages are obtained from a
network of rain gauges (pluviometers) that covers most of the Brazilian territory.
This data is presented as shapefiles containing isohyets of rainfall averages from
January 1977 to December 2006. It is possible to display yearly, quarterly, or monthly
rainfall averages as well as to check the more rainy or dry months or quarters for
a given year. A shapefile is a digital vector storage format for storing geometric
location and associated attribute information. Shapefile was created to be used with
Geographical Information Services (GIS), but are now used in a variety of softwares.

A isohyet is a line on a map connecting points that have the same amount of rain-
fall in a given period, being similar to contour lines. The shapefiles containing the
isohyets have to be converted to raster images files with the same grid resolution of
the weather radar data (1 km).

The overall area covered by the isohyetal maps is bounded by a square of 40◦ of
latitude by 40◦ of longitude. The latitude is limited northernmost at 06◦00′00′′N
and southernmost at 34◦00′00′′S, while the longitude is limited westernmost at
74◦00′00′′W and easternmost at 34◦00′00′′W. This square encompasses all the conti-
nental area of Brazil. However, only a small part of this area has coverage of weather
radars and the lightning detector network does not cover the entire area.

This work uses two sets of isohyetal maps. The first one refers to the rainfall averages
for the 1977–2006 period, in order to give a general view of the rainfall distribution in
Brazil. The second set is composed of the quarterly rainfall average for all quarters of
these years (1977 to 2006), specifically January–March, April–June, July–September
and October–December, as a way to approximately describe the rainfall distribution
for each of the four seasons. The cumulative rainfall for each season (approximated
by the nearest quarter) is presented in Figure 2.7, with Summer corresponding to
January–March, Autumn to April–June, Winter to July–September and Spring to
October–December. It is important to notice the isohyets represent total rainfall
and, therefore, do not allow to distinguish between convective and stratiform rain-
fall. However, if a constant ratio between the amounts of convective and stratiform
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Figure 2.7 - Average yearly rainfall totals (mm) per season for Brazil during 1977–2006.

rainfall is assumed, then the isohyetal maps can be employed for the convective rain-
fall. Alternatively, if an estimative of such ratio is available for the grid points, more
accurate convective rainfall amounts would be obtained. These issues are discussed
ahead, in Chapter 4.

2.6 MERGE precipitation data

This work employed the isoyethal maps of quarterly rainfall averages, described in
the previous section. This data is acquired by a network of rain gauges of different
agencies/sources. However, as Figure 2.8 shows for the year of 2010, the spatial
distribution of the rain gauges is very uneven over Brazil, presenting a higher density
along the Atlantic coast. On the other hand, estimations of rainfall from the TRMM
satellites may be innacurate, since systematic errors were observed, for instance
in the coast of Northeast Brazil due to warm clouds (ROZANTE et al., 2010). in
order to try to improve rainfall estimations, some researchers of CPTEC/INPE and
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from the University of Maryland proposed a new approach, implemented in the
projet called MERGE, that combines TRMM rainfall estimations and rain gauge
data over South America (ROZANTE et al., 2010). This approach considers either
rain gauge observations or TRMM rainfall estimations depending on the presence
or neighbourhood of rain gauges in a 0.25◦ grid. Test results show that MERGE
performance for rainfall estimation was equivalent to the rain gauge network over
regions with high density of observations, but was better over regions with sparse
obervations, based on climatological expected values of rainfall. MERGE data is
currently considered by CPTEC meteorologists as the most reliable rainfall averages
for Brazil.

Figure 2.8 - Spatial distribution of rain gauges of different sources/agencies over South
America in 2010.
SOURCE: Rozante et al. (2010)

In this work, MERGE data was considered for the month of January 2013, for
the rectangular area bounded by latitudes 27◦00′00′′S to 12◦00′00′′S and longitudes
58◦00′00′′W to 40◦00′00′′W, which corresponds to the area of RINDAT network with
probability of detection above 80%, shown in Figure 2.6.
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3 RELATED WORK

The methods and techniques described in this Chapter, while important for this
work, were not developed by the author. Section 4.1 provides some evidence about
the correlation of CG lightning occurrence and convective activity. Section 3.1 pre-
sents the standard approach proposed by Tapia to estimate the amount and dis-
tribution of convective rainfall from the number of occurrences of CG lightning.
Section 3.2 is about the EDDA software that generates fields of density of occur-
rence of lightning, while Section 3.3, about the Steiner criteria to filter out convective
precipitation from the reflectivity values in weather radar images.

3.1 Tapia’s model

The model proposed by Tapia et al. (1998) allows to estimate rainfall spatial and
temporal distribution using a previously estimated RLR value. A uniform rainfall
distribution is assumed in a circle of ∆x = 5 km radius centered at each CG lightning
flash and in a ∆t = 5 min interval centered at its time of occurrence. The model
presented by Tapia et al. (1998) to estimate the spatial and temporal distribution
of rainfall intensity is represented by Equation 3.1.

R (t, x) = C
Nf∑
i=1

RLR · f (t, Ti) · g (x,Xi), (3.1)

where,
R (t, x): Rainfall rate in mm/h at time t and position x,

C: Unit conversion factor,
Nf : Counter for the number of flashes up to the time t+ ∆t

2 ,
RLR: Constant rainfall-lightning ratio (kg/CG flash),
Ti: Time of occurrence of the i-th flash,
Xi: Location of occurrence of i-th flash.

The temporal distribution f (t, Ti) is presented in Equation 3.2. According to Tapia
et al. (1998) the rainfall intensity is considered to be constant for a ∆t time interval.

f (t, Ti) =

 1 if |t− Ti| < t+ ∆t
2

0 otherwise
(3.2)

Rainfall is assumed as uniformly distributed inside a ∆x circle centered at the light-
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ning flash, as described by Equation 3.3.

g (x,Xi) =

 1 if |x−Xi| < ∆x
0 otherwise

(3.3)

3.2 The EDDA software

The EDDA software estimates the density of lightning occurrence for a given geo-
graphic region and time interval (STRAUSS et al., 2010; STRAUSS et al., 2013). The
density field of occurrences is smooth, defining more clearly the region of convective
activity than the lightning occurrences, which are very sparse in space and time.
This approach was originally proposed in Politi et al. (2006) in order to track the
electrically active convective activity using CG lightning data.

This software is currently being operationally evaluated ar CEMADEN since Octo-
ber 2012. It outputs binary files containing the density of lightning stroke occurrence
for every 15 min for the area with the RINDAT coverage. These files are visualized
by the SALVAR environment that provides selection, handling and visualization of
geospatial data of multiple sources like numerical models, meteorological satellites,
land use type, political and topographic maps, etc. Point-related information can
also be displayed, like rain gage readings. The name SALVAR stands for “to save”
in Portuguese and means Platform for Monitoring and Emission of Alerts of Natu-
ral Disasters. These alerts are typically issued due to high amounts of accumulated
rainfall in a given area or excessive flow rate of rivers. These events may cause floods
or landslides and is obviously important to issue alerts to the Civil Defense.

The EDDA software implements the Gaussian kernel estimator with fixed (Equa-
tion 3.9). The Earth is considered a sphere and the distance d(A,B) over the surface
between two points A and B is approximated by the corresponding Euclidean dis-
tance calculated using geographical coordinates. However, the component given by
the latitude difference is corrected by the cosine of the mean latitude of the two
points, since this component is not along a great-circle of Earth’s surface. In the
equation bellow, “lat” and “lon” mean latitude and longitude, respectively, while
“latmax” and “latmin” are the maximum and minimum latitude of the considered
grid points.

d(A,B)2 = (latA− latB)2 + (lonA− lonB)2 × cos
(

latmax + latmin
2

)
(3.4)
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The EDDA software uses a configuration file to select the time interval, the geo-
graphical area, the grid size, as well as a filter to select the polarity and type of the
lightning. Is possible to select the output format as ASCII tables containing longi-
tude, latitude and the calculated density for each grid point, in order to perform
meteorological data mining. The software also generates animations of the lightning
density field in order to follow the temporal evolution of convective structures. The
corresponding frames are generated using a temporal sliding-window. Since lightning
data are processed in near real time, such animations allow to monitor the current
status of the weather, as well as its temporal evolution.

Additionally, the EDDA software has been used in some studies concerning data
mining of weather data, in this case, using high lightning density values as a de-
cision attribute indicative of convective activity. The CG lightning density field of
occurrences was used in the training phase of algorithms which identify patterns on
forecasts of numerical models (LIMA; STEPHANY, 2013; PESSOA et al., 2012).

Density estimation allows to generate a density field of occurrence from a set of
sampled events. In the case of this study, such events are lightning occurrences,
resulting in a fictitious density field of lightning occurrences for the considered time
interval. The classic two-dimensional kernel estimator (symmetric in relation to both
dimensions) (SILVERMAN, 1986) can be written as:

f̂(X) = 1
nh2

n∑
i=1

K

(
d (X,Xi)

h

)
, (3.5)

where,
X: coordinate pair (x, y) for a two-dimensional grid,

f̂ (X): density estimation at a grid point X,
n: number of samples,

d (X,Xi): Euclidean distance of a grid point X to the event Xi,
K (r): two-dimensional kernel function,

r: Euclidean distance normalized by h,
h: smoothing window width at the grid point X.

For the two-dimensional symmetric Gaussian kernel:

f̂(X) = 1
2πnh2

n∑
i=1

exp
[

(x− xi)2 + (y − yi)2

2h2

]
(3.6)
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The parameter h controls the smoothness of the field and can be chosen manually
according to the desired visualization of the field. The higher its the value, the
smoother the generated field.

However, an automatic scheme for adjustment h was proposed in Silverman (1986),
in which the value of h is calculated to minimize the Mean Integrated Squared Error
(MISE):

MISE(f̂) = E
∫
{f̂(X)− f(X)}2dx (3.7)

Assuming a Gaussian distribution, the optimal value of h that minimizes the MISE
is expressed in terms of the standard deviation σ of the Gaussian as:

hopt = n−1/6σ (3.8)

A possible choice for σ is the root of the average of the variances of the coordinates
of events sampled in each dimension:

σ2 = 1
2(σ2

x + σ2
y), (3.9)

where,

σ2
x = 1

n

n∑
i=1

x2
i −

(
1
n

n∑
i=1

xi

)2

σ2
y = 1

n

n∑
i=1

y2
i −

(
1
n

n∑
i=1

yi

)2

A similar scheme (SCOTT, 2009) considers the non-symmetric case, calculating the
window width h and the standard deviation σ separately for each dimension (in this
case the kernel function is one-dimensional):

f̂(X) = 1
nhxhy

n∑
i=1

K1

(
x− xi
hx

)
K1

(
y − yi
hy

)
, (3.10)

where,
K1(x) = 1√

2π
exp(−1

2x
2)

hx = n−1/6σx
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hy = n−1/6σy

The schemes described above calculate a constant value of h for all grid points.
Silverman (1986) proposes that better results can be obtained by varying the value
of h as the density at the grid point considered:

f̂(X) = 1
n

n∑
i=1

1
h2
i

K

(
d(X,Xi)

hi

)
, (3.11)

where,
hi = hλi

λi = (f̃(Xi)/g)−α

Here h is the optimal global window, hi is the local window width, λi is the local
window width factor, f̃(xi) is a prior estimate of the local density using fixed window
and α is a parameter between 0 and 1 which defines the influence degree of the local
density on the local window. The λi are normalized by g, which is the geometric
mean of f̃(xi) This approach is employed in Section 4.7 (EDDA-chuva software) for
the spatial distribution of the convective rainfall.

3.3 The Steiner criteria

Steiner et al. (1995) proposed a technique to identify convective rainfall in 2D we-
ather radar images of reflectivity in dBZ, specifically CAPPI 3 km images. According
to this criteria, convective precipitation is supposed to present a high contrast with
the background stratiform precipitation. In these images, a grid point is classified
as presenting convective rainfall if it satisfies any of the following criteria:

a) Intensity: the grid point has reflectivity of at least 40 dBZ;

b) Peakedness: the grid point exceeds the average background reflectivity
Zbg (in dBZ) of the neighbouring grid points by at least the difference ∆Z
(in dB) defined in Equation 3.12. This background intensity is given by
the average of non-zero radar echoes within a radius of 11 km around the
grid point;

∆Z =


10, Zbg < 0
10− Z2

bg

180 , 0 ≤ Zbg < 42.43
0, Zbg ≥ 42.43

(3.12)
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c) Surrounding area: the grid point is on the convective neighborhood of
other grid point that meets the criteria “a” or “b”; this convective neigh-
borhood is defined by an intensity-dependent convective radius defined in
Figure 3.1.
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Figure 3.1 - The intensity-dependent convective radius as a function of the average back-
ground reflectivity Zbg.
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4 PROPOSED METHODOLOGY

The main objective of this work is to estimate rainfall from the number of CG light-
ning occurrences using a windowed-RLR function (WRLR) that was proposed by
the author in (GARCIA et al., 2013). Such approach, based on a function, seems more
suitable for this purpose, since a fixed-value RLR would present too much variabi-
lity, as already discussed in Chapter 1. The WRLR function is derived employing
a temporal sliding window to scan both CG lightning and convective rainfall data
considering a set of sampling squares of 50 km side. Convective rainfall data is itself
estimated from weather radar data, filtered by the Steiner criteria. Part of the light-
ning and rainfall data is used to derive the function, during the “training phase”,
while the remaining part of the data is used to test the accuracy of the WRLR
function, in the “test phase”.

The proposed approach allows to derive a specific WRLR function using rainfall
data of a particular weather radar. In the case of this work, the Bauru weather
radar was chosen to derive the “reference” WRLR function. However, the goal is to
estimate convective rainfall using only lightning data and outside the coverage of
any weather radar, since obviously a weather radar does not require any other way
to estimate rainfall inside its coverage. Therefore a new question arises, how to map
the WRLR function in order to get rainfall estimates from lightning data outside
radar coverage? The answer is to use quarterly averages of rainfall for a specific grid
to map the reference function from the grid point corresponding to the location of
the radar to the remaining grid points.

4.1 A temporal series approach to check the correlation between CG
lightning and convective activity

Mattos and Machado (2011) analyzed the life cycle of convective mesoscale systems
over the state of São Paulo, using satellite data in the infrared and microwave bands,
and also lightning data. Adopting the Pearson correlation coefficient, they determi-
ned that CG lightning occurrence was well correlated to the size of the convective
system (correlation of 0.96), to the cloud top height (correlation of 0.84), to the
integrated ice content (correlation of 0.86) and to the size of precipitating particles
(correlation of 0.90). They concluded that thunderstorms, i.e. storms with high oc-
currence of lightning are, in average, longer and cover a larger area than standard
storms. The maximum density of lightning occurs at the beginning of the convec-
tive mesoscale system, while lightning occurrence rate reaches a maximum during
the growth phase, near the maturation of the convective mesoscale system. Oliveira
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and Mattos (2011) studied such correlation for the city of São Paulo considering
a square area of 1◦ side. They found that in Summer there is a higher amount of
rainfall and high number of occurrences of lightning, but CG lightning is less in-
tense, while in the Winter, there is less rainfall and less lightning occurrences, but
lightning is more intense. They also concluded that correlation between rainfall and
lightning was low, but it can be due to the delay between rainfall and lightning.
However, in another work, Beneti et al. (2012) found a good correlation between
rainfall estimated from weather radar and CG lightning occurrences for the diurnal
cycle of convective mesoscale systems in the Brazilian Southeast.

In order to check the correlation between CG lightning and convective activity,
weather radar and lightning data of 2009 were compiled for a square area of 50 km
× 50 km in the nearby of the city of Bauru, in a way that Bauru is exactly on the
southeast vertex of the square. Weather radar data provided by radars of Bauru and
Presidente Prudente was employed to estimate convective precipitation by means of
a suitable Z-R relationship (CALHEIROS; GOMES, 2010). The corresponding lightning
data was obtained from RINDAT in order to generate temporal series. Each point
of the series is given by a pair of 30 min accumulated values of the CG strokes and
of the convective precipitation. Three different series are shown for the same square
area: the year the 2009, the month of September 2009, and 54 hours of September
8-10th 2009 that cover the extent of a particular thunderstorm. The curves that
correspond to the temporal series of these periods of time, appear in Figures 4.1, 4.2
and 4.3. These curves were smoothed by a one-dimensional Gaussian filter. Filter
width was 24 hours (48 data points) for the first set of curves (year of 2009), 2
hours (4 data points) for the second (September of 2009) and one hour for the third
(thunderstorm of September 8-10th 2009).

Correlation values between CG stroke number and precipitated mass were then
calculated for the three sets of curves, but using raw data before smoothing. However,
calculating correlation using the complete temporal series would be useless, since
most data points present no rainfall or no strokes. Therefore, we identified 259
thunderstorms for the year of 2009 and 31 thunderstorms for the month of September
2009, always for the same square area. An event was considered as a thunderstorm if
it presented rainfall above a threshold, if the rainfall persisted for at least two 30 min
interval and if it also complied to the Steiner criteria for convective precipitation. The
correlation is then calculated between the number of CG strokes and the precipitated
mass for each thunderstorm, always considering 30 min accumulated values of the
number of strokes and rainfall. We also performed some cross correlation checks
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using the same data, but maximum correlation was attained with zero delay. The
study of such correlation is important, but would be out of the scope of the current
work.

The correlation results and the three figures follow. The first case refers to the 259
thunderstorms included in the temporal series of the 30 min accumulated number of
CG strokes and of precipitated mass for the entire year of 2009 (see Figure 4.1). Cor-
relation values were calculated for each one of the 259 thunderstorms and presented
mean of 0.77, median of 0.78, standard deviation of 0.15 and range [0.29, 0.98].
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Figure 4.1 - Temporal series of accumulated 30 min values of the number of CG strokes

and precipitated mass (rainfall) for the year of 2009 and for the square area
near the city of Bauru (curves smoothed by 1D Gaussian filter).

The second case refers to the 31 thunderstorms included in the temporal series of the
30 min accumulated number of CG strokes and of precipitated mass for the month of
September 2009 (see Figure 4.2). Correlation values were calculated for each one of
the 31 thunderstorms and presented mean and median of 0.82, standard deviation of
0.12 and range [0.53, 1.00]. Finally, the third case refers to a sole thunderstorm that
appeared in the temporal series of the 30 min accumulated number of CG strokes
and of precipitated mass for the days of 8-10th of September 2009 (see Figure 4.3).
The correlation calculated for this particular thunderstorm is 0.78.
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Figure 4.2 - Temporal series of accumulated 30 min values of the number of CG strokes
and precipitated mass (rainfall) for the month of September of 2009 and for
the square area near the city of Bauru (curves smoothed by 1D Gaussian
filter).
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Figure 4.3 - Temporal series of accumulated 30 min values of the number of CG strokes
and precipitated mass (rainfall) for some days of September 2009 and for the
square area near the city of Bauru during a particular thunderstorm (curves
smoothed by 1D Gaussian filter).
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4.2 Automatic selection of thunderstorms

An approach that was adopted in the beginning of this work was the automatic
selection of thunderstorms. Thunderstorm selection by hand would be an exhaustive
task due to the high volume of lightning an rainfall data and the non-uniformity
of the corresponding databases. As a consequence, previous works that selected
thunderstorms in this fashion employed a relatively small number of events and found
RLR values with high variability. In this work, a specific algorithm was developed for
the automatic selection of thunderstorms (GARCIA et al., 2012), which is described
as follows. The use of this algorithm was later abandoned since the sliding-window
scheme was adopted. Nevertheless, the automatic selection of thunderstorms was
useful for applying the Tapia’s model for lightning data in the Southeast Brazil.

The proposed algorithm for automatic thunderstorm selection performs a search for
CG lightning clusters in the lightning data and checks if there is a minimum amount
of convective rainfall associated to each cluster. Considering a list of lightning oc-
currences V = {v1, v2, . . . , vn}, a graph G = (V,E) is generated with each node of
vi of the graph representing a lightning occurrence with corresponding time of oc-
currence ti an location xi, i.e. vi = (ti, xi). Each edge eij connects two nodes vi and
vj that do not exceed minimum time and distance differences of the corresponding
lightning occurrences. These differences are expressed by the parameters ∆tG and
∆xG, defined in a suitable manner in Section 4.2.2. Thus, E (G) is obtained by:

E (G) = {eij | vi, vj ∈ V (G) , (|ti − tj| ≤ ∆tG) ∧ (|xi − xj| ≤ ∆xG)} , (4.1)

where,
∆tG: maximum allowed difference in the time of occurrence of two flashes,
∆xG: maximum allowed difference in the Euclidean distance of two flashes.

As a result, G (E, V ) is an undirected, non weighted, simple and disconnected graph.
It is possible to determine a subset wi of nodes vj that are connected to a given node
vi by edges eij, i.e. wi = {vj | eij ∈ E (G)}. The resulting set W = {, w2, . . . , wn}
does not represent a set of lightning clusters since their elements may not overlap (for
instance, w1 may be connected to w4, while w2 may also be connected to w4, but not
to w1). A spanning tree algorithm (Algorithm 4.1) was then developed in order to
traverse the setW (G) in an element-wise manner merging nodes that are connected
to obtain a subgraph of G corresponding to a tree fk. Each tree is a representation
of a lightning cluster, while the union of all these disjoint trees constitutes the forest
F = {f1, f2, . . . }.
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Algorithm 4.1 Spanning tree algorithm for the generation of the set of lightning
clusters F.
Require: The set W (G) derived from the graph G (V,E).

1: function ForestGenerator(W )
2: F ← ∅
3: for all wi ∈ W do
4: fi ← Join(W,wi)
5: if fi 6= ∅ then
6: F ← F ∪ {fi} . Adds the sub-graph fi to F
7: return F

8: function Join(W,wi)
9: for all vj ∈ wi do
10: m ← Join(W,wj)
11: wi ← wi ∪m . Merges all nodes from wj to wi
12: W ← W \ {wj} . Removes the subset wj from W

13: return wi

The lightning database is composed of files in the UALF format. Each record/line
corresponds to an individual flash/stroke following a chronological order and the-
refore the records are already sorted in time, reducing the computational cost of
the above algorithm by half, since only subsequent flashes must be checked for a
particular flash.

Once obtained the set of lightning clusters F , the next step is to check if there is
a minimum rainfall Rk associated to each cluster fk. The amount Rk is computed
adding up the rainfall ri associated to each node vi = (ti, xi) of the cluster from
the weather radar images. In order to perform such computation, a region growth
algorithm (GONZALEZ; RICHARD, 2002) is applied. Considering a lightning occur-
rence vi, every neighboring pixel of the radar image that presents rainfall is used
as a seed for the region growth algorithm. Once identified these rainfall pixels, the
corresponding pixels are checked for rainfall in the preceding and the subsequent
radar images. In the affirmative case, any pixel is also considered as a seed. In both
cases, the neighborhood is given by a space-time window defined by (∆tG,∆xG).

All the rainfall corresponding to the pixels determined by the region growth algo-
rithm (in space and in time) is then computed for the lightning occurrence vi. A
two-step procedure is repeated alternating spatial growth and temporal growth until
no more rainfall is added to vi. The total amount of rainfall associated to a lightning
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cluster fk is then given by the summation of the rainfall of all nodes vi that compose
it. If this total is above a defined threshold, the lightning cluster is then considered
a thunderstorm.

Finally, a consistency check is performed: if any two thunderstorms corresponding
to lightning clusters fa and fb have overlapping rainfalls, i.e. Rfa ∩ Rfb

6= ∅, they
are merged into a new thunderstorm that corresponds to a new lightning cluster
fc = fa ∪ fb, and has a total rainfall given by Rfc = Rfa ∪Rfb

.

4.2.1 Conversion of lightning stroke to lightning flash data

Despite the temporal sliding-window approach adopted in this work, the pioneering
application of the Tapia’s model to estimate a RLR for the Southeast Brazil (GARCIA

et al., 2012) required a selection of individual storms that was performed by the
proposed algorithm. However, once Tapia’s model requires lightning flash data and
RINDAT provides lightning stroke data, some pre-processing was required to convert
strokes to flashes. A lightning flash is composed of one or more strokes that are
usually less of 1 km apart and occur with a delay of few miliseconds. Goodman et
al. (2012) presented a clustering scheme to derive flashes from stroke data, but the
algorithm described in this section to perform the clustering of lightning was also
employed to group strokes into flashes by a convenient adjustment of ∆xG and ∆tG.
Here, these parameters were adopted as 16.5 km and 300 ms, respectively, as also
suggested in Goodman et al. (2012) to identify two different strokes as part of the
same flash. Therefore, lightning stroke data was converted to lightning flash data,
obtaining an average multiplicity of 2.8 that is similar to the value presented in
Pinto et al. (2003) for the same Brazilian region.

4.2.2 Influence of some parameters in the thunderstorm selection algo-
rithm

The output of the algorithm proposed for thunderstorm selection depends on two
parameters, ∆xG and ∆tG that were already described. These parameters must to
be adjusted in such a way that the resulting thunderstorms be a good representa-
tion of the corresponding convective activity in the spatial scale convenient for the
RLR calculation. However, in general, distinct thunderstorms should be detected as
different events, while a single large storm should be detected as one single event.
Another point is the different rainfall estimation errors are obtained for different
spatial scales. Thus, an empirical adjustment of these parameters is required using
weather radar images as a reference.
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Preliminary tests showed that values of ∆xG lower than 5 km are bad choices since
a single large thunderstorm will often be split into several smaller ones. Conversely,
values of ∆xG higher than 30 km will cause distinct thunderstorms merged into a
single one. A similar behavior is observed with the parameter ∆tG. Values lower
than 2 min split a larger thunderstorm, while values higher than 20 min tend to
merge several smaller thunderstorms. Four combination of values of ∆xG and ∆tG
were tested considering two values of ∆xG (10 and 20 km) and two values of ∆tG (5
and 10 min). Table 4.1 shows the number of flashes per thunderstorm obtained for
different values of ∆tG and ∆xG. The values ∆xG = 10 km and ∆tG = 5 min were
adopted for the RLR calculation since they allow to identify thunderstorms that are
more similar than those observed in the corresponding weather radar images.

Table 4.1 - Influence of the parameters ∆xG and ∆tG in the resulting thunderstorms iden-
tified by Algorithm 4.1

Test number 1 2 3 4
∆tG 5min 10min 5min 10min
∆xG 10 km 10 km 20 km 20 km
Maximum number of flashes per storm 796 4164 7410 8793
Average number of flashes per storm 91.18 121.04 144.67 176.84
Standard deviation 40.42 108.67 191.43 282.26
Longest storm duration 3.51h 6.47h 6.67 h 8.83 h
Average storm duration 0.16h 0.26h 0.19 h 0.35 h
Standard Deviation 0.20h 0.35h 0.28 h 0.56 h

4.3 Temporal sliding-window for lightning and weather radar data

The use of overlapping temporal sliding windows to compute the rainfall and the
lightning data is the one of the cornerstones of the proposed approach to estimate
convective rainfall from the number of lightning strokes using a WRLR function.
Such computation smooths out the data and allow to estimate a suitable WRLR
function. Additional smoothing is provided by the temporal overlapping of the win-
dows, that precludes outliers from misleading the results. However, this overlapping
is employed only in the training phase to compute data and estimate the function,
not in the test phase.

The Bauru weather radar was chosen to generate the reference WRLR function, due
to the availability of corresponding data and its temporal resolution. In Garcia et
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al. (2013) both the Bauru and Presidente Prudente radars were taken as reference
radars. In this work, data used to derive the WRLR function was computed by
temporal sliding windows considering a square region of 200 km side centered at the
Bauru radar, that is completely inside the 150 km radar range, as shown in Figure
4.4. However, this 200 km square area was divided into a set of smaller sampling
squares. The temporal sliding window is then employed separately for each sampling
square.

The training data set is from the period of January 2009 to September 2010. The
corresponding convective rainfall was obtained from the CAPPI radar images using
the criteria proposed by Steiner et al. (1995), described in Section 3.3, and the Z-R
relationship presented in Section 2.3. The lightning stroke data was obtained from
the RINDAT data files in UALF format, while the lightning flash data was derived
from the stroke data by using a flash clustering algorithm, as proposed in Section
4.2.1.

150 km (radar range)

.
Radar

200 km

200km

Figure 4.4 - Location of the squared area of 200 km side centered at the Bauru radar
location (the circle shows the 150 km radar range).

The temporal sliding-window requires the definition of the window duration ∆t and
window advance δt. Thus δt = 0 means no overlap, and it is required that ∆t > δt

to avoid gaps. The size of the equal-size sampling squares must also be defined.
These choice of these three parameters is discussed in the following sections. The
considered time extension is divided with ∆t and δt values that are multiples of the
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temporal resolution of the radar that is 7.5 min. Figure 4.5 shows a temporal sliding
window advancing by δt assuming an hypothetical time unit.

t

t0

t1 = t0 + δt

t2 = t0 + 2δt

t3 = t0 + 3δt

Figure 4.5 - Sliding time-window with size ∆t = 4 units and advance δt = 1 unit.

The 200 km square area is divided into several sampling squares Qj of side ∆x. Since
these squares do not overlap, ∆x must subdivide the size of the square area into
integer parts, i.e. 200 km must be multiple of ∆x. However, in order to check if the
position of this grid has any influence in the proposed computation (for instance,
strong rainfall or lightning activity at the borders of a grid square), and also to
increase the number of obtained windows to smooth-out local variations, the region
study was re-sampled using different grids of the same dimensions, but displaced
along the North-South direction, the East-West direction and even both directions.
Figure 4.6 shows the sampling grid and re-sampling grid variations. These displace-
ments are defined by a constant shift δx, with δx < ∆x. The adopted values for ∆x
and δx are always multiple of the spatial resolution of the radar data that is 1 km.

The computation of rainfall and lightning data is performed by the application of
the temporal sliding window to the sampling squares. Therefore, considering each
square Qj and each interval of time starting at ti, it is possible to define a tuple
(nij, rij) of the corresponding number of CG lightning strokes occurrences nij and
convective rainfall rij.
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Figure 4.6 - The square area of side 200 km divided into (a) several Qj sampling squares
with no displacement, (b) with a latitudinal shift δx, (c) with a longitudinal
shift δx, and (d) with both latitudinal and longitudinal shifts δx.

4.4 Estimation of the WRLR function

The computation of rainfall and lightning data described in the previous section
allows to obtain a set of tuples. These tuples are used for the estimation of a WRLR
function, which yields the amount of convective rainfall R (in 106 kg) from the
number of CG lightning strokes N , i.e. WRLR (N) = R. In order to fit the func-
tion values to the set of tuples (nij, rij), a power function seemed to be the most
convenient choice,

WRLR (N) = a ·N b + c, (4.2)

where a, b and c are real constants, with 0 < b < 1 and N ∈ N>0.

Once a function is estimated from the set of tuples, it is possible to calculate the
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corresponding rainfall estimation error. A number of tests were performed with
different values for the temporal window duration ∆t and for the side ∆x of the
sampling squares, resulting in different sets of tuples (nij, rij) and the corresponding
WRLR functions. In general, higher values of ∆t and ∆x result in tuples with higher
rainfall and higher number of strokes, but tend to excessively smooth out the data
masking eventual local variations. On the other hand, lower values of ∆t and ∆x
imply in tuples with higher variability. The choice of the parameters ∆t and ∆x is
discussed as follows. A set of feasible values for ∆t and ∆x were found, in a sense
that rainfall estimation errors were acceptable, but it was not possible to determine
optimal values for them.

The vast majority of the tuples presented no rainfall or lightning since thunderstorm
occurrence is very sparse in time and space. CG lightning and convective rainfall do
not necessarily match in space and time, even considering that the corresponding
data is computed using a temporal sliding window for each sampling square Qj. Be-
sides this eventual mismatch, lightning or rainfall may occur outside the considered
Qj, but in a nearby point. These occurrences near the border are treated by the
(spatial) re-sampling, also described in the preceding section.

In order to compute the WRLR (N) function, tuples with nij = 0 (no lightning) are
discarded, even if presenting rainfall rij 6= 0. In the same way, tuples with rij = 0
(no rainfall) are also discarded, even presenting lightning nij 6= 0. There is also
the presence of outliers, which are tuples with extreme or inconsistent values when
compared to the rest of the tuples, i.e. very high values of nij for low values of rij or
vice-versa. These outliers were removed using the Tukey-Kramer method (TUKEY,
1977), as described in Equation 4.3: A given tuple with nij = N strokes can be
written as wij = (nij, rij) = (N, rNij) is checked against all other tuples with the
same number of strokes. It is considered as an outlier and removed from the dataset
if it does not comply to the following condition:

Q1 − 1.5 · IQR ≤ rNij ≤ Q3 + 1.5 · IQR, (4.3)

where,
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WN : the set of all tuples for a given by (nij = N, rij),
rNij: rainfall of a given tuple wij with nij = N strokes,
FN : current subset of WN without outliers,
Q1: the lower rainfall quartile of the rNij of the tuples of WN ,
Q3: the upper rainfall quartile of the rNij of the tuples of WN ,

IQR: the inter-quartile range, defined by (Q3 −Q1).

As already mentioned, the high variability of the sets of tuples (nij, rij) makes diffi-
cult to estimate a suitable WRLR function. A scatter plot of the tuples was made to
check if the tuples present some tendency. For each N , an average rainfall value rN
was calculated by the average of the rainfall values of all tuples with nij = N . The
scatter plot is shown along with these averages in Figure 4.7. These averages form a
curve up to N = 100 approximately. On the other hand, the scatter plot shows less
tuples for increasing values of N . It can be concluded that this poor sampling for
high values of N precludes the estimation of a function that fits the tuples with low
errors. Therefore, the value N = 100 was then chosen as a limit for the domain of
the WRLR function: [1, 100]. It is important to note that lightning stroke data were
employed as provided by RINDAT, but some tests were performed using lightning
flash data, obtained as described in Section 4.2.1. The next section describes the
optimization of parameters ∆t and ∆x.

Figure 4.7 - The scatter-plot of (nij , rij) tuples (in black) and of the rainfall-averaged
(N, rN ) tuples (in red).
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The WRLR function was obtained using a particular non-linear least squares fitting,
that fits a set of m observations with a model that is non-linear in n unknown
parameters (m > n). The basis of such method is to approximate the model by
a linear one and to refine the parameters by successive iterations. The adopted
computational routine was the curve_fit function from the SciPy package for Python
(MCKINNEY, 2012).

Some values of N are related to more tuples (nij = N, rij) than others, and these
more frequent N values are related to a more accurate average rainfall rN , as a larger
number os samples tend to more closely represent the behavior of a phenomena
(MEYER, 2000). Thus, more frequent values of N are more important to the WRLR
than less frequent ones, as those in the latter could jeopardize the fitting of the
function due to poorer sampling. To avoid this problem, weighted least squares are
used in the fitting of the WRLR. The curve_fit routine employs weights. The main
advantage that weighted least squares enjoys over other methods is the ability to
handle regression situations in which the data points are of varying quality (RYAN,
2008). Less weight is given to the less frequent values of N , which are considered
less accurate, while more weight is given to more frequent values of N . This means
the rainfall rN for more frequent values of N will be more meaningful for obtaining
the WRLR function, as the function will fit those points more closely, which will
also limit the impact of under sampled values. The chosen weight is the frequency
of quantity of tuples (nij = N, rij) for a given N .

4.4.1 Optimization of the parameters for the sliding-window approach

As commented above, the sliding-window for the computation of rainfall and light-
ning data requires the definition of the parameters ∆t (window duration) and δt

(window advance). Values that are multiple of the radar resolution of 7.5 min were
tried for ∆t: 7.5, 15, 22.5, 30, 45, 60, 120 and 360 min, while δt was selected as
δt = 7.5 min to increase the number of windows and to smooth-out local effects.
Additionally, the edge ∆x of the sampling squares and the spatial re-sampling dis-
placement δx must also be defined. Test values of ∆x were of 10, 20, 25, 40, 50, 100
and 200 km, while δx was selected as ∆x/2 for each test case.

Preliminary tests provided some guidance in choosing values for the parameters ∆t
and ∆x. Higher values of these parameters tend to merge different thunderstorms.
Additionally, “clear weather” areas and time intervals are mixed up with “stormy
weather” ones. Such local variations imply in estimating a WRLR function prone to
errors. For example, the tuples obtained assuming ∆x > 200 km and ∆t > 360 min
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imply in WRLR functions that do vary too much within N and have estimation errors
similar to the adoption of a constant-valued RLR. On the contrary, the adoption
of low values for these parameters reflect the temporal and spatial mismatching
between the occurrence of CG lightning and convective rainfall, since lightning and
rainfall data are not smoothed out sufficiently and the consequent high variability
of the tuples preclude the estimation of a suitable WRLR function.

As already mentioned, it would be difficult to obtain optimal values for ∆t and ∆x
or to assure that such values are optimal. The performed tests allowed to optimize
these values up to a certain degree, according to the test estimation error, and
to adopt a pair of values that is convenient considering the temporal and spatial
resolution of the data. In this way, this work adopted ∆x = 50 km and ∆t = 30
min. The corresponding values of δx = 25 km and δt = 7.5 min were then defined.

An estimation test was performed for a WRLR function derived using the same para-
meters, but assuming δx = 10 km. The estimation error was similar, but processing
time increased too much, in proportion to the number of tuples.

4.4.2 Mapping of the WRLR function different sampling area sizes and
window durations

The adopted value for the sampling square area size is ∆x = 50 km, as described
in the previous section. However, the several tests performed using different values
of ∆x show that is possible to estimate an linear relationship between two WRLR
functions obtained with different values of ∆x, considering a range from 10 to 100
km. This relationship is approximated by the root square of the ratio between the
corresponding square areas, as shown in Equation 4.4. In this case, this relationship
corresponds to the ratio between both values of ∆x. However, for convenience, the
root square of the ratio between the corresponding square areas is adopted, since
there are cases with trapezoidal areas. The mapping presented in this equation
considers always a window duration ∆tref = 30 min.

WRLRtgt ≈ Xtgt ·WRLRref , (4.4)
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where,
WRLRtgt: target WRLR function,
WRLRref : reference WRLR function,

A∆xtgt : area for WRLRtgt (km2),
A∆xref

: reference square area of 50 km edge (2500 km2),
Xtgt: target spatial adjust factor, given by:

Xtgt =
√√√√A∆xtgt

A∆xref

. (4.5)

Different WRLR functions were computed using temporal windows of different sizes,
with ∆x of 10, 20, 25, 40, 50 (reference) and 100 km, all with the same duration
∆t = 30 min. A least square approach that minimizes the errors was then employed
to derive the corresponding “true” spatial target adjust factors that allow to map
the reference WRLR to each one of the WRLR functions with different size.

Figure 4.8 presents these “true” six spatial adjust factors compared to the proposed
Xtgt that are along the diagonal line. Values of Xtgt vary linearly with ∆x, being
similar to the “true” adjust factors for each ∆x, except for the case of ∆x = 100
km.
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Figure 4.8 - True target spatial adjust factors (black dots) compared to the proposed ad-
just factors given by the square of the ratio between areas (dashed line).
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The target spatial adjust factor Xtgt results in a new WRLR function that is very
similar to the WRLR function derived directly from the tuples with different win-
dow size. An example is given in Figure 4.9 by comparing the WRLR function
derived from tuples with window edge of ∆xtgt = 20 km to the function given by
Xtgt · WRLRref . It can be observed that both functions are very similar. Func-
tion WRLRref is also shown in the figure. Functions WRLRref and WRLRtgt were
derived using ∆tref = 30 min.
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Figure 4.9 - The functions derived from the tuples are shown in solid lines
WRLR20 km (black) and WRLR50 km (blue), while the approximated function
[X20 km ·WRLR50 km] is shown by the red dashed line.

The WRLR function was derived using data obtained with a sliding window of
∆xref = 50 km and ∆tref = 30 min. Similarly to the mapping presented above for
different sizes of the sampling square area, it is also possible to linearly map the
WRLR function for different window durations ∆t, using 7.5, 15 and 60 min, as
expressed in Equation 4.6, but maintaining ∆x = 50 km.

WRLRtgt ≈ Ttgt ·WRLRref , (4.6)

where,
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WRLR: target WRLR function,
WRLRref : reference WRLR function,

∆ttgt: target window duration (min),
∆tref : reference window duration (30 min),
Ttgt: target temporal adjust factor, given by:

Ttgt = ∆ttgt
∆tref

. (4.7)

Different WRLR functions were computed for the same window size, but for different
window durations ∆t of 7.5, 15, 30 (reference) and 60 min. Again, a least square
approach that minimizes the errors was then employed to derive the corresponding
“true” temporal target adjust factors that allow to map the reference WRLR to each
one of the WRLR functions with different duration.

Figure 4.10 presents these “true” four temporal adjust factors compared to the
proposed Ttgt that are along the diagonal line. Values of Ttgt vary linearly with ∆t,
being similar to the “true” adjust factors for each ∆t, except for the case of ∆t = 60
min.
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Figure 4.10 - True target temporal adjust factors (black dots) compared to the proposed
adjust factors given by the ratio between durations (dashed line).
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The target temporal adjust factor Ttgt results in a new WRLR function that is
very similar to the WRLR function derived directly from the tuples with a different
window duration. An example is given in Figure 4.11 by comparing the WRLR
function derived from tuples with window duration ∆ttgt = 15 min to the function
given by T · WRLRref . It can be observed that both functions are very similar.
Function WRLRref is also shown in the figure. Functions WRLRref and WRLRtgt

were derived using ∆xref = 50 km.
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Figure 4.11 - The functions derived from the tuples are shown in solid lines WRLR15 min
(black) and WRLR30 min min (blue), while the approximated function
[T15 mim ·WRLR30 mim] is shown by the red dashed line.

4.5 Mapping of the WRLR function for areas outside the reference radar
range

A cornerstone of the proposed rainfall estimation WRLR function is how to map
the reference WRLR function derived using lightning and rainfall data for a speci-
fic reference radar (in this case, the Bauru radar) for other areas of the Brazilian
territory. Such areas are typically outside the coverage of any radar, but must be
within range of the RINDAT lightning detection network. The works that employed
a constant-valued RLR, based on the Tapia’s model (TAPIA et al., 1998), presented
values of RLR that may heavily depend on the location, like Williams et al. (1992),
Molinie et al. (1999) or Kempf and Krider (2003). Therefore, a regional variation of
the WRLR function was also expected. Besides the Bauru weather radar, data from
three other radars were available for this study (Presidente Prudente, São Roque
and Pico do Couto radars). It was possible to derive the WRLR function using the
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Bauru radar as reference and to test it in areas covered by the remaining radars.
Such tests confirmed that the WRLR function must be somehow adjusted to be
employed in other areas.

A specific grid with resolution 0.5◦ was defined for a rectangular area bounded by
latitudes 12◦00′00′′S to 27◦00′00′′S, and longitudes 58◦00′00′′W to 40◦00′00′′S. This
resolution is convenient for the EDDA-chuva software, described in the next section.
It approximately corresponds to the coverage of the RINDAT lightning detector
network. Grid point (m,n) is associated to a square area with 0.5◦ edge centered
at this point. A quarterly-averaged rainfall-to-lightning ratio QRLR was calculated
for each season of the year and each grid point (m,n). Quarterly amounts of rain-
fall were obtained from the isohyets described in Section 2.5, while the quarterly
accumulated number of CG lightning strokes, from the RINDAT data described in
Section 4.4. Reference quarterly-averages QRLRref were also computed for each se-
ason considering the square area of 200 km edge shown in Figure 4.4 that is centered
at the reference weather radar of Bauru.

Assuming, for simplicity, that the reference WRLR function (Equation 4.2) can be
linearly mapped to other grid points by a single coefficient, its value is proposed as
the ratio between quarterly-averaged rainfall values at the desired location and at
the location of the reference radar, as expressed by Equation 4.9. The new function
is limited to values N < 100 to avoid high estimation errors. Function values are
also given in 106 kg.

WRLRmn (N) ≈
(
QRLRmn

QRLRref

)b
·Xmn ·WRLRref (N) , (4.8)

where,
WRLRmn: WRLR function adjusted for grid point (m,n),
WRLRref : reference WRLR function,
QRLRmn: quarterly-averaged RLR at grid point (m,n),
QRLRref : reference quarterly-averaged RLR,

b: power factor for WRLR function (Equation 4.2),
Xmn: spatial adjust factor (Equation 4.4) from 50 km to 0.5◦.

The spatial adjust factor X0.5◦ allows to map the reference WRLR function obtained
using 50 km edge squares to the 0.5◦ grid resolution that is equal to 55.56 km, if
not considered the latitude-distortion. Along a circle of (constant) latitude, i.e. an
Earth’s parallel, 0.5◦ is equivalent to a distance that varies from 46.14 to 55.56 km
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for the studied area due to the Earth’s shape. Therefore, the square area associated
to each point of the 0.5◦ resolution grid is actually a trapezoidal area.

In order to simplify the computation, a matrix K = {kmn} can be defined to embed
the ratio of the quarterly-averaged RLR’s and the spatial adjust factor. K elements
are dimensionless. Thus, Equation 4.9 can be rewritten in a simpler form as:

WRLRmn (N) ≈ Kmn ·WRLRref (N) , (4.9)

where,

Kmn =
(
QRLRmn

QRLRref

)b
·Xmn

K can be defined as the matrix of remapping factors for the reference WRLR func-
tion. The precomputed values of the elements of K are shown for each season and
for the considered grid in Figure 4.12.

The K matrix was obtained using a relatively low number of years for lightning acti-
vity (2007 to 2010). This poor sampling resulted in some grid points that presented
a quarterly amount of rainfall, but low occurrence or absence of CG lightning, with
the related Kmn values being very high. In order to filter out such values considered
as outliers, the upper limit of the K elements was set as 5.0. This limit was chosen
based on the highest values of RLR compiled in Petersen and Rutledge (1998). It
is also important to notice that a Kmn is only valid for regions above the land, as
there is no isohyetal data available corresponding to rainfall over the ocean. For
simplification, Kmn values corresponding to 0.5◦ × 0.5◦ trapezoidal areas that are
partially over the ocean are computed considering only lightning occurrences and
rainfall over land.

The isohyetal maps of rainfall presented in Section 2.5 refer to the total rainfall, but
the WRLR function only estimates convective rainfall. In this work, it is assumed
a constant ratio p between the convective and the total rainfall for all points of
the considered grid. Using this simplification, the term p is canceled in the fraction
between QRLRmn and QRLRref

Henceforth, the function WRLR multiplied by the specific K element will be referred
as “mapped WRLR”.
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Figure 4.12 - Values of the elements of the K remapping matrix for the four seasons and
considered grid.

4.6 Inference of the total rainfall

The WRLR function and its mapping as presented in the previous sections applies
for the estimation of the convective rainfall and, furthermore, only for the convective
rainfall associated to lightning occurrence. Meteorologists are typically interested in
the estimation of the total rainfall, i.e. convective plus stratiform rainfall. Some
works addressed this issue considering TRMM rainfall estimates, that are perfor-
med by its precipitation radar. Schumacher and Houze (2003) and Takayabu (2003)
investigated characteristics of convective and stratiform rainfall in the tropics. More
recently, Liu et al. (2012) analysed climatic characteristics of convective and strati-
form rainfall over tropical and subtropical areas based on TRMM data. In particular,
Schumacher and Houze (2003) estimated the convective fraction of the rainfall for
different seasons, regions and synoptic regimes. Such estimation is restricted up to
latitudes 20◦S and 20◦N and employs a grid with poor resolution. Average convective
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fraction is 60% in mass, and 30% in area (SCHUMACHER; HOUZE, 2003). In particu-
lar, the convective fraction in mass is about 43% in mass for the Summer months.
Typically, for convective events, the stratiform part occurs after the convective one
and tends to be less intense.

This work assumes a fraction of convective rainfall of 50% in mass, due to the lack of
better estimates. Considering the spatial distribution of rainfall, it assumes that the
convective fraction covers 30% of the area of the total rainfall. Some tests employing
weather radar data are discussed in the next chapter and confirm the suitability of
the 50% fraction in mass: in average, one half of the precipitated mass is due to
convective rainfall with lightning, while the other half corresponds to convective
rainfall without lightning and stratiform rainfall. It is worth to stress that only the
stratiform rainfall associated to convective events is included here.

4.7 EDDA-chuva software

The research described here allowed to add a new functionally to the software EDDA,
described in Section 3.2. Besides the generation of fields of density of occurrence of
lightning for the near real time monitoring of convective activity, it would be possible
to estimate the amount of convective rainfall accumulated in a given interval of time
using lightning data. Therefore, a new software was developed, the EDDA-Chuva
(“chuva” stands for rainfall, in Portuguese), with the same functionalities of the
former software EDDA, but including the convective rainfall estimation.

In the new software, that started to be evaluated operationally at CEMADEN in
January, 2014, lightning stroke occurrences are stored every 30 min and distributed
over a grid of 0.5◦ resolution that covers all the part of Brazil with RINDAT coverage,
and even the larger coverage of the new BRASILDAT lightning detector network.

The part of the software that performs standard density estimation employs the same
configuration parameters of the previous version (EDDA software). Such parameters
include grid resolution of 0.01◦ and interval of time of 15 min for the integration
of lightning occurrences, values that were defined as convenient for near real time
monitoring of convective weather. On the other hand, the part of the software that
performs rainfall estimation integrates CG lightning strokes for the 0.5◦ grid every
30 min, obtaining a number of occurrences Nmn that is mapped by the WRLRmn

function to an amount of rainfall Rmn . The software outputs hourly-accumulated
amounts of convective rainfall for the 0.5◦ grid. These outputs are further employed
for the generation of 6, 12, 24, 48 and 72 h accumulated values of convective rainfall
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for visualization in the SALVAR environment of CEMADEN.

Another point in the proposed methodology is the spatial rainfall distribution. This
work proposes the estimation of the convective rainfall amount as given by the
WRLR function (Equation 4.9), while the corresponding spatial distribution is as-
sumed as being the same of the field of density of occurrence of CG lightning strokes,
as proposed for the EDDA software (STRAUSS et al., 2013). Such density is obtained
using standard Gaussian kernel density estimation for the considered area and time
interval, as described in Section 3.2. Therefore, the normalized density of CG light-
ning stroke occurrences is mapped to the corresponding density of precipitated mass
by multiplying by the accumulated mass of rainfall yielded by the WRLR function
for the area around the considered point of the 0.5◦ grid and for the considered 30
min window duration.

However this spatial rainfall distribution is output for a 0.05◦ grid. The 0.01◦ reso-
lution of the lightning density grid would be too refined for the rainfall distribution
since there is a spatial mismatch between lightning and rainfall – the temporal mis-
match can be partially attenuated considering the 30 min integration of lightning
and rainfall data. A constant-valued smoothing window width h (Section 3.2) is also
assumed as 0.05◦ for the convective rainfall.

Tapia’s model spatial distribution of the rainfall (Equation 3.1) is based on circles
of constant rainfall intensity, resulting in a rainfall distribution with rough transi-
tions where rainfall intensity level changes. Such rainfall distribution is rough and
oversimplified. In the case of EDDA-chuva, the use of Gaussian kernel density esti-
mation allows for smoother transitions, resulting in spatial distributions more similar
to those observer from weather radars. Thus, EDDA-chuva produces a more realis-
tic distribution than Tapia’s model. Figure 4.13 illustrates this difference, showing
the estimated rainfall distribution given from the two approaches for the same two
lightning occurrences.

Besides the estimation of convective rainfall, the EDDA software also estimates the
total rainfall, assuming that half the precipitated mass is due to the convective
rainfall with lightning, while the other half, to the convective precipitation without
lightning and also the stratiform precipitation, as discussed in the previous section.
Hourly-accumulated amounts of total rainfall are also output for the 0.05◦ grid. The
spatial distribution of the total rainfall employs the same 0.05◦ grid of the convective
rainfall, but with a value of window width h that results in a area that is about 3.33
times larger than the area covered by convective rainfall.
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Figure 4.13 - Schematic view of the spatial distribution of rainfall for Tapia’s Model (left)
and EDDA-chuva (right). The rainfall is showed in low intensity (blue) and
high intensity (red), for the lightning occurrences (yellow).

Initially, rainfall spatial and temporal distributions were obtained using a Gaussian
filter applied on the CG lightning stroke occurrences weighted by the distance. This
approach was abandoned since the EDDA software is more user friendly and accurate
than the application of the Gaussian filtering. Besides, EDDA takes into account
temporal variations since it integrates the occurrences for a time interval. Therefore,
EDDA provided images of density of occurrence of CG lightning stroke that correlate
better to the corresponding precipitating systems observed in the weather radar
images.
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5 VALIDATION TESTS

This chapter presents the results of the tests performed using the methodologies
shown in the preceding chapters. The estimation of a RLR value for Bauru by the
application of the Tapia’s model is described in the next section, followed by the
major results of this work, the estimation of a WRLR function, its mapping for
areas outside the reference radar range, and the test results concerning estimation
of rainfall from lightning data.

All algorithms and methods developed in this work have been implemented using
Python 2.7 on an SciPy based IPython Notebook environment. Python is a general-
purpose high-level programming language that emphasizes code readability, and
which syntax allows programmers to express concepts in fewer lines of code than
would be possible in languages such as C, and supports multiple programming pa-
radigms, including object-oriented, imperative, and functional programming or pro-
cedural styles (ROSSUM; DRAKE, 2011). This environment includes a set of scientific
computing libraries that are part of the SciPy package (MCKINNEY, 2012), like:

SciPy a library of algorithms and mathematical tools containing modules for opti-
mization, linear algebra, integration, interpolation, special functions, FFT,
signal and image processing, ODE solvers and other algorithms common
in science and engineering;

NumPy an extension to the Python programming language, adding support for
large, multi-dimensional arrays and matrices, along with a large library of
high-level mathematical functions to operate on these arrays;

matplotlib a plotting library containing a procedural pylab interface based on a
state machine, designed to closely resemble that of MATLAB;

IPython a command shell for interactive computing in multiple programming lan-
guages, especially focused on the Python programming language, that of-
fers enhanced introspection, “rich” media, additional shell syntax, tab com-
pletion, and “rich” history;

Pandas a software library for data manipulation and analysis, offering data struc-
tures and operations for manipulating numerical tables and time series.

All tests were performed in a Supermicro server with two quad-core processors Intelr

Xeonr CPU E5530 of 2.40 GHz.
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5.1 RLR computation for Bauru

This section presents the standard RLR calculation for an area around the weather
radar of Bauru using the methodology proposed by Tapia et al. (1998). This was the
first RLR calculation for the Southeast Brazil and was performed using data of the
year of 2009 for the square area of side 200 km inside the range of the weather radar
of Bauru that was defined in Figure 4.4. A set of 491 thunderstorms was selected
using the algorithm described in Section 4.2.2, with ∆tG = 5 min and ∆xG = 10
km. The total convective rainfall mass and the accumulated number of CG flashes
were accounted for all thunderstorms.

Following the Tapia’s methodology, RLR values were calculated for each thunders-
torm of the set, resulting in RLR values ranging from 0.4× 106 kg to 1094× 106 kg
per flash. The overall RLR is given by the median of these ratios, 219× 106 kg per
flash. Figure 5.1 shows the scatter plot for the set of thunderstorms. Each point
corresponds to the pair convective rainfall mass and total number of CG flashes of
a given thunderstorm, i.e. to its RLR. A dashed line shows the estimation provided
by the overall RLR, which is the median of the individual RLRs. It can be seen that
the individual RLRs are hardly approximated by the overall RLR making difficult to
obtain a good estimation of rainfall from the corresponding number of CG flashes.
The value of the overall RLR is certainly influenced by the many thunderstorms
with low rainfall and low number of CG flashes. The resulting overall RLR seems
to overestimate the amount of rainfall for thunderstorms with high number of CG
flashes.
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Figure 5.1 - Scatter plot of the convective rainfall mass and the number of CG flashes.
Each point corresponds to the individual RLR of given thunderstorm, while
the dashed line corresponds to overall RLR.

5.2 WRLR function estimation for the four seasons of the year

The proposed methodology for estimating the WRLR function was described in
Sections 4.3 and 4.4. This section presents the estimation of WRLR functions for
the four seasons of the year, obtained using data of the corresponding quarters of the
year. These functions are reference WRLR functions estimated for the 200 km-edge
square area centered at the Bauru weather radar (Figure 4.4). The tuples (nij, rij)
of number of CG strokes and convective rainfall mass (in kg) were derived using
sliding-windows of duration ∆t = 30 min over sampling squares with edge ∆x = 50
km. The temporal sliding-window advances δt = 7.5 min each time, i.e. an overlap
of 22.5 min. The spatial re-sampling employs a displacement δx = 25 km.

Lightning and radar data spans from January 2009 to September 2010, divided
by season/quarter, covering two Summers (January–March of 2009 and 2010), two
Autumns (April–June of 2009 and 2010), two Winters (July–September of 2009 and
2010) and one Spring (October–December of 2009). However, only sampling squares
that presented rainfall were considered, since there is no generation of radar data in
the absence of rainfall. The same way, only sampling squares that presented lightning
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strokes were considered. A total of 147,812 tuples resulted, being 79,906 for Summer,
10,339 for Autumn, 32,846 for Winter, and 24,721 for Spring. Figure 5.2 shows a
scatter plot of the tuples for each season.

Figure 5.2 - Scatter plot of the tuples of convective rainfall mass and number of CG stro-
kes.

The scatter plots above show the high variability of the tuples. Over 96% of these
tuples presented a number of strokes N ≤ 100 and the majority of the tuples present
low number of strokes. On the other hand, tuples with high number of strokes are
less common. Figure 5.3 shows the histogram for the quantity of tuples for a given
value of N .
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Figure 5.3 - Histogram for the number of tuples with a given number N of CG strokes.
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In a first step, outliers were filtered out for each value ofN using the Tukey-Krammer
rule (TUKEY, 1977), described in Equation 4.3. Figure 5.4 shows the result of the
hexagonal binning applied for the same tuples for each season. Darker hexagons
denote tuples that occur with higher frequency.

Figure 5.4 - Hexagonal binning for the tuples of convective rainfall and number of CG
strokes. Each hexagon shows the averaged number of windows for each tuple.

New scatter plots were made averaging the convective rainfall for each value of
N , showing a good tendency between the number of strokes and the convective
rainfall for each season, as seen in Figure 5.5 for the averaged tuples. The same
figure shows the corresponding WRLR functions obtained for each season assuming
power functions, as stated in Section 4.4, and based on the scatter plots. These
functions were obtained using a frequency-weighted least squares fitting for all the
tuples, which defines weights to redundant tuples. A tuple that appears twice in the
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database has a weight that is the double than a tuple that appears once. This fitting
yields the real constants a, b and c that allows to define the power function stated
in Equation 4.2. Figure 5.5 also shows that these WRLR functions for each season
fit better the averaged tuples when N < 50 that correspond to more than 90% of
all tuples of the dataset.
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Figure 5.5 - Scatter plots of the averaged tuples (average rainfall for each number of strokes
N) for each season. The WRLR functions obtained for all tuples of the dataset
are plotted in black for each season.

The same WRLR functions for each season of Figure 5.5 are shown together in
Figure 5.6. The convective rainfall mass per number of strokes tends to be higher in
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Winter than in Summer, while Autumn and Spring have similar in-between values.
The plots were limited to N = 100, but these functions provide an “reasonable”
estimative of rainfall for the rare occurrences of N > 100.
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Figure 5.6 - The WRLR function for Summer, Autumn, Winter and Spring.

Considering that the database has about 54% of the tuples for Summer, 22% for
Winter, 17% for Spring, and only 7% for Autumn, it is expected that the Summer
WRLR function would be more accurate than the WRLR functions for the other
seasons. Table 5.1 shows the real constants a, b, and c for these WRLR power
functions.

Table 5.1 - Real constants a, b and c that describe the WRLR power function (Equation
4.2) for each season.

Season a b c

Summer 685.70 0.40 35.18
Autumn 1227.00 0.33 -412.50
Winter 651.60 0.48 220.10
Spring 650.70 0.45 58.88
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5.3 Mapping of the Summer WRLR function for different area sizes and
window durations

In order to minimize the estimation error of the convective rainfall mass, the sliding-
window time interval and area size were optimized for the generation of tuples that
result in a WRLR function. These parameters were set as 50 km (edge of the square
area) and 30 min (window duration). However, Section 4.4.2 presents the spatial
adjust factor X (Equation 4.4) and the temporal adjust factor T (Equation 4.6)
that allows to map the standard WRLR function to other area sizes and time inter-
vals, respectively. This feature is not employed in this work, but may be useful for
operational purposes. This sections illustrates the mapping of the Summer WRLR
function described in the previous section, but the same scheme can be applied for
the functions of the remaining seasons.

A comparison between WRLR∆x functions obtained for different edges ∆x and the
standard function WRLR50 km mapped by the spatial adjust factor X∆x, which is
[X∆x ·WRLR50 km] is shown in Figure 5.7, always considering the standard window
duration of 30 min. Assuming the specificWRLR∆x function as reference, the mean
relative errors of the approximations [X∆x ·WRLR50 km] are relatively low, being
0.0131 for ∆x = 10 km, 0.0206 for ∆x = 20 km, 0.0193 for ∆x = 25 km, 0.0081 for
∆x = 40 km, and 0.0201 for ∆x = 100 km. Thus, the spatial adjust factor X may
be eventually used without significantly affecting the rainfall estimation.

Similarly, a comparison between WRLR∆T functions obtained for different window
durations ∆t and the standard functionWRLR30 min mapped by the temporal adjust
factor T∆t, which is [T∆t ·WRLR30 min] is shown in Figure 5.8, always considering
the standard edge of 50 km. Assuming the specific WRLR∆T function as reference,
the mean relative errors of the approximations [T∆t ·WRLR30 min] are relatively low,
being 0.0049 for ∆t = 7.5 min, 0.0067 for ∆t = 15 min, and 0.0041 for ∆t = 60
min. Also similarly, the temporal adjust factor T may be eventually used without
significantly affecting the rainfall estimation.

61



0
1
2
3
4
5
6
7
8

R
ai

nf
al

l(
1
09
k
g
)

∆x = 10 km ∆x = 20 km

0
1
2
3
4
5
6
7
8

R
ai

nf
al

l(
10

9
k
g
)

∆x = 25 km ∆x = 40 km

0 20 40 60 80 100

Strokes per window

0
1
2
3
4
5
6
7
8

R
ai

nf
al

l(
10

9
k
g
)

∆x = 50 km

0 20 40 60 80 100

Strokes per window

∆x = 100 km

WRLR∆x WRLR50 km X∆x ·WRLR50 km

Figure 5.7 - Summer WRLR functions obtained for different ∆x (10, 20, 25, 40, and 100
km, in black) compared to the standard WRLR function (in blue) mapped
by the corresponding spatial adjust factors (red dashed line).
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Figure 5.8 - Summer WRLR functions obtained for different ∆t (7.5, 15 and 60 min, in
black) compared to the standard WRLR function (in blue) mapped by the
corresponding temporal adjust factors (red dashed line).

5.4 Validation tests of the rainfall estimation for the WRLR function

This work proposes the estimation of convective rainfall from CG lightning stroke
data using a temporal sliding-window approach (Section 4.3) to estimate a WRLR
function (Section 4.4) using reference weather radar data, in this case of the Bauru
radar, and mapping this function to other areas by the K matrix (Section 4.5) that
was derived using isohyetal maps of quarterly cumulative rainfall. Since the real
rainfall is assumed as the one estimated from weather radar data using a suitable
Z–R relationship, the only way to validate such estimation outside the coverage of
the reference radar is by means of another weather radar. Therefore, the validation
tests concerning the convective rainfall estimation were performed for areas under
the coverage of the weather radars described in Section 2.3.2. For each weather
radar, a set of thunderstorms was selected. Since 54% of the tuples of the database,
tuples of number of CG strokes and convective rainfall, refer to Summer days, these
validation tests were only performed for Summer days.
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The next section (Section 5.4.1) shows the validation tests using the Bauru weather
radar, followed by the validation tests using the Presidente Prudente weather radar
(Section 5.4.2), the São Roque weather radar (Section 5.4.3), and the Pico do Couto
weather radar (Section 5.4.4).

5.4.1 Validations tests using the Bauru weather radar

The validation of the WRLR function for convective rainfall estimation was per-
formed using data of two months of the Summer of 2013, January and February.
The estimations of convective rainfall mass given by the WRLR function and the
Bauru weather radar are compared, using the latter as a reference. Additionally, the
estimation given by the constant-valued RLR of the Tapia’s model was also included
in the comparison. Test area is the square of 200 km edge inside the 150 km range
of the Bauru radar, as shown in Figure 4.4. This area is approximately bounded by
latitudes 23◦15′00′′S to 21◦27′00′′S and longitudes 50◦00′00′′W to 48◦04′00′′W. This
area was divided into 16 squares of edge ∆x = 50 km corresponding to the standard
sampling square size, as shown in Figure 4.5 (a), while the window duration was
∆t = 30 min with window advance of δt = 30 min.

During these two months, the total convective rainfall e stimated by weather radar
was 3461× 109 kg, against the RLR estimative of 4794× 109 kg, and the WRLR es-
timative of 3407× 109 kg. Figure 5.9 shows the daily estimative of convective rainfall
mass and the cumulative value along the two months. It can be observed that the
RLR tends to overestimate the rainfall by 38%, while the WRLR function, to sligh-
tly underestimate it by 2%, for the entire period. Considering the error for the daily
accumulated rainfall, the mean of the RLR error was an overestimation of 30%,
while the median was an overestimation of 16%. For the WRLR, the mean error
for the daily accumulated rainfall was an overestimation of 6%, with the median
presenting an underestimation of 1%.

A set of 7 thunderstorms was selected from this data in order to analyze more
closely the performance of both estimators, as shown in Table 5.2. Thunderstorms
are denoted by identifiers “BRU–#”. This table presents the input data for these
thunderstorms: the number of CG lightning strokes for the WRLR function and the
number of CG lightning flashes for the RLR constant, as well as the corresponding
estimations of convective rainfall mass, compared to the value obtained from the
Bauru weather radar. Thunderstorm duration is also included in the table. Table 5.3
shows the corresponding percentage errors for the total mass of the thunderstorms
and the correlation for the hourly mass estimations in relation to the radar-inferred
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Figure 5.9 - The months of January and February for the Bauru radar during the Summer
of 2013. The top image shows the daily accumulated rainfall mass while the
bottom image shows the cumulative rainfall, comparing the estimations of the
weather radar (in blue), of the RLR constant (in dashed green) and of the
WRLR function (in dashed red) for the convective rainfall mass.

values. The results of the WRLR function outperformed the RLR ones.

Table 5.2 - Convective rainfall mass in 109 kg estimated by weather radar, by the WRLR
function and by the RLR constant for the 7 selected thunderstorms. The cor-
responding number of CG lightning strokes and flashes, the duration and the
reference to the specific figures also appear.

CG Lightning Rainfall Estimation
Storm Figure Strokes Flashes Radar WRLR RLR Duration (h)
BRU-1 5.10 6210 5428 633 564 1188 9
BRU-2 5.11 1034 912 141 157 199 9
BRU-3 5.12 1370 1224 194 191 268 10
BRU-4 5.13 2588 2202 223 254 482 10
BRU-5 5.14 1574 1472 330 193 322 9
BRU-6 5.15 282 270 241 88 59 14
BRU-7 5.16 950 788 35 132 172 7
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Table 5.3 - Percentage error (error) and correlation (corr) of the WRLR and RLR esti-
matives for the 7 selected thunderstorms.

WRLR RLR
Storm error corr error corr

BRU-1 -11% 0.93 +88% 0.81
BRU-2 +11% 0.89 +41% 0.87
BRU-3 -1% 0.99 +38% 0.96
BRU-4 +14% 0.97 +116% 0.94
BRU-5 -41% 0.80 -2% 0.83
BRU-6 -63% 0.86 -75% 0.75
BRU-7 +274% 0.84 +389% 0.95

It can be expected a mismatch between the convective rainfall mass estimations
estimated from lightning data and the ones obtained from weather radar. The results
show that, considering each thunderstorm, the RLR constant tends to overestimate
the rainfall mass, while the WRLR function, to underestimate it, reproducing the
same behavior already observed for the totals for the two months. However, this
a general tendency, and some thunderstorms were selected as exceptions. Hourly
convective rainfall mass estimation are shown for thunderstorms BRU-1 to BRU-
7 in Figures 5.10 to 5.16, respectively. The RLR constant grossly overestimated
mass values for the first four thunderstorms, while the WRLR function resulted
in better estimations. The three remaining thunderstorms, selected as worst cases
for the WRLR function, resulted in poorer estimations. In BRU-6, the rainfall was
underestimated by the RLR and the WRLR, while in BRU-7, both approaches
overestimated the rainfall. Thunderstorms BRU-6 and BRU-7 are weaker than the
others shown, which suggests the rainfall-lightning correlation may be linked to the
thunderstorm strength.
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Figure 5.10 - BRU-1 thunderstorm occurred in 1st January 2013. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
of the RLR constant (in dashed green) and of the WRLR function (in dashed
red) for the convective rainfall mass.
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Figure 5.11 - BRU-2 thunderstorm occurred in 15th January 2013. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
of the RLR constant (in dashed green) and of the WRLR function (in dashed
red) for the convective rainfall mass.
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Figure 5.12 - BRU-3 thunderstorm occurred in 25th January 2013. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
of the RLR constant (in dashed green) and of the WRLR function (in dashed
red) for the convective rainfall mass.
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Figure 5.13 - BRU-4 thunderstorm occurred in 23rd February 2013. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
of the RLR constant (in dashed green) and of the WRLR function (in dashed
red) for the convective rainfall mass.
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Figure 5.14 - BRU-5 thunderstorm occurred in 19th January 2013. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
of the RLR constant (in dashed green) and of the WRLR function (in dashed
red) for the convective rainfall mass.
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Figure 5.15 - BRU-6 thunderstorm occurred in 16th January 2013. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
of the RLR constant (in dashed green) and of the WRLR function (in dashed
red) for the convective rainfall mass.
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Figure 5.16 - BRU-7 thunderstorm occurred in 26th February 2013. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
of the RLR constant (in dashed green) and of the WRLR function (in dashed
red) for the convective rainfall mass.
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5.4.2 Validations tests using the Presidente Prudente weather radar

The previous section presented the validation tests of the WRLR function and of
the Tapia’s model (RLR constant) using the Bauru weather radar. The WRLR
function was inferred using the same Bauru radar. Rainfall estimations for any
place outside the coverage of the Bauru radar demands the spatial mapping of
the function, described in Section 4.5, by means of the specific elements of the K
matrix. This section presents validation tests using the Presidente Prudente weather
radar, but including the four seasons. Each season is approximately represented
by the correspondent quarter: Summer (January, February and March), Autumn
(April, May and June), Winter (July, August and September) and Spring (October,
November and December).

The data for the four seasons were only available for the radars of Bauru and Presi-
dente Prudente. The data for the radars of São Roque and Pico do Couto included
only Summer months. The corresponding WRLR functions are very similar due to
the overlap of their coverages. Since the Bauru radar was taken as the reference
radar and employed to derive the WRLR function, it was chosen to use to per-
form validation tests for the four seasons employing the Presidente Prudente radar.
The results for the four seasons using the Bauru radar itself would be probably too
similar.

The validation tests for the four seasons were performed considering a square with
edge of 200 km centered at the Presidente Prudente radar, as described in Figure
4.4, bounded approximately by latitudes 23◦04′00′′S to 21◦16′00′′S and longitudes
52◦21′00′′W to 50◦24′00′′W. This area was divided into 16 squares of edge ∆x = 50
km corresponding to the standard sampling square size, as shown in 4.5 (a), while
the window duration was ∆t = 30 min with window advance of δt = 30 min.

Data of seven seasons/quarters of the years of 2009 and 2010 was available for this
square area in order to analyze the performance of the mapped WRLR function
for the estimation the cumulative convective rainfall mass, assuming the rainfall
estimated using the Presidente Prudente weather radars as a reference. Table 5.4
describes the seasons/quarters, the cumulative number of CG lightning strokes that
serves as input to the WRLR function as well as the cumulative convective rainfall
mass of the function estimated by the function and by the radar. The estimation
error for the quarterly accumulated convective rainfall as well as the mean daily
estimation error for the period are also shown.
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Table 5.4 - Estimation performance of the mapped WRLR function for the considered
seasons/quarters for the area under the coverage of the Presidente Prudente
radar. Convective rainfall mass is given in 109 kg and the percentage error is
taken in relation to the radar estimation.

CG Rainfall Estimation Quarterly Daily error
Season Figure Strokes Radar WRLR error mean median

Summer 2009 5.17 28265 3960 3364 -15% -4% -5%
Autumn 2009 5.18 5189 595 643 +8% +11% -8%
Winter 2009 5.19 47329 5936 5736 -3% -3% -9%
Spring 2009 5.20 44834 6326 5070 -20% +4% -10%
Summer 2010 5.21 36707 5375 4628 -14% -4% -7%
Autumn 2010 5.22 3549 577 578 +0.2% +7% +4%
Winter 2010 5.23 12008 3146 2175 -31% +13% +6%

Figures 5.17 to 5.23 show the estimations for the daily accumulated convective rain-
fall mass given by radar and by the mapped WRLR function for the seasons/quarters
listed in Table 5.4. The same figures also show the corresponding cumulative rainfall
estimations. In general, this function underestimates rainfall by about 10%. For the
Summer quarters, this underestimation was 14-15%, with a mean daily underesti-
mation of 4%. The amount of data can be grossly inferred from the number of CG
strokes thus both Autumn quarters would have poor estimations since there is less
data. However, specifically for the 2010 Autumn quarter, the thunderstorms were
few and weak, but the related convective rainfall was well-correlated to the lightning
strokes, resulting in good estimations for the daily accumulates. As seen in Figure
5.6, the Winter WRLR function yields more convective rainfall mass per lightning
stroke, but the 2010 Winter quarter had the worst estimation error (-31%), with a
daily mean overestimation of 13%.

75



Jan-01 Jan-15 Feb-01 Feb-15 Mar-01 Mar-15 Apr-01
0

50

100

150

200

C
on

ve
ct

iv
e

R
ai

nf
al

l(
1
09

kg
)

Weather Radar WRLR

Jan-01 Jan-15 Feb-01 Feb-15 Mar-01 Mar-15 Apr-01
0

500
1000
1500
2000
2500
3000
3500
4000

C
um

ul
at

iv
e

R
ai

nf
al

l(
10

9
kg

)

Figure 5.17 - Rainfall for the Summer of 2009 in Presidente Prudente. The top image
shows the daily accumulated rainfall mass while the bottom image shows
the cumulative rainfall, comparing the estimations of the weather radar (in
blue), and of the mapped WRLR function (in dashed red) for the convective
rainfall mass.
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Figure 5.18 - Rainfall for the Autumn of 2009 in Presidente Prudente. The top image
shows the daily accumulated rainfall mass while the bottom image shows
the cumulative rainfall, comparing the estimations of the weather radar (in
blue), and of the mapped WRLR function (in dashed red) for the convective
rainfall mass.
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Figure 5.19 - Rainfall for the Winter of 2009 in Presidente Prudente. The top image shows
the daily accumulated rainfall mass while the bottom image shows the cumu-
lative rainfall, comparing the estimations of the weather radar (in blue), and
of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Figure 5.20 - Rainfall for the Spring of 2009 in Presidente Prudente. The top image shows
the daily accumulated rainfall mass while the bottom image shows the cumu-
lative rainfall, comparing the estimations of the weather radar (in blue), and
of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Figure 5.21 - Rainfall for the Summer of 2010 in Presidente Prudente. The top image
shows the daily accumulated rainfall mass while the bottom image shows
the cumulative rainfall, comparing the estimations of the weather radar (in
blue), and of the mapped WRLR function (in dashed red) for the convective
rainfall mass.
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Figure 5.22 - Rainfall for the Autumn of 2010 in Presidente Prudente. The top image
shows the daily accumulated rainfall mass while the bottom image shows
the cumulative rainfall, comparing the estimations of the weather radar (in
blue), and of the mapped WRLR function (in dashed red) for the convective
rainfall mass.
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Figure 5.23 - Rainfall for the Winter of 2010 in Presidente Prudente. The top image shows
the daily accumulated rainfall mass while the bottom image shows the cumu-
lative rainfall, comparing the estimations of the weather radar (in blue), and
of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Besides the analysis of the mapped WRLR function for estimation of the daily
accumulates of convective rainfall, a set of 12 thunderstorms was selected, which
occurred inside the coverage of the Presidente Prudente weather radar, three for
each season/quarter. The selected thunderstorms for the Summer were denoted as
PPR-1S, PPR-2S and PPR-3S, for the Autumn, as PPR-4A, PPR-5A and PPR-
6A, for the Winter, PPR-7W, PPR-8W and PPR-9W, and for the Spring, PPR-
10R, PPR-11R and PPR-12R, as shown in Table 5.5. The same table shows the
estimation error for the total cumulative convective rainfall mass in relation to the
radar estimation for each thunderstorm, and the correlation between the mapped
WRLR function and the radar values for 30-min accumulated convective rainfall
mass, also for each thunderstorm.

Table 5.5 - Comparison of the estimations for the convective rainfall mass given by the
Presidente Prudente weather radar and by the mapped WRLR function for
the 12 selected thunderstorms. Percentage error is calculated in relation to the
radar estimation, while the correlation considers 30-min acumulated values for
each thunderstorm.

CG Convective Rainfall
Storm Figure Strokes Radar WRLR Duration error corr

PPR-1S 5.24 5143 451 423 24 h -6% 0.92
PPR-2S 5.25 4991 593 559 45 h -6% 0.89
PPR-3S 5.26 1153 209 163 12 h -22% 0.96
PPR-4A 5.27 2419 331 316 32 h -4% 0.94
PPR-5A 5.28 161 37 40 15 h +10% 0.92
PPR-6A 5.29 735 259 135 12 h -48% 0.99
PPR-7W 5.30 20138 1947 2072 58 h +6% 0.85
PPR-8W 5.31 2203 364 320 40 h -12% 0.87
PPR-9W 5.32 3915 1478 666 21 h -55% 0.92
PPR-10R 5.33 2542 403 338 20 h -16% 0.92
PPR-11R 5.34 978 144 123 14 h -15% 0.87
PPR-12R 5.35 7637 819 514 15 h -37% 0.88

Estimation performance for the three Summer thunderstorms of Presi-
dente Prudente:

The three selected Summer thunderstorms, PPR-1S (Figure 5.24), PPR-2S (Figure
5.25), and PPR-3S (Figure 5.26), are shown bellow. PPR-1S and PPR-2S are very
strong thunderstorm systems, with rainfall and CG lightning activity lasting for 24h
and the latter lasting for 45h in the studied region. The convective rainfall mass
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for these two thunderstorms is well estimated by the WRLR function, as shown in
the cumulative rainfall for each figure. PPR-3S is a relatively shorter and weaker
thunderstorm compared to the former two thunderstorms, and it underestimates the
total rainfall.
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Figure 5.24 - PPR-1S thunderstorm occurred in 11th January 2009. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Figure 5.25 - PPR-2S thunderstorm occurred in 13th March 2010. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.

85



15h 17h 19h 21h 23h 01h 03h
0

10

20

30

40

50

60

C
on

ve
ct

iv
e

R
ai

nf
al

l(
10

9
kg

)

Weather Radar K ·WRLR

15h 17h 19h 21h 23h 01h 03h
0

50
100
150
200
250
300
350
400
450

C
um

ul
at

iv
e

R
ai

nf
al

l(
10

9
kg

)

Figure 5.26 - PPR-3S thunderstorm occurred in 6th January 2010. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Estimation performance for the three Autumn thunderstorms of Presi-
dente Prudente:

The three selected Autumn thunderstorms, PPR-4A (Figure 5.27), PPR-5A (Figure
5.28), and PPR-6A (Figure 5.29), are shown bellow. These are weaker thunders-
torms than those from the Summer, and tend to last less. In PPR-4A, the WRLR
estimation presents a very good fit, in PPR-5A, there is a small overestimation by
the WRLR in the final phase of the studied thunderstorm, while in PPR-6A there
is a more significant underestimation of the total rainfall by the mapped WRLR
function. Thunderstorms were less frequent in Autumn than in any other season,
and they were also significantly weaker than those occurring in other seasons.
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Figure 5.27 - PPR-4A thunderstorm occurred in 22nd April 2010. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Figure 5.28 - PPR-5A thunderstorm occurred in 1st April 2010. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Figure 5.29 - PPR-6A thunderstorm occurred in 14th May 2009. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Estimation performance for the three Winter thunderstorms of Presi-
dente Prudente:

The three selected Winter thunderstorms, PPR-7W (Figure 5.30), PPR-8W (Fi-
gure 5.31), and PPR-9W (Figure 5.32), are shown bellow. While WRLR heavily
underestimates the PPR-9W thunderstorm, it presents a good match for PPR-7W
and PPR-8W, which are relatively weaker than PPR-9W. Thunderstorms in Win-
ter tended do last longer and to have significantly less electrical activity compared
thunderstorms with similar total rainfall in other seasons.
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Figure 5.30 - PPR-7W thunderstorm occurred in 17th August 2009. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Figure 5.31 - PPR-8W thunderstorm occurred in 22nd July 2009. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Figure 5.32 - PPR-9W thunderstorm occurred in 27th September 2010. The top image
shows the 30 min accumulated rainfall mass while the bottom image shows
the cumulative rainfall, comparing the estimations of the weather radar (in
blue), and of the mapped WRLR function (in dashed red) for the convective
rainfall mass.
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Estimation performance for the three Spring thunderstorms of Presidente
Prudente:

The three selected Spring thunderstorms, PPR-10R (Figure 5.33), PPR-11R (Figure
5.34), and PPR-12R (Figure 5.35), are shown bellow. The WRLR underestimates
PPR-10R and PPR-11R slightly, while PPR-12R is more severely underestimated.
It is important to notice that only three months of training data were available for
the Spring, which resulted in a less accurate WRLR function for this season.
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Figure 5.33 - PPR-10R thunderstorm occurred in 20th November 2009. The top image
shows the 30 min accumulated rainfall mass while the bottom image shows
the cumulative rainfall, comparing the estimations of the weather radar (in
blue), and of the mapped WRLR function (in dashed red) for the convective
rainfall mass.
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Figure 5.34 - PPR-11R thunderstorm occurred in 11th December 2009. The top image
shows the 30 min accumulated rainfall mass while the bottom image shows
the cumulative rainfall, comparing the estimations of the weather radar (in
blue), and of the mapped WRLR function (in dashed red) for the convective
rainfall mass.
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Figure 5.35 - PPR-12R thunderstorm occurred in 15th October 2009. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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5.4.3 Validations tests using the weather radar of São Roque

This section presents the validation tests were performed considering a squared
area with edge of 2.0◦ centered at the São Roque radar, as described in Figure
4.4, bounded by latitudes 24◦30′00′′S to 22◦30′00′′S and longitudes 48◦00′00′′W to
46◦00′00′′W, for three months of the Summer of 2013, January, February and March.
This area was divided into 16 squares of edge ∆x = 0.5◦, as shown in Figure 4.5
(a), while the window duration was ∆t = 30 min with window advance of δt = 30
min. The WRLR function was mapped as described in Section 4.5, by means of the
specific elements of the K matrix.

A total of 75,071 lightning strokes occurred in this area for the considered period,
radar estimation for the cumulative convective rainfall mass was 3288× 109 kg, while
the estimation given by the mapped WRLR function estimation was about 5%
higher, 3462× 109 kg. The mean error for the daily accumulated rainfall was an
overestimation of 25%, with the median presenting an underestimation of 3%. These
estimation errors were higher than those of the validation tests performed using data
from the Bauru and Presidente Prudente weather radars, in the previous sections.
Figure 5.6 compares the radar and mapped WRLR function estimations for the daily
accumulated rainfall mass over these three Summer months (top). The cumulative
rainfall mass is also shown (bottom).

Besides the estimation for the daily accumulated convective rainfall mass, three par-
ticular thunderstorms were selected, being denoted as RQ-1, RQ-2 and RQ-3 and
shown, respectively, in Figures 5.37, 5.38 and 5.39. Table 5.6 presents for each thun-
derstorm the number of CG lightning strokes, the corresponding values of convective
rainfall mass estimated by the weather radar and by the mapped WRLR function,
the estimation errors. It also includes the correlation between the mapped WRLR
function and the radar values for 30-min accumulated convective rainfall mass, also
for each thunderstorm. Thunderstorm duration is also included in the table.

The current method of estimating the K matrix (Section 4.5) is not accurate for
regions outside the continental Brazil. Thus, estimations over the ocean are not
reliable. A large part of thunderstorm RQ-3 occurred over the ocean, resulting in a
largely overestimated rainfall. On the contrary, thunderstorms RQ-1 and RQ-2 that
occurred overland resulted in better rainfall estimations.
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Figure 5.36 - Rainfall for the months of January to March of 2013 in São Roque. The top
image shows the daily accumulated rainfall mass while the bottom image
shows the cumulative rainfall, comparing the estimations of the weather
radar (in blue), and of the mapped WRLR function (in dashed red) for the
convective rainfall mass.

Table 5.6 - Comparison of the estimations for the convective rainfall mass given by the
São Roque weather radar and by the mapped WRLR function for the three
selected thunderstorms. Percentage error is calculated in relation to the radar
estimation, while the correlation (corr) considers 30 min accumulated values
for each thunderstorm.

CG Rainfall WRLR
Storm Figure Strokes in 109 kg in 109 kg error corr Duration
RQ-1 5.37 5228 437 363 +17% 0.77 10h
RQ-2 5.38 6422 391 354 -9% 0.91 10h
RQ-3 5.39 11798 1497 541 -64% 0.79 12h
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Figure 5.37 - RQ-1 thunderstorm occurred in 25th January 2013. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Figure 5.38 - RQ-2 thunderstorm occurred in 15th February 2013. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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Figure 5.39 - RQ-3 thunderstorm occurred in 26th February 2013. The top image shows
the 30 min accumulated rainfall mass while the bottom image shows the
cumulative rainfall, comparing the estimations of the weather radar (in blue),
and of the mapped WRLR function (in dashed red) for the convective rainfall
mass.
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5.4.4 Validations tests using the weather radar of Pico do Couto

This section presents the validation tests were performed considering a squared
area with edge of 2.0◦ centered at the Pico do Couto radar, as described in Figure
4.4, bounded by latitudes 23◦30′00′′W to 21◦30′00′′W and longitudes 44◦30′00′′S to
42◦30′00′′S, for three months of the Summer of 2013, January, February and March.
This area was divided into 16 squares of edge ∆x = 0.5◦, as shown in Figure 4.5
(a), while the window duration was ∆t = 30 min with window advance of δt = 30
min. The WRLR function was mapped as described in Section 4.5, by means of the
specific elements of the K matrix.

A total of 45,634 lightning strokes occurred in this area for the considered period, ra-
dar estimation for the cumulative convective rainfall mass was 1949× 109 kg, while
the estimation given by the mapped WRLR function estimation was about 43%
higher, 2795× 109 kg. The mean error for the daily accumulated rainfall was an ove-
restimation of 67%, with the median presenting an overestimation of 56%. However,
in January the mean is an overestimation of 25%, and the median an overestima-
tion of 11%. These estimation errors were higher than those of the validation tests
performed using data from the Bauru and Presidente Prudente weather radars, in
the previous sections, and even worst than those obtained in the previous section,
using the São Roque weather radar. This lower estimation performance can be attri-
buted to the ocean-land mixed coverage of the Pico do Couto radar, since isohyetal
data only applies over land. Therefore, the corresponding elements of the K matrix
cannot be properly calculated. This difference can be attributed to the fact the K
matrix can’t be properly mapped for oceanic areas as the isohyetal data only applies
to land. Figure 5.40 compares the radar and mapped WRLR function estimations
for the daily accumulated rainfall mass over these three Summer months (top). The
cumulative rainfall mass is also shown (bottom).

Besides the estimation for the daily accumulated convective rainfall mass, three
particular thunderstorms were selected, being denoted as PI-1, PI-2 and PI-3 and
shown, respectively, in Figures 5.41, 5.42 and 5.43. Table 5.7 presents for each thun-
derstorm the number of CG lightning strokes, the corresponding values of convective
rainfall mass estimated by the weather radar and by the mapped WRLR function,
the estimation errors. It also includes the correlation between the mapped WRLR
function and the radar values for 30 min accumulated convective rainfall mass, also
for each thunderstorm. Thunderstorm duration is also included in the table.

A significant part of the range of the Pico do Couto radar is over the ocean, which
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Figure 5.40 - Rainfall for the months of January to March of 2013 in Pico do Couto. The
top image shows the daily accumulated rainfall mass while the bottom image
shows the cumulative rainfall, comparing the estimations of the weather
radar (in blue), and of the mapped WRLR function (in dashed red) for the
convective rainfall mass.

Table 5.7 - Comparison of the estimations for the convective rainfall mass given by the
Pico do Couto weather radar and by the mapped WRLR function for the three
selected thunderstorms. Percentage error is calculated in relation to the radar
estimation, while the correlation (corr) considers 30 min accumulated values
for each thunderstorm.

CG Rainfall WRLR
Storm Figure Strokes in 109 kg in 109 kg RE corr Duration
PI-1 5.41 20282 683 723 +6% 0.91 10h
PI-2 5.42 2644 168 176 +5% 0.99 6h
PI-3 5.42 12016 378 603 +60% 0.99 10h
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is affected by poorly estimated elements in the K (Section 4.5). This is the case of
thunderstorm PI-3, that presents a large part over the ocean, and resulted in a poor
rainfall estimation.
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Figure 5.41 - PI-1 thunderstorm starting in 14th January 2013. The top image shows the
30 min accumulated rainfall mass while the bottom image shows the cumu-
lative rainfall, comparing the estimations of the weather radar (in blue), and
of the mapped WRLR function (in dashed red) for the convective rainfall
mass.

104



18h 19h 20h 21h 22h 23h 00h
0

5

10

15

20

25

30

35

40

C
on

ve
ct

iv
e

R
ai

nf
al

l(
10

9
kg

)

Weather Radar K ·WRLR

18h 19h 20h 21h 22h 23h 00h
0

20
40
60
80

100
120
140
160
180

C
um

ul
at

iv
e

R
ai

nf
al

l(
10

9
kg

)

Figure 5.42 - PI-2 thunderstorm starting in 3rd March 2013. The top image shows the 30
min accumulated rainfall mass while the bottom image shows the cumulative
rainfall, comparing the estimations of the weather radar (in blue), and of the
mapped WRLR adjusted function (in dashed red) for the convective rainfall
mass.
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Figure 5.43 - PI-3 thunderstorm starting in 26th February 2013. The top image shows the
30 min accumulated rainfall mass while the bottom image shows the cumu-
lative rainfall, comparing the estimations of the weather radar (in blue), and
of the mapped WRLR adjusted function (in dashed red) for the convective
rainfall mass.

106



5.5 Spatial distribution of convective/total rainfall and estimation of
total rainfall

The previous sections presented validation tests concerning the estimation of the
convective rainfall mass using different weather radars. The spatial distribution of
the convective rainfall for these tests is assumed as given by the normalized field of
density of occurrence of CG lightning strokes, as explained in Section 4.7 (EDDA-
chuva software). The intensity of the normalized filed is adjusted/multiplied by the
amount of estimated convective rainfall for each 0.5◦ × 0.5◦ square, yielding a field of
“density of rainfall” expressed in cumulative mm of convective rain for the considered
period of time. It would be no suitable to generate such field with a high resolution,
since convective rainfall and CG lightning strokes do not necessarily match in space.

Another issue is the estimation of the total rainfall mass and spatial distribution
from the corresponding convective rainfall mass and distribution, as presented in
Section 4.6, and already implemented in the current version of the EDDA–chuva
software. The spatial distribution of the estimated convective rainfall could have
been discussed in Section 5.4, but it seemed more suitable to show such distribution
in this section, jointly with the total rainfall distribution.

The approach for estimating the total rainfall is to estimate the convective rainfall
mass from the number of occurrences of CG lightning strokes for the considered
area and duration and, to assume that the total rainfall mass would be the double,
corresponding to the associated stratiform rainfall and the associated convective
rainfall without lightning. Spatial distribution of convective or total rainfall were
also discussed in Section 4.7 , assuming that the area covered by the convective
rainfall with lightning corresponds to about 30% of the total rainfall area. Although
CG lightning and convective rainfall are not completely correlated in space and time,
the proposed approach provide a good approximation for the spatial distribution of
convective rainfall, as discussed in the following results.

The EDDA–chuva outputs hourly-accumulated images for the WRLR–estimated
rainfall obtained by integrating two successive 30 min temporal windows, and may
also generate accumulated rainfall for longer periods. The tests related to the esti-
mation of the total rainfall and its spatial distribution (as well as such distribution
for the convective rainfall) were performed for four selected thunderstorms whose
data was employed in the validation tests of Section 5.4. These storms are BRU-1,
PPR-1S, RQ-1, and PI-1, described in Table 5.8, while their considered spatial boun-
daries are described in Table 5.9. The cumulative rainfall for those thunderstorms
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was previously shown on Figures 5.10, 5.24, 5.37 and 5.41, respectively.

Table 5.8 - Metadata of the four thunderstorms employed in the rainfall spatial distri-
bution tests: starting time and extension of time for the cumulative rainfall
images.

Starting Images
Storm Date Time 1h 6h
BRU-1 1st January 2013 15:00 5.44 5.48
PPR-1S 11th January 2009 03:00 5.45 5.49
RQ-1 25th January 2013 14:00 5.46 5.50
PI-1 14th January 2013 15:00 5.47 5.51

Table 5.9 - Boundaries of the four thunderstorms employed in the rainfall spatial distri-
bution tests.

Westernmost Easternmost Southernmost Northern
Storm Longitude Longitude Latitude Latitude
BRU-1 50◦00′00′′W 48◦04′00′′W 23◦15′00′′S 21◦27′00′′S
PPR-1S 52◦21′00′′W 50◦24′00′′W 23◦04′00′′S 21◦16′00′′S
RQ-1 48◦00′00′′W 46◦00′00′′W 24◦30′00′′S 22◦30′00′′S
PI-1 44◦30′00′′S 42◦30′00′′S 23◦30′00′′W 21◦30′00′′W

The following spatial distributions were generated for each one of the four selected
thunderstorms in order to evaluate the distributions estimated by the EDDA-chuva
software: (i) total rainfall estimated from weather radar data (“unfiltered radar”),
(ii) convective rainfall using Steiner criteria from radar data (“filtered radar”), (iii)
EDDA-chuva convective rainfall (“EDDA-chuva (C)”), and (iv) EDDA-chuva total
rainfall (“EDDA-chuva (T)”) In the case of the BRU-1 thunderstorm, the rainfall
spatial distribution obtained by the Tapia’s model is also shown.

Figures 5.44, 5.45, 5.46, and 5.47 show the corresponding rainfall distributions for
the four selected thunderstorms BRU-1, PPR-1S, RQ-1 and PI-1 respectively, con-
sidering the first 1 hour of accumulated rainfall. Figures 5.48, 5.49, 5.50, and 5.51
are similar, but considering the first 6 hours of accumulated rainfall. In general, the
rainfall distributions generated by the EDDA-chuva software for the convective rain-
fall are more similar to the corresponding distributions generated from radar data
than those obtained by the Tapia’s model, since the spatial distributions generated
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by the software from the fields of density to CG lightning strokes occurrences are
smoother. Even in the case of isolated lightning occurrences, the software outper-
forms the Tapia’s model. It is worth to mention that some distinct CG lightning
strokes that serve of input to the EDDA-chuva software may be part of a single CG
lightning flash that serves of input to the Tapia’s model, as previously discussed
in Section 4.2.1. The spatial distributions obtained for 6 h of accumulated rainfall
tend to be more similar to the corresponding weather radar images than those ob-
tained for only 1 h of accumulated rainfall. Finally, the spatial distributions of the
total rainfall generated by the EDDA-chuva software, not provided by the Tapia’s
model, were less accurate, i.e. less similar than the corresponding radar images in
comparison to the ones related to the convective rainfall, as it would be expected.

Figure 5.44 - Rainfall spatial distributions accumulated for the first hour for thunderstorm
BRU-1 given by (i) weather radar for convective rainfall (“filtered radar”),
(ii) EDDA-chuva for convective rainfall (“EDDA-chuva (C)”), (iii) Tapia’s
model for convective rainfall, (iv) weather radar for total rainfall (“unfiltered
radar”), and (v) EDDA-chuva for total rainfall (“EDDA-chuva (T)”).

109



Figure 5.45 - Rainfall spatial distributions accumulated for the first hour for thunderstorm
PPR-1S given by (i) weather radar for convective rainfall (“filtered radar”),
(ii) EDDA-chuva for convective rainfall (“EDDA-chuva (C)”), (iii) weather
radar for total rainfall (“unfiltered radar”), and (iv) EDDA-chuva for total
rainfall (“EDDA-chuva (T)”).

110



Figure 5.46 - Rainfall spatial distributions accumulated for the first hour for thunderstorm
RQ-1 given by (i) weather radar for convective rainfall (“filtered radar”), (ii)
EDDA-chuva for convective rainfall (“EDDA-chuva (C)”), (iii) weather radar
for total rainfall (“unfiltered radar”), and (iv) EDDA-chuva for total rainfall
(“EDDA-chuva (T)”).
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Figure 5.47 - Rainfall spatial distributions accumulated for the first hour for thunderstorm
PI-1 given by (i) weather radar for convective rainfall (“filtered radar”), (ii)
EDDA-chuva for convective rainfall (“EDDA-chuva (C)”), (iii) weather radar
for total rainfall (“unfiltered radar”), and (iv) EDDA-chuva for total rainfall
(“EDDA-chuva (T)”).
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Figure 5.48 - Rainfall spatial distributions accumulated for the first six hours for thun-
derstorm BRU-1 given by (i) weather radar for convective rainfall (“filtered
radar”), (ii) EDDA-chuva for convective rainfall (“EDDA-chuva (C)”), (iii)
Tapia’s model for convective rainfall, (iv) weather radar for total rainfall
(“unfiltered radar”), and (v) EDDA-chuva for total rainfall (“EDDA-chuva
(T)”).
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Figure 5.49 - Rainfall spatial distributions accumulated for the first six hours for thun-
derstorm PPR-1S given by (i) weather radar for convective rainfall (“filtered
radar”), (ii) EDDA-chuva for convective rainfall (“EDDA-chuva (C)”), (iii)
weather radar for total rainfall (“unfiltered radar”), and (iv) EDDA-chuva
for total rainfall (“EDDA-chuva (T)”).
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Figure 5.50 - Rainfall spatial distributions accumulated for the first six hours for thun-
derstorm RQ-1 given by (i) weather radar for convective rainfall (“filtered
radar”), (ii) EDDA-chuva for convective rainfall (“EDDA-chuva (C)”), (iii)
weather radar for total rainfall (“unfiltered radar”), and (iv) EDDA-chuva
for total rainfall (“EDDA-chuva (T)”).
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Figure 5.51 - Rainfall spatial distributions accumulated for the first six hours for thun-
derstorm PI-1 given by (i) weather radar for convective rainfall (“filtered
radar”), (ii) EDDA-chuva for convective rainfall (“EDDA-chuva (C)”), (iii)
weather radar for total rainfall (“unfiltered radar”), and (iv) EDDA-chuva
for total rainfall (“EDDA-chuva (T)”).
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5.5.1 Spatial distribution tests including MERGE data

The proposed approach for rainfall estimation from lightning data is based on the
WRLR function, that was derived using quarterly averages of rainfall from the
isohyetal data described in Section 2.5. Since the MERGE rainfall data, as exposed
in Section 2.6 is considered more accurate than the isohyetal data, this section com-
pares the 24 h accumulated rainfall spatial distribution for the same four selected
thunderstorms, in order to compare to the distribution given by MERGE for the
same day. The rainfall spatial distributions obtained by the EDDA-chuva software
above (Section 5.5) referred to 1 h and 6 h accumulated rainfall, but considering the
starting time of each thunderstorms. On the other hand, the following distributions
obtained by the same software for 24 hours, start at 0:00 UTC and finish at 23:59
UTC, in order to conform to MERGE data for the same day.

The 24 h accumulated rainfall spatial distributions for the storms BRU-1, PPR-1S,
RQ-1, and PI-1, are respectively shown in Figures 5.52, 5.53, 5.54, and 5.55, com-
paring the radar and EDDA-chuva rainfall distributions for the convective rain, and
the radar, EDDA-chuva and MERGE rainfall distributions for the total rainfall. The
EDDA-chuva spatial rainfall distributions are similar to the weather radar distribu-
tions considering the convective or the total rainfall, in different degrees, considering
a “visual analysis”. EDDA-chuva distributions are more similar to the weather radar
ones than the MERGE images. This would be expected, since the mapped WRLR
function was estimated using weather radar data. Another issue is the poorer spatial
resolution of the MERGE images.

This work proposes rainfall estimation based on the use of weather radar data.
The rainfall estimated by radar corresponds, in this case, to the rainfall as seen
at the altitude of the CAPPI image. Obviously, rainfall is distributed at a layer
that encompasses a range of altitudes. In addition, not the entire rainfall “seen” by
the radar reaches the ground. The use of radar volumetric data (3D data), when
available, would demand much more processing time, but would probably provide
a more accurate WRLR function. In the same way, the use of MERGE data, that
include rain gauge data would allow to improve the accuracy of the K matrix that
maps the WRLR function.
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Figure 5.52 - Daily rainfall spatial distributions accumulated for thunderstorm BRU-1 gi-
ven by (i) weather radar for convective rainfall (“filtered radar”), (ii) EDDA-
chuva for convective rainfall (“EDDA-chuva (C)”), (iii) Tapia’s model for
convective rainfall, (iv) weather radar for total rainfall (“unfiltered radar”),
(v) EDDA-chuva for total rainfall (“EDDA-chuva (T)”), and (vi) MERGE
data.
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Figure 5.53 - Daily rainfall spatial distributions accumulated for thunderstorm PPR-1S gi-
ven by (i) weather radar for convective rainfall (“filtered radar”), (ii) EDDA-
chuva for convective rainfall (“EDDA-chuva (C)”), (iii) weather radar for to-
tal rainfall (“unfiltered radar”), (iv) EDDA-chuva for total rainfall (“EDDA-
chuva (T)”), and (v) MERGE data.
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Figure 5.54 - Daily rainfall spatial distributions accumulated for thunderstorm RQ-1 gi-
ven by (i) weather radar for convective rainfall (“filtered radar”), (ii) EDDA-
chuva for convective rainfall (“EDDA-chuva (C)”), (iii) weather radar for to-
tal rainfall (“unfiltered radar”), (iv) EDDA-chuva for total rainfall (“EDDA-
chuva (T)”), and (v) MERGE data.
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Figure 5.55 - Daily rainfall spatial distributions accumulated for thunderstorm PI-1 given
by (i) weather radar for convective rainfall (“filtered radar”), (ii) EDDA-
chuva for convective rainfall (“EDDA-chuva (C)”), (iii) weather radar for to-
tal rainfall (“unfiltered radar”), (iv) EDDA-chuva for total rainfall (“EDDA-
chuva (T)”), and (v) MERGE data.
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Finally, since the EDDA-chuva was designed to estimate rainfall mass and distri-
bution outside any weather radar coverage, some validation tests of total rainfall
distribution were performed using MERGE data as a reference. Test cases refer to
the days of occurrence of the same thunderstorms previously analyzed, i.e. BRU-1,
PPR-1S, RQ-1 and PI-1. For these test cases, besides the 24 h period (0:00 to 23:59
UTC), compatible to MERGE data, a larger area was considered, defined by lon-
gitudes 40◦ to 58◦ W and latitudes 12◦ to 27◦ S, that correspond to the RINDAT
coverage defined in Figure 2.6. All the four thunderstorms occurred in this area. As
expected, correlation of total rainfall spatial distribution as given by the EDDA-
chuva software to the MERGE images was poorer than the correlation to weather
radar images. The distributions estimated by the software over the ocean must be
ignored, since the isohyetal data employed to derive the K matrix elements only
includes data over land.

Figure 5.56 - Daily rainfall spatial distribution accumulated for January 1st, 2013 as given
by the EDDA-chuva software (left) and from MERGE data (right). Thun-
derstorm BRU-1 occurred during this day and inside the depicted area.
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Figure 5.57 - Daily rainfall spatial distribution accumulated for January 11th, 2009 as
given by the EDDA-chuva software (left) and from MERGE data (right).
Thunderstorm PPR-1S occurred during this day and inside the depicted
area.

Figure 5.58 - Daily rainfall spatial distribution accumulated for January 25th, 2013 as
given by the EDDA-chuva software (left) and from MERGE data (right).
Thunderstorm RQ-1 occurred during this day and inside the depicted area.
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Figure 5.59 - Daily rainfall spatial distribution accumulated for January 14th, 2013 as
given by the EDDA-chuva software (left) and from MERGE data (right).
Thunderstorm PI-1 occurred during this day and inside the depicted area.
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6 CONCLUSIONS

A new approach for estimating convective rainfall mass and spatial distribution from
CG lightning stroke data was proposed in this thesis. It may present a significant
improvement over the current state of the art on the subject. The rationale behind
this work is that countries like Brazil lack a significant coverage of weather radars,
and even the images generated by meteorological satellites are limited due to design
choices of orbit that imply in specific coverage, duration and periodicity of each pass,
etc. Therefore, the use of lightning data to monitor and track convective activity,
and even to estimate rainfall, as proposed, seems to represent a suitable option in
operational weather forecasting considering the availability of the current lightning
detector network (RINDAT).

The contributions of this work in the area of Computer Science are a graph-based
algorithm for detecting and tracking thunderstorms by clustering lightning occurren-
ces, and the WRLR/K-mapping approach to estimate rainfall from lightning data
that was employed in the EDDA-chuva software.

In the proposed approach, sampling square areas and temporal sliding windows
were employed to compute lightning and weather radar data in order to generate
a dataset of convective rainfall masses and number of occurrences of strokes that
allow to infer a WRLR function for each season for the reference weather radar of
Bauru. A mapping matrix K allows to adjust the WRLR function for different grid
points, based on isohyetal maps estimated from data of a network of rain gauges over
Brazil. Besides the estimation of convective rainfall, the total rainfall mass, which
includes the associated stratiform rainfall and convective rainfall without lightning,
can also be estimated as the double of the convective mass. This assumption was
based on some TRMM estimations and on the available weather radar data. The
spatial distribution of the total rainfall is estimated considering that convective
rainfall covers 30% of the total rainfall area.

The proposed method assumes that convective activity and lightning are strongly
correlated. It may represent an enhancement over the former approach, the Tapia’s
model, that proposed a constant rainfall to lightning ratio, instead of a spatially
mapped function to estimate rainfall mass and that is also based on the same corre-
lation. Another difference between the two approaches is the spatial distribution of
the convective derived from the density of occurrence of lightning strokes, instead of
considering circles of rainfall around lightning flash occurrences of the Tapia’s mo-
del. Density fields of occurrence are obtained by Gaussian kernel density estimation
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and provide smoother distributions.

Validation tests were performed for Summer months under the coverage of the Bauru
weather radar, for different seasons/quarters, under the coverage of the Presidente
Prudente weather radar, and also for Summer months under the São Roque and
Pico do Couto radars. These tests evaluated the estimated convective rainfall mass
considering daily cumulative values, using weather radar data as reference. Additi-
onally, a set of thunderstorms was selected for each weather radar, always including
some thunderstorms that presented poor estimations. Convective rainfall mass es-
timation error was typically lower than 20%, but some variability can be observed
for different seasons and locations. Such variability may be attributed to WRLR
functions that were inferred using small datasets, since the amount of weather radar
data was restricted for some years or radars, and even the lightning data is related to
less than ten years. However, even considering such limitations, the mapped WRLR
function seems to have outperformed the Tapia’s model.

Validation tests were also performed for the estimated rainfall spatial distributions
considering the same radars and show that these distributions are correlated to the
ones observed in radar images. However, the WRLR function was estimated using
weather radar data and certainly tends to generate distributions that are more
correlated to radar images that to those corresponding to rain gauge data. As it
would be expected, the spatial distributions for the total rainfall were less accurate
than the ones obtained for convective rainfall.

Another issue was the spatial mapping of the WLRL function to different grid points,
which was based on quarterly isohyetal maps derived from rain gauge data. Another
possible source of data is the MERGE project that supplies daily averages of rainfall
using both rain gauges and TRMM data. The latter is employed for areas with a
scarse distribution of rain gauges. Another advantage of MERGE data is to supply
rainfall averages over sea/ocean using TRMM data. The use of MERGE data may
represent an improvement over the isohyetal maps, but would employ the same
proposed methodology.

The mapped WRLR function was recently implemented by the EDDA-chuva. The
EDDA software that generates a density field of occurrence of lightning strokes to
monitor convective activity in quasi real time is being employed operationally at
CEMADEN since the end of 2012. The recently-developed EDDA-chuva software
have the same functionalities of the EDDA software, but also implements the map-
ped WRLR function in order to generate estimations of convective and total rainfall
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masses and spatial distributions. This software is being currently evaluated at the
same institution.

6.1 Further works

In face of some issues discussed above, some further works can be devised.

While the present work uses lightning data provided by the RINDAT network, the
results could be improved by using data from the Brazilian Lightning Detection
Network (BRASILDAT), which was not available at the time. This new network
have more lightning detectors spread over a larger area of Brazil, including those
that compose the RINDAT network. However, the BRASILDAT network adds the
capability of detecting intracloud (IC) discharges, besides the obviously wider cove-
rage and better probability of detection provided by the new detectors (NACCARATO;

PINTO, 2009; NACCARATO et al., 2013).

As mentioned above, the adoption of lightning data from BRASILDAT and rainfall
data from MERGE will allow to derive a more accurate K matrix that would map
better grid points outside Southeastern Brazil. As a consequence, an ever-increasing
dataset will result. This a first step to improve the WRLR function and to extend it
to a wider area with better accuracy for rainfall estimation than in this work. It is
expected that an extended dataset would allow to treat undersampled thunderstorms
that have a high number of lightning strokes, but low rainfall mass, or vice-versa.

The WRLR function was obtained using the Bauru weather radar as reference radar,
since it was the radar with the larger amount of available data. However, the accuracy
of the proposed rainfall estimation can be improved deriving WRLR functions with
the use of different weather radars spread over Brazil, in addition to the São Roque
and Pico do Couto radars. Therefore, besides an improved mapping of the K matrix,
different WRLR could be applied to different regions of Brazil.

In this work, the WRLR function was obtained using temporal windows that are
overlapped in time and also a re-sampling using spatial shifts along latitudinal and
longitudinal directions. Such schemes were employed to smoothen out lightning and
rainfall data and also to reduce the effect of outliers. They also allow to treat the
spatial and temporal mismatching between related occurrences of lightning and rain-
fall. However, the spatial re-sampling is applied only inside the area of the sampling
square, i.e. does not consider outer lightning and rainfall. It would be possible to
include these kind of “border effect” by defining an extended re-sampling that take
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into account neighbor sampling squares. In the same way the estimation would also
take into account the “electrical” neighborhood of the considered square in the ap-
plication of the WRLR function. This would be straightforward, since the lightning
stroke density of occurrence is available for the entire considered area in the EDDA-
chuva software. The current approach can be thus improved, leading to better rainfall
estimations.

Additional improvements can be accomplished by taking advantage of the extra in-
formation provided by IC lightning data, as well as by analyzing lightning polarity
or lightning electrical charge. The current approach employs only time and space
related to the CG lightning occurrences of any polarity. Another approach would
be to derive WRLR functions derived with different spatial and temporal resoluti-
ons that are specific to the scale of the convective event. Functions derived using
smaller values of ∆x and/or ∆t may be applicable to small events like localized
thunderstorms, while larger values, to synoptic scale events.

Despite its relative simplicity, the novelty of this research leaves a wide range of
further works open, but only the operational use of the EDDA-chuva software in
weather monitoring would guide the completion of such works.
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Abstract
Some studies have proposed the estimation of convective rainfall from lightning observations
by the computation of the rainfall–lightning ratio (RLR). However, as such ratio may depend
on season, convective regime and other factors, known approaches failed to provide values of
RLR with low variability. An accurate RLR would allow estimating rainfall from lightning
data in areas that lack weather radar coverage. This work proposes a straightforward
approach for the computation of RLR, based on a temporal sliding-window and a fitting
function. It was tested for thunderstorms observed in the Southeastern Brazil with good
results.

Keywords: weather radar; lightning; rainfall estimation

1. Introduction

Rainfall estimation is typically performed from
weather radar data. However, assuming that con-
vective rainfall can be correlated to lightning, some
approaches propose rainfall estimation from lightning
data for areas without weather radar coverage,
supporting nowcasting. The most common approach
is the computation of the rainfall–lightning ratio
(RLR), given by the convective rainfall mass per
cloud-to-ground (CG) lightning flash. Nevertheless,
such ratio may depend heavily on seasonal and
geographical factors, local climatology, convective
regime, storm type, lightning patterns or intensity,
dominant lightning polarity of CG lightning, intr-
acloud to CG ratio and thunderstorm life cycle
(Buechler and Goodman, 1990; Soula and Chauzy,
2001; Lang and Rutledge, 2002). Therefore, known
approaches may fail to provide values of RLR with
low variability (Sist et al., 2010).

A number of studies were performed to estimate the
rainfall mass directly from CG lightning observations.
Petersen and Rutledge (1998) used the total rainfall
mass and the density of CG lightning to examine their
relationship on a number of spatial and temporal scales
for different parts of the world. The lightning flash
incidence is more intense in clouds associated to high-
level precipitation, as the electrification increases with
altitude as in the case of tall cumulonimbus (Siingh
et al., 2010). Tapia et al. (1998) computed the RLR
by dividing the total convective rainfall mass by the
number of CG flashes in a thunderstorm, and proposed
a model to reconstruct the spatial and temporal distri-
bution of the rainfall. The summation of the rainfall

distribution of the flashes yields the overall rainfall
distribution, which was checked against weather radar
data. Kempf and Krider (2003) presented a compi-
lation of RLR values including some obtained from
other works, and found values ranging from 38 to
72 × 106 kg per flash for isolated thunderstorms in
Florida, Spain and France, and values as high as
5000 × 106 kg per flash for mesoscale thunderstorms
in Australia and Central United States. Molinie et al.
(1999) found values as low as 3 × 106 kg per flash
for the Pyrenees, while Williams et al. (1992) found
values up to 500 × 106 kg per flash for Australia.

The current work proposes a simpler and more accu-
rate approach, the function windowed RLR (WRLR),
which employs a temporal sliding-window. This
approach is based on the assumption that convective
activity is correlated to electrically active cells that
correspond to areas with high density of CG strokes.
Such density is calculated by the EDDA software that
implements standard kernel estimation (Strauss et al.,
2010). This software is being evaluated for operational
use in order to detect convective precipitation in the
recently established Center for Natural Disasters Mon-
itoring and Alert (CEMADEN) in Brazil.

A set of thunderstorms that occurred in 2009 in the
Southeastern Brazil was selected from weather radar
data to obtain a WRLR function, while another set
of January 2010 was employed to test this WRLR
function as rainfall estimator. It is expected to include
this function as a new module of the EDDA software.
This may provide rainfall estimation in parts of
Brazil, a huge country that has over 8.5 million km2,
but less than 15% of its area is covered by weather
radar. Rainfall estimations can be obtained from
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Resumo: Vários estudos tentam relacionar estatisticamente ocorrências de descargas elétricas
atmosféricas com a taxa de precipitação em eventos convectivos. Uma abordagem empregada é
a razão entre a massa precipitada e o número de descargas elétricas atmosféricas, a qual per-
mite estimativas da taxa de precipitação a partir de dados de descargas, conforme expresso pelo
modelo de Tapia. O presente trabalho estima essa razão para eventos convectivos observados
no sudeste do Brasil utilizando dados de radares meteorológicos e de uma rede de detecção de
descargas elétricas atmosféricas. Entretanto, propõe uma abordagem nova para seu cálculo e
automatiza a seleção de eventos. Os resultados foram condizentes com aqueles encontrados na
literatura da área.

Palavras-chave: descargas elétricas atmosféricas, radar meteorológico, atividade convectiva

1 Introdução

O interesse em se melhor entender o funcionamento de sistemas de precipitação convectiva
levou vários autores a procurar o relacionamento entre descargas elétricas atmosféricas (DEA) e
pluviosidade. Uma melhor compreensão do funcionamento de sistemas de atividade convectiva
severa pode levar a uma melhor estimação da pluviosidade em regiões onde a cobertura de radar
é insuficiente, e pode ser útil para se obter dados para tomada de decisão e alimentar modelos
meteorológicos.

A atividade convectiva severa, caracterizada pela presença de ventos fortes, intensa atividade
elétrica atmosférica e precipitação elevada, é um tipo de sistema de precipitação convectiva de
particular interesse. As DEA são mais intensas em nuvens de alta convectividade; conforme a
eletrificação aumenta com a altitude das nuvens convectivas, as cumulonimbus mais altas podem
produzir atividade elétrica mais intensa [8].

Estudos foram realizados com o intuito de estimar o volume precipitado diretamente a partir
da observação de descargas nuvem-solo. Zipser [12] usou a razão da precipitação mensal pelo
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