
sid.inpe.br/mtc-m21b/2014/09.22.00.21-MAN

HYBRID FUML - DEVELOPER’S GUIDE.

Alessandro Gerlinger Romero

URL do documento original:
<http://urlib.net/8JMKD3MGP5W34M/3H4MU7L>

INPE
São José dos Campos

2014

http://urlib.net/xx/yy

PUBLICADO POR:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GB)
Serviço de Informação e Documentação (SID)
Caixa Postal 515 - CEP 12.245-970
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/6921
Fax: (012) 3208-6919
E-mail: pubtc@sid.inpe.br

CONSELHO DE EDITORAÇÃO E PRESERVAÇÃO DA PRODUÇÃO
INTELECTUAL DO INPE (RE/DIR-204):
Presidente:
Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)
Membros:
Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)
Dr. Amauri Silva Montes - Coordenação Engenharia e Tecnologia Espaciais (ETE)
Dr. André de Castro Milone - Coordenação Ciências Espaciais e Atmosféricas
(CEA)
Dr. Joaquim José Barroso de Castro - Centro de Tecnologias Espaciais (CTE)
Dr. Manoel Alonso Gan - Centro de Previsão de Tempo e Estudos Climáticos
(CPT)
Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação
Dr. Plínio Carlos Alvalá - Centro de Ciência do Sistema Terrestre (CST)
BIBLIOTECA DIGITAL:
Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)
REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA:
Maria Tereza Smith de Brito - Serviço de Informação e Documentação (SID)
Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)
EDITORAÇÃO ELETRÔNICA:
Maria Tereza Smith de Brito - Serviço de Informação e Documentação (SID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SID)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m21b/2014/09.22.00.21-MAN

HYBRID FUML - DEVELOPER’S GUIDE.

Alessandro Gerlinger Romero

URL do documento original:
<http://urlib.net/8JMKD3MGP5W34M/3H4MU7L>

INPE
São José dos Campos

2014

http://urlib.net/xx/yy

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial-
CompartilhaIgual 3.0 Não Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Un-
ported License.

ii

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

ABSTRACT

The notion of a hybrid system is centered around a composition of discrete and continuous behav-
iors. Although the difficulty in modeling hybrid systems comes from the diversity of these systems,
the most promising approach to mitigate this issue is developing expressive and precise modeling
languages.

Nevertheless, developing expressive and precise modeling languages does not necessarily mean the
emergence of a new language, on the contrary, this work proposes precise semantics for subsets
of existent languages. Subsets of existent languages are defined since expressivity and precision
usually conflict, e.g., the size and complexity of a language (related to expressivity) may have direct
consequences on the size and complexity of its semantics (related to precision). Precision means a
semantics defined according to a well established formal method, furthermore, recognizing the real-
time nature of hybrid systems, the modeling language have to enable determinism, predictability
and straightforward composition.

In this work, the distributed package of two complementary languages defined by abstract state
machines (ASMs) is presented. The first one is called synchronous fUML and it blends synchronous
features for control into the standardized fUML (foundational subset for executable UML models).
The second one, hybrid fUML, is a conservative extension of synchronous fUML in which differential
algebraic equations (DAEs) are described using a subset of Modelica concrete syntax. The subset
of Modelica concrete syntax is selected in such a way that its semantics is defined by the standard
mathematical semantics. Hybrid fUML is a modeling language defined to enable description and
analysis of system views from hybrid systems.

The developer’s guide allows extension of the distributed package, which contains: meta-models,
transformations, static semantics defined in first-order logic, ASMs and examples.

iii

HYBRID FUML – GUIA DO DESENVOLVEDOR

RESUMO

A noção de um sistema híbrido é centrada em torno de uma composição de comportamentos dis-
cretos e contínuos. Enquanto a dificuldade na modelagem de sistemas híbridos vem da diversidade
destes sistemas, a mais promissora abordagem para mitigar este problema é desenvolver linguagens
de modelagem expressivas e precisas.

No entanto, desenvolver linguagens de modelagem expressivas e precisas não significa a necessidade
de novas linguages, pelo contrário, este trabalho propõe semânticas precisas para subconjuntos de
liguagens existentes. Subconjuntos são definidos porque expressividade e precisão geralmente confli-
tam, por exemplo, o tamanho e a complexidade de uma linguagem (relacionados à expressividade)
podem ter consequências diretas no tamanho e complexidade de sua semântica (relacionados à
precisão). Precisão significa uma semântica definida de acordo com um método formal estabele-
cido, além disso, reconhecendo a natureza de tempo real dos sistemas híbridos, a linguagem de
modelagem deve permitir determinismo, previsibilidade e composição simples.

Neste trabalho, o pacte de distribuićão de duas linguages complementares definidas por máquinas
de estado abstrato (ASMs) é apresentado. A primeira delas é chamada synchronous fUML e ela
combina recursos síncronos para controle na fUML (foundational subset for executable UML mo-
dels) padronizada. A segunda delas, hybrid fUML, é uma extensão conservativa da synchronous
fUML, na qual equações algébrico-diferenciais (DAEs) são descritas usando-se um subconjunto da
sintaxe concreta da Modelica. O subconjunto da Modelica é selecionado de tal forma que sua semân-
tica é definida pela semântica matemática padrão. Hybrid fUML é uma linguagem de modelagem
definida para permitir descrição e análise de visões sistêmicas de sistemas híbridos.

O guia do desenvolvedor permite extensão do pacote de distribuição, que por sua vez é composto
de: meta modelos, transformações, semantica estatica definida em lógica de primeira ordem, ASMs
e exemplos.

v

LIST OF FIGURES

Page

2.1 Install Modeling Components. 6
2.2 Install Modeling Components - Papyrus. 6
2.3 Install Modeling Components - Acceleo. 7
2.4 Install Papyrus Additional Components. 7
2.5 Install Papyrus Additional Components - MARTE and Profile Export. . 8
2.6 The Content of Distributed Package. 8
2.7 Configured runs. 10
2.8 Running Synchronous fUML. 11
2.9 Evaluating Static Semantics through an ATP. 13

3.1 Ultra deep embedding architecture. 16

4.1 Standard meta-models from fUML. 25
4.2 Abstract syntax for CompositeStructure4fUML. 31
4.3 DiscreteSynchronous profile from HybridfUML profile. 34
4.4 Static Semantics Rules. 35
4.5 Abstract syntax for MARTE4fUML. 41
4.6 Components of mainSyn ASM. 43
4.7 Components of AbstractSyntax of mainSyn ASM. 44
4.8 Components of Semantic Domain of mainSyn ASM. 45
4.9 Components of SemanticMapping of mainSyn ASM. 46
4.10 The mainSyn ASM in the Distributed Package. 47

6.1 VendingMachine’s structure modeled using synchronous fUML. 53
6.2 VendingMachine’s composite structure modeled using synchronous fUML. 54
6.3 The classifier behavior for the Accumulator. 56
6.4 The classifier behavior for the GumDispatcher. 57
6.5 The trace for the evaluation of 2 macro-steps from VendingMachine. . . . 60
6.6 OV-2 - Operational flow description - UML class diagram. 62
6.7 OV-2 - Operational flow description - UML composite structure diagram. 62
6.8 OV-3 - Operational resource flow matrix. 63
6.9 OV-5a Operational activity model - UML class diagram. 64
6.10 OV-6b Operational state transition description - trackingGroundStation-

ClassifierBehavior. 65
6.11 OV-6b Operational state transition description - satelliteControlCenter-

ClassifierBehavior. 66
6.12 The trace for the evaluation of 1 macro-step from SatelliteTrackingAnd-

Control. 67

7.1 Hybrid profile from HybridfUML profile. 76
7.2 The abstract LTS defined by the hybrid fUML’s MoC. 77
7.3 Components of mainHyb ASM. 79
7.4 Components of SemanticMapping of mainHyb ASM. 80
7.5 The mainHyb ASM in the Distributed Package. 81

vii

8.1 Continuous components defined to support BouncingBall. 83
8.2 The structure of BouncingBall modeled using hybrid fUML. 85
8.3 The structure of the library’s use in the BouncingBall. 86
8.4 The classifier behavior for the Plant. 87
8.5 The behavior of the activity hitTheFloor. 88
8.6 The clock constraint defining the BouncingBall as an enichronous system. 88
8.7 The trace for the evaluation of 1 macro2-step from BouncingBall. 90
8.8 Numerical results from a simulation of BouncingBall and BasketBall. . . 91
8.9 The structure of BasketBall modeled using hybrid fUML. 92
8.10 The composite structure of the library’s usage in BasketBall. 94
8.11 The composite structure of the BasketBall modeled using hybrid fUML. 94
8.12 The behavior of the activity plantInRange. 95
8.13 The classifier behavior for the Controller. 96
8.14 The classifier behavior for the Plant. 97
8.15 The clock constraints defining the BasketBall as an enichronous system. 98
8.16 The trace for the evaluation of 3 macro2-steps from BasketBall. 99
8.17 The structure of timed BasketBall modeled using hybrid fUML. 100
8.18 The classifier behavior for the Controller. 101
8.19 The clock constraint for the timed BasketBall. 102
8.20 The trace for the evaluation of 3 macro2-steps from timed BasketBall. . . 104
8.21 SpringMassDamper modeled using Modelica. 105
8.22 The structure of SpringMassDamper modeled using hybrid fUML. 107
8.23 The composite structure of SpringMassDamper modeled using hybrid

fUML. 108
8.24 The classifier behavior for the SpringMassDamperPlantController. 108
8.25 The classifier behavior for the Plant. 109
8.26 The classifier behavior for the Controller. 110
8.27 The clock constraints for the SpringMassDamper. 111
8.28 Simulation data comparing a Modelica’s and the hybrid fUML’s simulators.113
8.29 The trace for the evaluation of 3 macro2-steps from SpringMassDamper. 114
8.30 The structure of multi-periodic SpringMassDamper modeled using hybrid

fUML. 115
8.31 The composite structure of multi-periodic SpringMassDamper modeled

using hybrid fUML. 116
8.32 The classifier behavior for the SpringMassDamperPlantController. 116
8.33 The classifier behavior for the Observer. 117
8.34 The clock constraint for the multi-periodic SpringMassDamper. 118
8.35 The trace for the evaluation of 3 macro2-steps from multi-periodic Spring-

MassDamper. 120
8.36 Discrete behaviors and clock constraints for InvertedPendulum modeled

using hybrid fUML. 124
8.37 The trace for the evaluation of 3 macro2-steps from InvertedPendulum. . 125
8.38 A well-formed and well-behaved SysML model for Timepiece regarding

hybrid fUML. 126
8.39 The trace for the evaluation of 2 macro2-steps from Timepiece. 127

viii

LIST OF TABLES

Page

3.1 Part of the embedded abstract syntax. 22

4.1 Comparing the Dispatcher modeled using Esterel and Alf. 27
4.2 Activities in bUML defined by synchronous fUML. 32
4.3 Actions in bUML defined by synchronous fUML and available stereotypes. 33

6.1 Synchronous streams for VendingMachine using synchronous fUML. . . . 58
6.2 Synchronous streams for SatelliteTrackingAndControl using synchronous

fUML. 65

7.1 Meta-classes extended by hybrid fUML through stereotypes. 75

8.1 Synchronous streams for BouncingBall using hybrid fUML. 89
8.2 Synchronous streams for BasketBall using hybrid fUML. 98
8.3 Synchronous streams for timed BasketBall using hybrid fUML. 103
8.4 Synchronous streams for SpringMassDamper using hybrid fUML. 112
8.5 Synchronous streams for multi-periodic SpringMassDamper using hybrid

fUML. 119
8.6 Comparing the models for InvertedPendulum using Modelica, Hybrid

Quartz and hybrid fUML. 123

ix

CONTENTS

Page

1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Aim . 3
1.3 Outline . 3

2 INSTALLING THE DISTRIBUTED PACKAGE 5
2.1 Software Requirements . 5
2.2 Installation Procedure . 5
2.2.1 Microsoft Windows . 5
2.2.2 Ubuntu . 6
2.3 The Distributed Package and its Content . 7
2.4 Using the Distributed Package . 10

3 THE DESCRIPTION OF THE LANGUAGES 15
3.1 Embedding - M2 - ASM . 17
3.2 Embedding - M1 - ASM . 21
3.3 Embedding - M1 - CLIF . 22

4 SYNCHRONOUS fUML - AN INTRODUCTION 25
4.1 Language’s Decisions and Requirements . 25
4.2 Syntactics . 29
4.3 Static Semantics for Composite Structures . 34
4.4 Dynamic Semantics . 39
4.5 Concluding Remarks . 47

5 SYNCHRONOUS fUML’s CONFORMANCE STATEMENT . . 49

6 SYNCHONOUS fUML - PRAGMATICS 53
6.1 VendingMachine . 53
6.2 SatelliteTrackingAndControl using UPDM . 60

7 HYBRID fUML - AN INTRODUCTION 69
7.1 Language’s Decisions and Requirements . 72
7.2 Syntactics . 74
7.3 Dynamic Semantics . 76
7.4 Concluding Remarks . 82

8 HYBRID fUML - PRAGMATICS . 83
8.1 Libraries . 83
8.1.1 Mass, a reusable continuous component . 83
8.2 Event-Triggered Systems . 84

xi

8.2.1 BouncingBall . 84
8.2.2 BasketBall . 90
8.3 Time-Triggered Systems . 100
8.3.1 BasketBall as a time-triggered system . 100
8.3.2 SpringMassDamper . 105
8.3.3 A multi-periodic SpringMassDamper . 114
8.3.4 InvertedPendulum . 121
8.3.5 Timepiece using SysML . 125

9 CONCLUSIONS . 129

REFERENCES . 131

xii

1 INTRODUCTION

In this chapter, the motivation of the languages covered by the current developer’s guide (hybrid
and synchronous fUML – (ROMERO, 2014a)) is explored and the problem is stated. Subsequently,
the aim is stated. Finally, the outline of this work is presented.

1.1 Motivation

The notion of a hybrid system is centered around a composition of continuous and discrete
dynamics. In particular, the system has a continuous evolution, usually described by ordinary
differential equations (ODEs), and occasional jumps. The jumps correspond to a change of state in
an automaton whose transitions are caused either by controllable or uncontrollable external events,
or by the continuous evolution. The continuous evolution and these jumps in control loops are the
origins from the most stringent temporal demands, moreover, hybrid system usually requires a
high level of safety.

Nowadays, only a minority of controllers is implemented using continuous techniques (ALBERT,
2004; OGATA, 2009; ÅSTRÖM; WITTENMARK, 2011), therefore, a classical hybrid system is com-
posed of continuous plants and discrete controllers. Furthermore, it is common to find plants that
have discontinuities that leads to a more general scenario in which a hybrid system is composed
of hybrid plants and discrete controllers.

Those hybrid systems composed of continuous plants and discrete controllers have been modeled
and analyzed decoupling to some extend the control viewpoint from the hardware/software
viewpoint (BORDIN et al., 2012; LEE; SESHIA, 2011). Roughly, control engineers model and ana-
lyze continuous plants and then they define the requirements for discrete controllers. Using these
requirements, the hardware/software engineers model and analyze the discrete controllers in order
to fulfill the previously defined requirements. Finally, a third viewpoint, the system viewpoint,
is aimed to provide system models and to ensure consistency between all views through the life
cycle of the project and product.

To help cope with the increasing complexity in each of these multiple viewpoints, engineers are
using domain specific models. The relatively isolated development of these models has created an
explosion of disconnected models (BORDIN et al., 2012). The problems created by this situation are
often not manifest until the system is integrated across the domains. The discovery of design errors
late in the development life cycle during system integration testing often results in large budget and
schedule overruns (REDMAN et al., 2010). Concurrently, new standards and regulations are pushing
up dependability requirements whereas accepting the use of model-based engineering. For example:
DO-178C, a regulation for safety requirements in airborne systems, retains the core process rigor
from DO-178B, however, it adds four supplements: formal methods, model-based development,
object-oriented technologies and tools. Finally, hybrid systems should be modeled and analyzed in
such a way that the intersection of the views are also object of analysis, in other words, it is not
sufficient to separately model and analyze each view. On the contrary, it is the interaction of
the views that determines the systems’ characteristics (LEE; SESHIA, 2011).

The difficulty in modeling and analyzing those system’s characteristics of hybrid systems comes

1

from the diversity of these systems, and one promising approach to mitigate this issue is developing
expressive and precise modeling languages (CARTWRIGHT et al., 2006), on which precision enables
analysis. Nevertheless, developing expressive and precise modeling languages does not necessarily
mean the emergence of a new language, on the contrary, there are research projects either
working on the integration of existent languages (FRITZSON, 2010) or defining subset of the existent
languages supplemented with a precise semantics (BORDIN et al., 2012).

Taking into account existent modeling languages, there are no modeling languages with
widespread use in systems engineering and software engineering communities that have the at-
traction of UML (BORDIN et al., 2012; GRAVES, 2012), standardized by the Object Management
Group (OMG) ((OMG), 2011a). However, UML as a big general purpose language lacks of precise
semantics ((OMG), 2011a). Besides, the size and complexity of a language may have direct con-
sequences on the size and complexity of its semantics. Aware of this, OMG defines a semantics
for a foundational subset of UML (fUML)1, as an attempt to answer the need for a pre-
cise semantics for UML ((OMG), 2012a). Finally, UML has a basic premise declaring that UML
behavioral semantics deals with discrete behaviors ((OMG), 2011a), therefore, UML allows discrete
modeling.

Despite the same limitation of UML, i.e. synchronous languages only allow discrete modeling, they
have been established as a technology of choice for specifying, modeling, and verifying real-time
systems since they can provide determinism using the fundamental model of time as a sequence of
discrete instants and parallel composition as a conjunction of behaviors (BENVENISTE et al., 2003).
Moreover, the focus of synchronous languages is to allow modeling of discrete systems for which
cycle precision is a requirement (POTOP-BUTUCARU et al., 2005), among other reasons, due to the
fact that their semantics provide cycle accurate simulation. Cycle accuracy is an intermediary
abstraction level of time (at highest level, there is no time and, at the lowest level, it is the usual
physical time), which is fundamental for synchronous discrete modeling.

Existent synchronous languages have been extended with ODEs in order to support continuous
modeling (BAUER, 2012; BENVENISTE et al., 2014), however, these hybrid extensions of synchronous
languages lose cycle accuracy among other key properties (see Chapter Hybrid fUML - An In-
troduction 7). Furthermore, although ODEs support continuous modeling, differential algebraic
equations (DAEs) have shown to be more adequate for continuous modeling allowing composi-
tion (ZIMMER, 2013). Declarative languages based on DAEs has as the most prominent represen-
tation Modelica (ZIMMER, 2013), a vendor-independent language standardized by the Modelica
Association (ASSOCIATION, 2012). Nonetheless, there have been works pointing out that the Mod-
elica’s semantics for discrete behaviors is imprecise (CARLONI et al., 2004; BENVENISTE et al., 2012;
BAUER, 2012; ZIMMER, 2013), in addition, the Modelica’s semantics does not have the concept of
reaction well-known in synchronous languages.

Problem statement: The reviewed existent languages do not support modeling and de-
terministic cycle accurate simulation of hybrid systems composed of hybrid plants and
discrete controllers. Additionally, the emergence of a language with precise semantics
that allows modeling and deterministic cycle accurate simulation is enforced by the

1 fUML is either registered trademark or trademark of Object Management Group, Inc. in the
United States and/or other countries.

2

system viewpoint.

For the National Institute of Space Research (INPE), the capability to model and to analyze
through simulation a system’s model before the legal agreements with suppliers or as soon as pos-
sible has a strategical relevance. The system’s model may support suppliers, integration and pos-
sibly contractual contends having a profound impact in the product lifecycle management (PLM)
processes and activities. Moreover, two examples related to space engineering are explored. The
SatelliteTrackingAndControl (ROMERO et al., 2014b) uses Unified Profile For DoDAF And MODAF
(UPDM) ((OMG), 2013b) to model a simplified operational view of the satellite tracking and control
from INPE. The InvertedPendulum (OGATA, 2009; ROMERO et al., 2012; ROMERO; SOUZA, 2012;
ROMERO; FERREIRA, 2012) is a model of the attitude control for satellite launch vehicles at their
departure.

1.2 Aim

To allow the development and extension of hybrid and synchronous fUML v1.0, which are available
as free software in the distributed package (ROMERO, 2014b). Hybrid fUML (ROMERO, 2014a) is a
hybrid synchronous extension of fUML with formal semantics allowing modeling and deterministic
cycle accurate simulation of hybrid systems based on subsets of standardized modeling languages,
namely UML and Modelica.

1.3 Outline

This developer’s guide is organized as follows. Chapter 2 explains the procedure to install the
software requirements in order to explore, to use and to extend the distributed package containing
hybrid fUML v1.0. Chapter 3 presents the architecture applied for the definition of the synchronous
and hybrid fUML.

Concerning the defined language synchronous fUML (ROMERO, 2014a), Chapter 4 explores the
language providing main rationales, language’s decisions and requirements likewise a brief intro-
duction to the syntax and semantics. Chapter 5 declares the conformance statement of synchronous
fUML regarding fUML specification ((OMG), 2012a). Chapter 6 explores the discrete synchronous
examples.

Regarding the language hybrid fUML (ROMERO, 2014a), Chapter 7 presents the introduction to
the language providing main rationales, the language’s decisions and requirements as well as a brief
introduction to the syntax and semantics. Chapter 8 explores the hybrid examples.

Finally, conclusions are shared in Chapter 9.

Using the Distributed Package
Each section or subsection of this developer’s guide that refers to the distributed package is marked
as this example.

3

2 INSTALLING THE DISTRIBUTED PACKAGE

This chapter presents the software requirements, the installation procedure, the contents of the
distributed package of Hybrid fUML (ROMERO, 2014b) and how to use it.

Recall Hybrid fUML (ROMERO, 2014b) is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version. Hybrid fUML is distributed
in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. You should have received a copy of the GNU General Public
License along with Hybrid fUML. If not, see <http://www.gnu.org/licenses/>.

2.1 Software Requirements

The development environment for all the computer-readable material is the “Eclipse Modeling
Tools” (FOUNDATION, 2014b). In particular, all the meta-models and models are defined or ex-
tended using Papyrus (FOUNDATION, 2014c). Moreover, the ultra deep embedding (see Section 3) is
performed using the Acceleo (FOUNDATION, 2014a) that provides an implementation of the OMG
specification MOF Model-To-Text Transformation Language (MOFM2T). The models’ simulation
is performed using AsmGofer (SCHMID, 2010). Eclipse and AsmGofer runs in a Microsoft Windows
8.

Additionally, the static semantics evaluation for part of synchronous fUML is performed using
HETS (MOSSAKOWSKI, 2013). HETS runs in an Ubuntu 13.04.

2.2 Installation Procedure

This section presents the installation procedure for the software requirements and the distributed
package of hybrid fUML v1.0.

2.2.1 Microsoft Windows

a) Download the AsmGofer (SCHMID, 2010) from http://www.tydo.de/doktorarbeit/
asmgofer.html and install it in C:\work\AdmGofer-v1.1;

b) Download the Eclipse Juno (FOUNDATION, 2014b) from https://www.eclipse.org/
downloads/packages/eclipse-modeling-tools/junosr2 and unzip it;

c) Run Eclipse and select Help -> Install Modeling Components as shown in Fig. 2.1;

d) Install the components Papyrus and Acceleo as shown in Fig. 2.2 and Fig. 2.3;

e) Run Eclipse and select Help -> Install Papyrus Additional Components as shown
in Fig. 2.4;

f) Install the components MARTE and Papyrus Profile Export as shown in Fig. 2.5;

g) Close Eclipse;

5

<http://www.gnu.org/licenses/>
http://www.tydo.de/doktorarbeit/asmgofer.html
http://www.tydo.de/doktorarbeit/asmgofer.html
https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr2
https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr2

Figure 2.1 - Install Modeling Components.

Figure 2.2 - Install Modeling Components - Papyrus.

h) Unzip the distributed package in C:\work\WORKSPACES (Attention: the distributed
package only works with this path);

i) Open Eclipse, select File -> Switch Workspace -> Other... and inform the path
C:\work\WORKSPACES\workspaceHybridfUML;

2.2.2 Ubuntu

a) Run the following commands (MOSSAKOWSKI, 2013);
sudo apt-add-repository ppa:hets/hets

sudo apt-add-repository "deb http://archive.canonical.com/ubuntu lucid partner"

sudo apt-get update

sudo apt-get install hets

sudo hets -update

6

Figure 2.3 - Install Modeling Components - Acceleo.

Figure 2.4 - Install Papyrus Additional Components.

2.3 The Distributed Package and its Content

Once the installation procedure is successfully completed, the Eclipse workspace should be the one
shown in Fig. 2.6.

The distributed package can be explained as follows:

• fUML Models

fUML_Library.uml is the fUML foundational model library made available by
fUML ((OMG), 2012a).

• Hybrid fUML ASMs is the project that contains the ASMs.

embeddedModel is the directory that contains the embedded user model to be used
by the ASMs, which is called 3syntax_userModel_embedded.gs.

7

Figure 2.5 - Install Papyrus Additional Components - MARTE and Profile Export.

Figure 2.6 - The Content of Distributed Package.

hybridfUML is the directory that has the hybrid fUML ASM, which can be loaded
using the Gofer project hybfUML.p.

synchronousfUML is the directory that has the synchronous fUML ASM, which

8

can be loaded using the Gofer project synfUML.p.

• Hybrid fUML MetaModels

fUML_Semantics_Extended is the fUML Semantics made available by
fUML ((OMG), 2012a) plus the extensions defined by synchronous fUML and
hybrid fUML.

fUML_Syntax_Extended is the fUML abstract syntax model made available by
fUML ((OMG), 2012a) plus the extensions defined by synchronous fUML and hybrid
fUML.

• HybridfUMLProfile

HybridfUML.profile is the UML profile defined by synchronous fUML and hybrid
fUML.

• Hybrid fUML Transformations is the project that defines all the transformations re-
quired by the ASMs and the static semantics verification.

• Hybrid Models is the project that contains all the hybrid examples.

BouncingBall contains the model hybridfUML\bouncingBallReviewedEvent for
the BoucingBall example 8.2.1. Moreover, it contains the traces for a run of the this
model as well as equivalent models described using Hybrid Quartz (GROUP, 2014),
Modelica, and Zélus (POUZET et al., 2014).

BouncingBallControlled contains: (1) the model
hybridfUML\bouncingBallReviewedControllerZeroCrossing for
the event-triggered BasketBall example 8.2.2, and (2) the model
hybridfUML\bouncingBallReviewedController for the time-triggered Basket-
Ball example 8.3.1. Moreover, it contains the traces for a run of the these models as
well as equivalent models described using Hybrid Quartz and Modelica.

PendulumControlled contains the model hybridfUML\PendulumFinal for the In-
vertedPendulum example 8.3.4. Moreover, it contains the traces for a run of the this
model as well as equivalent models described using Hybrid Quartz and Modelica.

SpringMassDamperControlled contains: (1) the model
hybridfUML\SpringMassDamperPlantControllerDifferentPreReaction for the
mono-periodic time-triggered SpringMassDamper example 8.3.2, and (2) the model
hybridfUML\SpringMassDamperPlantControllerDifferentPreReactionObserver
for the multi-periodic time-triggered SpringMassDamper example 8.3.3. Moreover, it
contains the traces for a run of the these models as well as equivalent models described
using Modelica (ELMQVIST et al., 2012).

Timepiece_SYSML contains the model hybridfUML\timepiece for the Timepiece
example 8.3.5 defined using SysML ((OMG), 2012c). Moreover, it contains the traces for
a run of the this model.

• Synchronous Discrete Models is the project that contains all the discrete examples.

SatelliteTrackingAndControl_UPDM_OV contains the model
synchronousfUML\SatelliteTrackingAndControl_UPDM_OV for the Satellite-
TrackingAndControl example 6.2. Moreover, it contains the traces for a run of the this
model and the UPDM ((OMG), 2013b) profile defined for the extensions.

9

VendingMachine contains the model synchronousfUML\VendingMachine for the
VendingMachine example 6.1. Moreover, it contains the traces for a run of the this
model as well as equivalent models described using Esterel, Lustre and Quartz (GROUP,
2014).

• Synchronous fUML Static Semantics Verification is the project that defines all
the CLIF files for the static semantics verification, in which the main CLIF file is
synchronousfUMLStaticSemanticsVerification.clf and the embedded version of
the user model is syntax_userModel_embedded.clf.

Additionally, all synchronous and hybrid fUML models have a possible Alf ((OMG), 2013a) repre-
sentation for their synchronous discrete behaviors taking into account Alf annotations.

2.4 Using the Distributed Package

This section presents the common procedures to use the transformations and models.

Running Transformations

As the semantics of hybrid and synchronous fUML are defined using ultra-deep embedding, the
meta-models and models must be transformed into ASM formalism or CLIF formalism. These
transformations are configured in the distributed package according to the Fig. 2.7. To access these
configured transformations, select Run -> Run Configurations..., choose one transformation
and click in the button Run.

Figure 2.7 - Configured runs.

10

Evaluating Models

The hybrid models and the discrete synchronous models can be evaluated using the ASMs after
their embedding. The procedure for their evaluation is the following one:

a) Call the respective configured run Embedding M1_ASM - The transformation
generates the file
Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

b) The generated file must be copied into the directory
Hybrid fUML ASMs\embeddedModel in order to be evaluated.

c) Run the external tool Synchronous fUML as shown in Fig. 2.8 for discrete synchronous
models or Hybrid fUML for hybrid models;

Figure 2.8 - Running Synchronous fUML.

d) Run the following commands in the console:

Synchronous fUML

:p synfUML.p

fire1 rule_fUML_initSyn

traceFH

fire1 (trace traceFG rule_fUML_mainSyn)

fire1 (trace traceFG skip)

:quit

Hybrid fUML (a model can demand a different initial rule)

:p hybfUML.p

fire1 (rule_fUML_initSim 100 0.01)

traceFH

fire1 (trace traceFG rule_fUML_mainHyb)

11

fire1 (trace traceFG skip)

:quit

e) Check the generated traces in the directory
Hybrid fUML ASMs\synchronousfUML\traces for synchronous fUML or
Hybrid fUML ASMs\hybridfUML\traces for hybrid fUML;

clock....txt stores all clocks and their current time for each macro-step (syn-
chronous fUML) or macro2-step (hybrid fUML);

signal....txt stores all the exchanged signals for each macro-step (synchronous
fUML) or macro2-step (hybrid fUML).

hybrid....txt stores the values of a given continuous variable at each physical
clock instant;

Verifying Static Semantics of Models

The discrete synchronous models can be evaluated using automated theorem provers regarding
their accordance with the static semantics for composite structures after their embedding. The
procedure for their evaluation is the following one:

a) Call the respective configured run Embedding M1_CLIF - The transformation
generates the file
Hybrid fUML Transformations\transformedFiles\syntax_userModel_embedded.clf;

b) The generated file must be copied into the directory
Synchronous fUML Static Semantics Verification in order to be evaluated;

c) Open the Ubuntu and copies all files from
Synchronous fUML Static Semantics Verification into a new directory;

d) In Ubuntu, open a terminal and enter the following command:

hets -g synchronousfUMLStaticSemanticsVerification.clf

e) Select synchronousfUMLStaticSemanticsVerificationin the
Development Graph for synchronousfUMLStaticSemanticsVerification, right-
click and select Check consistency

f) In the Consistency Checker, click in the button All, increases the timeout to 100,
and, finally, click in the button check. For consistent models, i.e., defined in accordance
with the static semantics, the output is the one shown in Fig. 2.9 (all files are consistent
since they are indicated as green).

12

Figure 2.9 - Evaluating Static Semantics through an ATP.

13

3 THE DESCRIPTION OF THE LANGUAGES

In this chapter, the architecture for the reuse of the meta-models supporting the definition of
the ASMs for synchronous fUML and hybrid fUML is explained, while the extensions in those
meta-models and the ASMs are presented in the sequel.

Definition 3.1 (Semantic mapping representation through deep embedding (NIPKOW et al., 2000)).
Deep embedding uses a language Lm with a well-defined semantics to represent the semantic map-
ping for a language L. It represents the abstract syntax from the language L using the language
Lm (defining the embedded abstract syntax), furthermore, the semantic domain of L is represented
using Lm. Afterwards, the semantic mapping of L is defined using Lm by an explicit function from
the embedded abstract syntax to the semantic domain represented using Lm. Deep embedding is
frequently used when it is needed to formalize and evaluate properties of the language L as a whole.

The deep embedding 3.1 uses a language Lm with a well-defined semantics, ASM in this
work, to represent the semantic mapping for a language L, synchronous fUML in this chapter,
considering an embedded abstract syntax and a definition of the semantic domain of L using
Lm. A generalization, covering the semantic domain, leads to the definition of ultra deep embedding.

Definition 3.2 (Semantic mapping representation through ultra deep embedding). Ultra deep
embedding uses a language Lm with a well-defined semantics to represent the semantic mapping for
a language L. It represents, using the same criteria, the abstract syntax and the semantic
domain from the language L using the language Lm (defining the embedded abstract syntax and
embedded semantic domain). Afterwards, the semantic mapping of L is defined using Lm by an
explicit function from the embedded abstract syntax into the embedded semantic domain.

The term same criteria means that the same set of main rules must be applied to the abstract
syntax and the semantic domain, e.g. each class (either in the abstract syntax or in the semantic
domain) defines a domain (a set part of the universe of discourse). Ultra deep embedding can
be easily applied to synchronous fUML because fUML standardizes both the abstract syntax and
the semantic domain using meta-models. Moreover, the meta-modeling of the semantic domain is
called semantic domain modeling (GARGANTINI et al., 2009).

Taking into account the ultra deep embedding of the standardized fUML meta-models, Fig. 3.1
shows the architecture that supports the operational semantics definition of an ASM calledmainSyn
(the ASM of synchronous fUML). It can be explained as follows.

The component m2:Meta-Models is composed of: (1) the extended abstract syntax (the standard-
ized meta-model of fUML extended with UML composite structures using abstract classes to
compute required/provided features), (2) the extended semantic domain (the standardized meta-
model of fUML extended with part of the MARTE time model and synchronous communication
support) and, finally, the synchronous fUML profile (it defines the stereotypes, e.g. Pausable).

The component m1:Models is composed of any user-defined model that conforms to the extended
abstract syntax possibly using the synchronous fUML profile.

15

Figure 3.1 - Ultra deep embedding architecture.

The component transformations:MTLs is a key component for the ultra deep embedding archi-
tecture. It is composed of two types of transformations defined using OMG specification MOF
Model-To-Text Transformation Language (MOFM2T), which are: Embedding - M2 - ASM and
Embedding - M1 - ASM. Indeed, only Embedding - M2 - ASM encodes the rules for the ultra deep
embedding. For all executions of this transformation, either receiving abstract syntax or semantic
domain, it produces a formal embedded version of the meta-model, an ASM module. An ASM
module is, in fact, defined using the syntax of the functional language Gofer (AsmGofer (SCHMID,
2001) is based on Gofer, and AsmGofer is the dialect used for the ASM definitions in this work),
therefore, it contains data types and functions. Moreover, if the transformation is generating an
embedded version of the abstract syntax then, in addition, it generates another transformation
called Embedding - M1 - ASM. (GARGANTINI et al., 2009) calls Embedding - M2 - ASM a High
Order Transformation because this transformation produces as output another transformation.
Embedding - M2 - ASM uses the encoding rules to generate Embedding - M1 - ASM, which is
responsible for the transformation of a user-defined model (userModel:Model in m1:Models) in an-
other ASM module but now composed only of functions using the data types defined by the ASM
module of abstract syntax.

The component asmModulesAndASM:AsmGofer is the main object of this chapter because it de-
fines the operational semantics for synchronous fUML. It defines all the modules that are imported
by the ASM called mainSyn, some of them are embedded versions, namely abstract syntax, seman-
tic domain and user model, others are manually defined, e.g. the ASM module for the synchronous
fUML profile.

The component m0:RuntimeModel exists when the operational semantics is executed for a specific
user model. Furthermore, the results of an ASM step of the machine mainSyn can be visualized
by the generated traces, which are: (1) clock - it shows all the clocks and the current time for each
one at a given step and (2) signal - it stores all the signals exchanged between objects in a step.

16

Before proceeding with the presentation of language’s components, the main points of Embedding
- M2 - ASM as well as Embedding - M1 - ASM are presented.

3.1 Embedding - M2 - ASM

Recall ASM abstract states are defined by algebraic structures, where data come as abstract objects
(one for each category of data), i.e., as elements of sets, with basic operations. This definition is the
algebraic data types in the functional language Gofer (the basis of AsmGofer), which is a subset
of Haskell. However, it poses a series of challenges for the embedding due to the object-oriented
style used by the fUML meta-models (SHIELDS; JONES, 2001).

There are some kinds of polymorphism that Haskell doesn’t support, or at
least not natively, e.g., . . . subtyping, common in OO languages, where values
of one type can act as values of another type1.

In this context, the transformation Embedding - M2 - ASM faces the subtyping issue (SHIELDS;

JONES, 2001). For example: in the abstract syntax of fUML an Action is a kind of ActivityNode that
is a kind of RedefinableElement, which is a kind of NamedElement that, finally, is a kind of Element.
One technique to face the subtyping issue is: for each super-class, it is defined an algebraic
data type that has a discriminator used to indicate the sub-classes (GARGANTINI et al.,
2009). Therefore, the sub-classes are disjoint subsets of the set defined by the algebraic data type
of the super-class. This technique defines different sets for each super-class so the super-classes
cannot have relationships of type “is kind of” between them. Otherwise, a class could be part of
two sets, which will turn its manipulation by the operational semantics hard and error prone. Even
more, a class must be part of one and only one set so it is described by one and only one algebraic
data type with an adequate discriminator. Moreover, the algebraic data types must have a data
constructor for an empty element, i.e., part of the set but not part of any subset (a common pattern
in functional programming languages). This is the technique applied in the ultra deep embedding
for the abstract syntax and for the semantic domain in this work, however, the question is which
classes should be chosen in order to guarantee that they define disjoint sets.

The choice of classes is made analyzing the class hierarchy of each meta-model, and passing two
multi-valued parameters for the transformation, which are: (1) the list of the key classifiers, i.e.,
each one defines an algebraic data type, and (2) the list of target classifiers, i.e., the classifiers that
will be part of the sets defined by the key classifiers (which set is the adequate one is defined by
the transformation). These lists must respect the constraints previously discussed, furthermore,
only classifiers in these lists are embedded, which makes easy to select elements from bUML.

For example: the execution of Embedding - M2 - ASM that supports the ASM mainSyn chooses
Event as a key classifier and SignalEvent as a target classifier. Therefore, Event has its alge-
braic data type FUML_Syntax_CommonBehaviors_Communications_Event, which has a discrimi-
nator FUML_Syntax_CommonBehaviors_Communications_EventType with only one possible value
SignalEvent FUML_Syntax_CommonBehaviors_Communications_SignalEvent. Additionally, there
is a FUML_Syntax_CommonBehaviors_Communications_EventEmpty allowing empty elements to

1http://www.haskell.org/haskellwiki/Polymorphism#Other_kinds_of_polymorphism

17

http://www.haskell.org/haskellwiki/Polymorphism#Other_kinds_of_polymorphism

be part of the Event set. See the following excerpt where the naming convention for the algebraic
data types are shown (packageHierarchy "_" keyClassifierName").

data FUML_Syntax_CommonBehaviors_Communications_EventType =
FUML_Syntax_CommonBehaviors_Communications_SignalEvent

data FUML_Syntax_CommonBehaviors_Communications_Event =
FUML_Syntax_CommonBehaviors_Communications_Event
String
String
FUML_Syntax_Classes_Kernel_VisibilityKind
FUML_Syntax_Classes_Kernel_VisibilityKind
FUML_Syntax_Classes_Kernel_Classifier
FUML_Syntax_CommonBehaviors_Communications_EventType | FUML_Syntax_CommonBehaviors_Communications_EventEmpty

Another issue is the identity of the sets’ members, while the embedded abstract syntax can
work with static or dynamic ids, the embedded semantic domain only admits dynamic ids. The
dynamism is a required characteristic in the embedded semantic domain because it defines the
meaning of a given instance of the abstract syntax, in other words, the dynamic functions
store the state. Thus, if the identity of the abstract syntax is chosen to be static, another
parameter for the transformation is required (generateSemantics) indicating how the identity of an
algebraic data type is defined. In fact, this work chooses to use static ids for the abstract syntax
elements because the ids are statically defined in the meta-model (xmiId) and a user-model (which
instantiates the abstract syntax) is static for the operational semantics. Therefore, when generating
the embedded abstract syntax the xmiId is used as id (see the previous excerpt, the first
String parameter is the xmiId), however, when generating the embedded semantic domain the
id is dynamically generated, which indeed is the use of the ASM reserve to create new elements
(see the following extract where the use of the reserve from ASM is coded using the class Create
for an element from the embedded semantic domain, the Offer).

data FUML_Semantics_Activities_IntermediateActivities_Offer = FUML_Semantics_Activities_IntermediateActivities_Offer
Int | FUML_Semantics_Activities_IntermediateActivities_OfferEmpty

instance Create FUML_Semantics_Activities_IntermediateActivities_Offer where
createElem i = FUML_Semantics_Activities_IntermediateActivities_Offer i

UML PrimitiveTypes are mapped into primitive types of AsmGofer, namely Boolean to Bool,
String to String, Integer and UnlimitedNatural to Int, and Real to Float.

Properties of classes are mapped into ASM functions. Moreover, the properties of the super-
classes and sub-classes of the key classifier which maps to an algebraic data type are also defined
as functions for the algebraic data type. The multiplicity and the meta-properties isOrdered and
isUnique are considered for the definition of the codomain, furthermore, bags (multiplicity greater
than 1 and isOrdered=false and isUnique=false) are reported as error, and ordered sets (multiplicity
greater than 1 and isOrdered=true and isUnique=true) are reported as warnings and mapped
into sets. The transformation only considers properties that are owned by a classifier, therefore,
if an association end is owned by the classifier it is embedded, otherwise, not. Consequently,
bidirectional navigations where both association ends are owned by classifiers are embedded as
two functions, one for each classifier. These functions for the embedded abstract syntax can be
static or dynamic, whereas they must be dynamic for the embedded semantic domain (for the
same reason previously presented). The following extract shows the resultant function for the

18

property offeredTokens from Offer in the embedded semantic domain, which have the following
meta-properties: isOrdered=false, isUnique=true, multiplicity=0..* and type equals to Token. Note
the Dynamic keyword declaring that it is a dynamic function, and the naming decoration for
functions "function_" keyClassifierName "_" [classifierName] "_" propertyName, where
classifierName is optional and can be the name of a super-class or the name of a sub-class (a
target classifier).

function_Offer_offeredTokens :: Dynamic (FUML_Semantics_Activities_IntermediateActivities_Offer ->
{FUML_Semantics_Activities_IntermediateActivities_Token})

The same rationale applied for the identity of the sets’ members leads to static functions for
the embedded abstract syntax. As every definition of the embedded abstract syntax are based
on static functions, it is possible to define in the data constructor all the properties that are not
bidirectionality navigable2. The following extract shows the function for the property name defined
by the super-class NamedElement from Event in the embedded abstract syntax. Note the first
parameter of the non-empty data constructor is xmiId and the second is the name a property of
NamedElement, furthermore, two visibilities appear because Event has as its parents two classifiers
that declare visibility, PackageableElement redefines the property visibility from NamedElement.
Finally, note the use of name decoration to give a distinct name to each distinct function of a single
property, e.g. name from NamedElement (SHIELDS; JONES, 2001).

function_Event_NamedElement_name :: FUML_Syntax_CommonBehaviors_Communications_Event -> String
function_Event_NamedElement_name (FUML_Syntax_CommonBehaviors_Communications_Event

xmiId name1 visibility2 visibility3 signal4 fUML_Syntax_CommonBehaviors_Communications_EventType) = name1

The last issue for the transformation Embedding - M2 - ASM is the SemanticVisitor, an instance
of the Visitor design pattern, used by the meta-model of the semantics from fUML inten-
sively, in fact, the execution model. Following the object-oriented design pattern, fUML uses the
Visitor pattern in order to avoid changes in the class hierarchy defined in the abstract syntax
meta-model, at the same time, to provide operations, which are defined using bUML activities
(in reality, each operation has an opaque behavior written in Java but supported by the Java
to UML Activity Mapping). For example: the class from the abstract syntax ActivityNode has a
paired class in the semantic domain called ActivityNodeActivation, which specializes SemanticVis-
itor, has an unidirectional association to one ActivityNode and has the corresponding behaviors.
Nevertheless, this object-oriented pattern does not apply for ASM because behavior is not coupled
with the structure so ultra deep embedding of the classes that are exclusively defined for behavior
definition would only demand more algebraic data types without any new information. Therefore,
the SemanticVisitors defined uniquely for behavior definition are not embedded, e.g.
ActivityNodeActivation and Evaluation. This simply means that the semantic domain is embed-
ded, while the semantic mapping defined by operations specified using bUML not, nonetheless,
the operation names for all key classifiers and target classifiers are generated as comments to sup-
port a clear matching between operations in the semantics meta-model and rules in
the ASM semantic mapping. For example, the class Locus from the semantics meta-model of
fUML is chosen as key classifier and target classifier so it defines an algebraic data type without

2Although circular algebraic data types are not an issue for lazy functional programming lan-
guages, this work, avoid them so only not bidirectional properties are defined in the data construc-
tor.

19

a discriminator because it does not have sub-classes, in addition, all the properties are embedded
using dynamic functions and its signatures of operations are generated as comments in order to
guide the definition of the semantic mapping (using the same name decoration previously shown
but changing the prefix from "function_" to "operatio_").

data FUML_Semantics_Loci_LociL1_Locus = FUML_Semantics_Loci_LociL1_Locus Int | FUML_Semantics_Loci_LociL1_LocusEmpty

function_Locus_executor :: Dynamic (FUML_Semantics_Loci_LociL1_Locus -> FUML_Semantics_Loci_LociL1_Executor)

-- operatio_Locus_add :: FUML_Semantics_Loci_LociL1_Locus -> FUML_Semantics_Classes_Kernel_Value -> Rule ()
-- operatio_Locus_remove :: FUML_Semantics_Loci_LociL1_Locus -> FUML_Semantics_Classes_Kernel_Value -> Rule ()
-- operatio_Locus_instantiate :: FUML_Semantics_Loci_LociL1_Locus -> FUML_Syntax_Classes_Kernel_Classifier ->
-- Rule FUML_Semantics_Classes_Kernel_Value

In summary, every key classifier defines an algebraic data type. All properties from the super-
classes and sub-classes (target classifiers) are defined for the algebraic data type applying name
decoration. The embedded abstract syntax uses parameters in the non-empty data constructor for
each unidirectional property and a parameter for the xmiId, moreover, all functions are static. While
the embedded semantic domain does not define parameters in the non-empty data constructor using
the reserve from ASM, furthermore, every function is a dynamic function. Finally, the embedded
semantic domain does not have pure SemanticVisitors in the key classifiers or target classifiers.
Although there are particularities between the embedding of abstract syntax and semantic domain,
they share the same set of the main rules, which characterizes the ultra deep embedding.

Finally, when embedding the abstract syntax, Embedding - M2 - ASM must generate the transfor-
mation Embedding - M1 - ASM. The process of generation of Embedding - M1 - ASM is defined by
the same set of rules above described. For each key classifier, all its subclasses listed in the target
classifiers are used to generate a template for one static function for each instance of the target
classifiers. Furthermore, the bidirectional navigable properties generate templates also according
to the same pattern (for each key classifier, all its subclasses listed in the target classifiers)3. The
next subsection briefly discusses the resultant transformation.

Using the Distributed Package
The meta-models fUML_Syntax_Extended and fUML_Semantics_Extended are used to define the
abstract syntax and the semantic domain for synchronous and hybrid fUML. Specifically, they are
the basis for the generation, through ultra-deeep embedding, of the algebraic data types used in
the ASMs.

The transformation embeddingM2_ASM.mtl located in the project Hybrid fUML Transformations
is responsible to read these models and generate the respective embedded version. This transfor-
mation has a large number of parameters, which are used to indicate whether an execution will
generate an embedded abstract syntax or an embedded semantic domain among others.

The transformation embeddingM2_ASM.mtl can be executed by the configured run
Embedding M2_ASM - Syntax or the configured run Embedding M2_ASM - Semantics.

3The stereotypes are covered by this transformation, however, it is not presented in this work.

20

Each run of a Embedding M2_ASM - Syntax generates a file
Hybrid fUML Transformations\transformedFiles\embeddedM2.gs and a file
Hybrid fUML Transformations\transformedFiles\embeddingM1_ASM.genmtl. The file
embeddedM2.gs must be copied into the
Hybrid fUML ASMs\synchronousfUML\1syntax_abstractSyntax_embedded.gs.
The file embeddingM1_ASM.genmtl must be copied into
Hybrid fUML Transformations\embeddingM1_ASM.mtl.

Each run of a Embedding M2_ASM - Semantics generates a file
Hybrid fUML Transformations\transformedFiles\embeddedM2.gs. The file embeddedM2.gs
must be copied into the
Hybrid fUML ASMs\synchronousfUML\5semanticDomain_embedded.gs.

3.2 Embedding - M1 - ASM

Once Embedding - M1 - ASM is generated by the Embedding - M2 - ASM, it is able to receive
any user-defined model that conforms with the embedded abstract syntax in order to produce an
embedded version of the user-defined model using the algebraic data types defined by the embedded
abstract syntax.

For example, part of the result of an Embedding - M1 - ASM execution for a given model that
has an instance of the SignalEvent called SignalEventReceivingPlantState is shown in the following
extract.

g_k9JB0E1BEeOwa9EM7pyTgQ ::FUML_Syntax_CommonBehaviors_Communications_Event
g_k9JB0E1BEeOwa9EM7pyTgQ = FUML_Syntax_CommonBehaviors_Communications_Event

"g_k9JB0E1BEeOwa9EM7pyTgQ"
"SignalEventReceivingPlantState"
FUML_Syntax_Classes_Kernel_VisibilityKind_public
FUML_Syntax_Classes_Kernel_VisibilityKind_public
g_IYrDIE0minus_EeOwa9EM7pyTgQ
FUML_Syntax_CommonBehaviors_Communications_SignalEvent

The extract defines a member of the set FUML_Syntax_CommonBehaviors_Communications_Event
that has as identity g_k9JB0E1BEeOwa9EM7pyTgQ, which, in fact, is its xmiId. Specifically,
it is part of the subset FUML_Syntax_CommonBehaviors_Communications_SignalEvent. Fi-
nally, it is publicly visible and it has as Signal a member of another set which identity is
g_IYrDIE0minus_EeOwa9EM7pyTgQ.

In summary, this transformation defines members of the sets defined by the embedded abstract
syntax as well as their relationships. These members form the embedded user-defined model and
are possible inputs for the operational semantics defined in the sequel.

Using the Distributed Package
The transformation “Embedding - M1 - ASM”, described by the file embeddingM1_ASM.mtl
located in the project Hybrid fUML Transformations, has a configured run
for each example in this work. The following configured runs are available in

21

the distributed package: EmbeddingM1_ASM - BouncingBallReviewedController,
EmbeddingM1_ASM - BouncingBallReviewedControllerZeroCrossing,
EmbeddingM1_ASM - BouncingBallReviewedEvent, EmbeddingM1_ASM - Pendulum,
EmbeddingM1_ASM - SatelliteTrackingAndControl_UPDM_OV,
EmbeddingM1_ASM - SpringMassDamperPlantControllerDifferentPreReaction,
EmbeddingM1_ASM - SpringMassDamperPlantControllerDifferentPreReactionObserver,
EmbeddingM1_ASM - Timepiece, and EmbeddingM1_ASM - VendingMachine (see Section 2.4).

Each run of the transformation generates the file
Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

3.3 Embedding - M1 - CLIF

A part of the abstract syntax is formally available through the application of the technique deep
embedding (not ultra-deep embedding, see Definitions 3.1 and 3.2), in which relations in the ab-
stract syntax are directly embedded in first-order logic (Lm) (FIKES; MCGUINNESS, 2001).

Table. 3.1 shows a part of the abstract syntax representation in CLIF. These relations are embedded
in CLIF using unary and binary relations. Instances of elements (individuals) use unary relations,
e.g., a connector called Connector1 is declared using (cbuml:Connector Connector1). Attribute
definitions are achieved using binary relations, e.g., to describe that the class Class1 has a connector
called Connector1, the predicate (cbuml:ownedConnector Class1 Connector1) is used. The prefix
“buml:” is used to indicate relations that are defined in base semantics ((OMG), 2012a) while
“cbuml:” is used to indicate relations defined by this work. The prefix “form:” is used to indicate
relations introduced for the formalization.

In summary, CLIF offers the logic syntax, the static semantics rules provide a set of inference rules
and axioms that together with user axioms (describing composite structures) form a mathematical
theory, which can be used for analysis. In this work, the goal is to check if all axioms and inference
rules are consistent.

Using the Distributed Package

Table 3.1 - Part of the embedded abstract syntax.

Set Set operations CLIF representation Meta-elements
and relations

T Type
F Feature
C C ⊆ T Classifier
CL CL ⊆ C (buml:Class cl) Class
P P ⊆ F (buml:Property p) Property
CO CO ⊆ F (cbuml:Connector co) Connector
G G = C v C (buml:general c c) general
OWA OW A = CL v P (buml:ownedAttribute cl p) ownedAttribute
PT P T = P v T (buml:type p t) type
CLAB CLAB ⊆ CL (cbuml:isAbstract cl form:true) isAbstract
OWCO OW CO = CL v CO (cbuml:ownedConnector cl co) ownedConnector

22

As the transformation “Embedding - M1 - CLIF”, described by the file embeddingM1_CLIF.mtl
located in the project Hybrid fUML Transformations, is only applicable to syn-
chronous discrete models, the following configured runs are available in the dis-
tributed package: EmbeddingM1_CLIF - SatelliteTrackingAndControl_UPDM_OV and
EmbeddingM1_CLIF - VendingMachine (see Subsection 2.4).

Each run of the transformation generates the file
Hybrid fUML Transformations\transformedFiles\syntax_userModel_embedded.clf.

23

4 SYNCHRONOUS fUML - AN INTRODUCTION

On the one hand the synchronous-reactive model of computation (MoC) (BENVENISTE et al., 2003;
BERRY, 2000; SCHNEIDER, 2003) can provide determinism and can simplify the modeling and
verification tasks, on the other hand, the execution model provided by fUML, which defines the
fUML’s MoC, does not have sufficient mechanisms to change its asynchronous nondeterministic
MoC (BENYAHIA et al., 2010; ROMERO et al., 2013b).

The next section explores an alternative to undertake this impasse. Afterwards, the overview of
the proposed extension is presented discussing syntactics and semantics in an informal way. The
goal of the next sections is to provide a quick overview of how models are defined (syntactics) and
what are their interpretations regarding the proposed operational semantics.

4.1 Language’s Decisions and Requirements

In order to undertake the previous stated impasse about the difficulty of changing the fUML’s
MoC, let start recalling the components from fUML. Fig. 4.1 shows the standard meta-models
made available by OMG for fUML ((OMG), 2012a). Regarding object-orientation and bUML, the
meta-model Semantics is composed of classes modeling the semantic domain augmented with
operations defined using bUML. Those operations define the semantic mapping so the object-
orientation applied in the Semantics meta-model is the reason why fUML couples semantic domain
and semantic mapping in the so-called execution model, which indeed is an interpreter, defined in
the meta-model Semantics.

Figure 4.1 - Standard meta-models from fUML. Source: Adapted from ((OMG), 2012a).

Therefore, the semantic mapping from fUML is defined using bUML in the meta-model Semantics,
which is part of fUML, the so-called meta-circular definition.

One could consider the text of an interpreter, as a formal definition of the
language that it implements. The language used for writing it should already
have a well-defined interpretation, of course: a so called, meta-circular inter-
preter, written using the language itself being interpreted, does not formally
define anything at all. (pp. 7; (MOSSES, 2005))

25

Aware of this weakness of the meta-circular definitions and in order to break this circularity, fUML
defines the base semantics, which specifies when particular executions conform to a model defined
in bUML (pp.351; ((OMG), 2012a)). Consequently, the entire semantic mapping can be replaced
provided that the new one demonstrates by a formal proof that it respects all the definitions of
the base semantics(pp. 7;((OMG), 2012a)).

At this point, two remarks are important: (1) the base semantics, as defined by fUML’s
specification should cover totally bUML and nothing more, however, it does not cover one element
in bUML, namely ActivityFinalNode, and it covers two elements outside the scope of bUML,
namely AcceptEventAction and ReadIsClassifiedObjectAction; and (2) the base semantics is not
consistent. Both remarks are under the OMG’s evaluation (ROMERO et al., 2014c). These remarks
lead to the following assumption about bUML and base semantics.

Assumption 4.1 (bUML and base semantics). In bUML, ActivityFinalNode is replaced by Flow-
FinalNode because the former has a semantics that obligates the definition of the notion of time,
which is an unconstrained element in fUML and, consequently, in bUML (see proof in (ROMERO et

al., 2014c)). Moreover, an inference rule is defined in the base semantics for FlowFinalNode accord-
ing to the proposal from (ROMERO et al., 2014c). The inference rules supporting AcceptEventAction
and ReadIsClassifiedObjectAction are removed from base semantics. Therefore, bUML and base
semantics have a perfect matching.

The assumption 4.1 is crucial to enable the definition of a different semantic mapping because
considering it one can prove that a new semantic mapping for bUML is compliant with base se-
mantics. Consequently, it can be used to support an entire new semantic mapping for fUML safely.
Morevover, it supports other model of computations because the SendSignalAction in bUML con-
tinues to write in an abstract event pool, whereas the AcceptEventAction is not any more con-
strained. For example, the synchronous-reactive MoC in which the reaction of absence is possible,
and then the AcceptEventAction shall return a value without the mandatory existence of a previous
event in the event pool of the owning active object1.

In conclusion, taking into account the assumption 4.1, one can define a completely new semantic
mapping reusing the abstract syntax and the semantic domain defined in the meta-models Abstract
Syntax and Semantics respectively. Moreover, it can define this new semantic mapping for bUML,
afterwards, prove that it is consistent with the base semantics, and, finally, it can be used to define
a complete new semantic mapping for fUML. This conclusion culminates in the following definition.

Definition 4.2 (Semantic mapping of synchronous fUML). Due the lack of formality in the self-
defined semantic mapping of fUML, synchronous fUML does not reuse it, further, synchronous
fUML uses the base semantics to prove its conformance with the specification. Therefore, syn-
chronous fUML defines a novel semantic mapping for bUML reusing the abstract syntax and
the semantic domain defined by fUML. This novel semantic mapping is defined using ASMs be-
cause ASM has been successfully used in similar endeavors for other modeling/programming lan-
guages (BÖRGER; STÄRK, 2003; GARGANTINI et al., 2009).

1For example, the reaction of absence is not allowed by the inference rule defined in the base
semantics for AcceptEventAction because one event (absence) being not in the event pool should
be present at the output pin after the execution of the action.

26

The definition 4.2 allows the introduction of the synchronous-reactive MoC in fUML through a
novel semantic mapping, however, it does not give any clue about how the abstract syntax will be
affected. The abstract syntax shall be affected, for example: in imperative synchronous languages,
there is a specific construct to demarcate the macro-steps pause (BERRY, 2000; SCHNEIDER,
2009); and in synchronous declarative languages, there are constructs to declare relations between
clocks, e.g. when or current in Lustre (HALBWACHS et al., 1992). Therefore, the question is: what
is the synchronous language paradigm that fits better to fUML? The following conjecture presents
an answer to this question.

Conjecture 4.3 (Synchronous fUML is better described as an imperative synchronous language).
Although Alf has a functional flavor with an OCL-like syntax supported by the fUML nodes Ex-
pansionNodes and ExpansionRegions ((OMG), 2013a), fUML and Alf are intrinsic imperative
action languages due to their frequent utilization of side effects. For example: AcceptEventAc-
tion removes an event from the event pool (side-effect) and returns this event in its output pin,
SendSignalAction creates a new event in a target event pool (side-effect) without any return.

Table 4.1 provides empirical evidences about the conjecture 4.3 since the structure of the imperative
code for the Dispatcher in Esterel is similar to a possible representation using Alf.

Table 4.1 - Comparing the Dispatcher modeled using Esterel and a possible Alf represen-
tation.

Esterel A possible Alf representation

module Dispatcher:
input credit:integer;
output gum;

loop //@pausable
do {

var lcreditd:integer in
lcreditd := pre(?credit);

//@previous initValue=new Credit(credit=>0)
accept(crd:CreditSignal);

if 15 <= lcreditd then
emit gum

end if;

if (15 <= crd.credit) {
this.accumulator.ReceptionGum(
new GumSignal());

}

end var;
pause;

end loop
end module

} while(true);

The important similarities are: (1) the explicit use of demarcation of macro-steps in Esterel pause
and in a possible Alf representation @pausable, (2) the reading of a value of a previous signal in
Esterel pre and in a possible Alf representation an accept statement stereotyped with @previous
and (3) the emission of a signal in Esterel emit and in a possible Alf representation a call to a
SendSignalAction. From this, one can infer that the statement await in Esterel is related to the

27

action AccepEventAction from fUML.

Now recall the abstract syntax from fUML is specified ((OMG), 2012a) and if one wants to use the
large number of existent tools to define UML models then it is not allowed to create completely
new elements in the fUML abstract syntax. Therefore, there are two options for extension of the
abstract syntax from fUML: (1) to change the semantics of already defined elements using a profile
(respecting the fUML constraints and the base semantics) or (2) to import elements defined in
UML abstract syntax and then to define their semantics.

The above discussion, the definition 4.2 and the conjecture 4.3 lead to the following design decisions
for synchronous fUML:

a) A subset of the abstract syntax from fUML is reused (see Section 4.2);

The abstract syntax from fUML can be extended by a profile (to change the seman-
tics of elements according to the necessities of the synchronous-reactive MoC regarding
an imperative style) or it can be extended by elements already defined in UML;

Exclusions from fUML are still valid, e.g. state machines, streams, actions as Broad-
castSignalAction;

b) The semantic domain from fUML is reused;

The semantic domain from fUML can be extended freely;

c) A novel semantic mapping covers the selected elements from bUML;

The semantic mapping must be defined operationally using the ultra deep embed-
ding technique;

The semantic mapping must provide the synchronous-reactive MoC;

The semantic mapping must provide only access to the previous and current macro-
step (no scheduling for next macro-steps);

It is out of scope the semantics for the entire fUML;

It is out of scope nondeterministic modeling features;

d) It supports broadcast of signals;

e) It defines and supports concurrency according to the constructive semantics;

f) It does not support concurrency inside activities;

g) It does not support advanced concepts of imperative synchronous languages like pre-
emption or advanced treatment of local signals;

h) It does not support object-orientation, which means the object-oriented concepts are
not considered in the semantic mapping (they can be used in the diagrams);

i) It does not support reclassification of objects. The action ReclassifiyObjectAction is out
of bUML’s scope, therefore, synchronous fUML is a static typed language.

Decision (d) conflicts with the unicast (one-to-one) message pattern provided by fUML, and,
consequently, by Alf. However, broadcast (one-to-many) is required in many real-time systems

28

and it supports the non-intrusive observation of component interactions by an independent ob-
server (ROMERO et al., 2013a; ROMERO et al., 2013b). Moreover, imperative synchronous languages
provide broadcast as a technique to avoid unnecessary and undesired coding because a sender does
not need to know who and how many the receivers are (providing better composition). (ROMERO

et al., 2014a) recognized that UML composite structure is a feasible standardized option to support
broadcasting in fUML models because ports in active objects can work as relays dispatching sig-
nals received to other active objects. Therefore, the synchronous fUML introduces UML composite
structures in its abstract syntax and its semantic mapping in order to provide broadcasting.

Taking into account the above decisions and discussions, the following high-level requirements were
defined for synchronous fUML:

a) It shall enable modeling (syntax) of discrete behavior applying the abstract notion of
time used by the synchronous-reactive MoC;

b) The syntax shall be defined by a subset of fUML;
The syntax shall include UML Composite Structures in order to allow message

broadcasting;

c) The semantic domain from fUML shall be reused;
The semantic domain shall cover clocks of signals in accordance with the time

domain from MARTE ((OMG), 2011b);

d) It shall define a semantic mapping for part of bUML using ultra deep embedding;
It shall provide an executable operational semantics defined by ASMs (the op-

erational methods are well-suited for the description of the semantics of synchronous
languages (pp. 83; (SCHNEIDER, 2009)));

It shall provide the synchronous-reactive MoC;
It shall give semantics for constructive systems.
It shall enable proofs that the novel semantic mapping respects base semantics

(through the integration of ASMs and declarative methods);

Considering the constructive models, fUML, a dynamic language (it allows the creation and
destruction of objects during the execution of a model), poses additional challenges for the
constructive semantics. Nevertheless, during this work, the creation of objects is centralized in a
main activity so this issue is mitigated. Finally, the following pattern often appears in those models.

Definition 4.4 (Pattern reactive class). Reactive class is a recurrent pattern in the models defined
by synchronous fUML. It means that an active class has a non-instantaneous non-terminating loop
so, once started by the action StartObjectBehaviorAction, it continues running its own “thread”
infinitely. Therefore, a reactive class is an active class with a non-instantaneous non-terminating
loop.

4.2 Syntactics

This section provides an overview of the syntax of synchronous fUML so the example presented in
sequel can be explored and explained. The abstract syntax supports the description of structure

29

and behavior.

The synchronous fUML covers the following elements supporting structural modeling: Class, Prim-
itiveType, DataType, ValueSpecification, Property, Reception, Signal, SignalEvent and Trigger. Note
Association and Generalization are not part of the abstract syntax so they can be used in the dia-
grams but the operational semantics does not cover them. Moreover, Association ends not owned
by the Associations are Properties of a Classifier.

In order to support broadcasting, the abstract syntax from synchronous fUML supports composite
structures (CompositeStructure4fUML (ROMERO et al., 2014a)) with the following constraints:

• Constraint 1 - One active object cannot access data that is managed by another active
object (shared data between processes are forbidden). The reason for this constraint is
that shared data can easily make systems inconsistent, and pose challenges to compos-
ability (ROMERO et al., 2014a).

• Constraint 2 - The communication between objects cannot be bi-directional. The reason
for this constraint is that the communication is best understood when the channel
is uni-directional. This simplifies the static, and behavioral analyses, and there is no
expressivity loss because a bi-directional channel can be replaced by two uni-directional
channels (ROMERO et al., 2014a).

• Constraint 3 - Active objects (processes) are solely objects that can exchange messages
asynchronously through signals ((OMG), 2012a).

• Constraint 4 - Connectors have two end points because connectors with more than two
end points are rarely used (“A connector has two end points”; pp. 258; (OBER et al.,
2011); pp. 420; (OBER; DRAGOMIR, 2011)), they introduce unnecessary complexity in
the semantics and there is no expressivity loss (a connector with three endpoints or
more can be replaced by two or more connectors with two endpoints (ROMERO et al.,
2014a)).

The abstract syntax for CompositeStructure4fUML is presented in Fig. 4.2, where meta-elements
(classes, attributes, and relationships) from UML are included in the CompositeStructure4fUML
through copy (as fUML ((OMG), 2012a)). The included elements are marked with part of their qual-
ified name (CompositeStructures). The following properties and associations are removed during
the definition:

• From Port

isService - rationale: the goal of the ports is to establish connections between in-
ternal elements and the environment;

redefinedPort - rationale: ports redefinitions add significant complexity and are
rarely used by engineers (OBER et al., 2011);

• From Connector

contract - rationale: the valid interaction patterns are defined by the features of
the internal elements or connected ports;

30

Figure 4.2 - Abstract syntax for CompositeStructure4fUML.
Source: Adapted from (ROMERO et al., 2014a).

redefinedConnector - rationale: connector’s redefinitions add significant
complexity and are rarely used by engineers (OBER et al., 2011).

Still regarding composite structures, the required and provided features of a port is defined by
abstract classes and the attribute isConjugated. For example: a port that has type AbstractClassX
and attribute isConjugated equals to false means that the port receives the signals defined by the
abstract class AbstractClassX (an input port), whereas if the attribute isConjugated is equal to
true, the port emits the signals (an output port).

It is possible to define structure and content of pre-defined runtime instances using: InstanceSpec-
ification and Slot.

Regarding behavioral modeling, synchronous fUML as well as fUML only support user-defined
behaviors described by Activities. Table 4.2 lists the selected subset of bUML activities that is cov-
ered by the abstract syntax from synchronous fUML, and the available stereotypes in synchronous
fUML.

The reasons for the exclusions are: ActivityFinalNode - it has no semantics defined by base se-
mantics (see Assumption 4.1); StructuredActivityNode, ExpansionNode and ExpansionRegion - less
effort required in the operational semantics definition without significant loss of the behavioral

31

Table 4.2 - Activities in bUML defined by Synchronous fUML and available stereotypes.

Node bUML Synchronous fUML Available
stereotypes in

synchronous fUML
Intermediate Activities
ActivityFinalNode X ×
ActivityParameterNode X ×
ControlFlow X X
DecisionNode X X Pausable
FlowFinalNode × X Pausable
ForkNode X X Pausable
InitialNode X X Pausable
MergeNode X X Pausable
ObjectFlow X X
Complete Structured Activities
StructuredActivityNode X ×
Extra Structured Activities
ExpansionNode X ×
ExpansionRegion X ×

modeling capabilities, i.e. activities can be structured hierarchically2. FlowFinalNode is included
because it offers a simple semantics for activity’s ending and it is defined in base semantics (see
Assumption 4.1). Lastly, every ControlNode can be stereotyped with Pausable, which means that
it demarcates the end/begin of macro-steps.

Concerning the actions provided by synchronous fUML, Table 4.3 shows the actions in bUML and
those that are part of synchronous fUML.

The rationale for the exclusions is: CallOperationAction - object-orientation is not in the scope of
the present work (see Section 4.1) and TestIdentityAction - as the creation of objects is centralized
in a main activity, it is not a common use case to test the identity of objects.

Eventually, AcceptEventAction is included in synchronous fUML because it is one of the key ele-
ments for the definition of the model of computation. Regarding the synchronous-reactive MoC,
three stereotypes are available in synchronous fUML for the AcceptEventAction: NonBlockable - it
enables the reaction to absence, i.e., in every macro-step the AcceptEventAction stereotyped with
NonBlockable returns a value independently of the presence or absence of an event, in the case of
presence, the signal that caused the event is returned, in the case of absence a “null” is returned
(in the user’s models, there is no representation for absence of values so the action simply returns
“null”); PrecededBy defines that at first tick of the event’s clock a statically defined signal is re-
turned; and Previous enables memory and constructiveness (in closed-loops) establishing that the

2These exclusions make impossible to relate synchronous fUML models with Alf strictly because
Alf makes use of them frequently in the mapping from its abstract syntax to the fUML abstract
syntax. This is the reason for the use of “possible Alf representations”.

32

Table 4.3 - Actions in bUML defined by synchronous fUML and available stereotypes.

Node bUML Synchronous Available
fUML stereotypes in

synchronous
fUML

Basic Actions
CallBehaviorAction X X
CallOperationAction X ×
InputPin X X
OutputPin X X
SendSignalAction X X
Intermediate Actions
AddStructuralFeatureValueAction X X
ClearStructuralFeatureAction X X
CreateObjectAction X X
ReadSelfAction X X
ReadStructuralFeatureValueAction X X
RemoveStructuralFeatureValueAction X X
TestIdentityAction X ×
ValueSpecificationAction X X
Complete Actions
AcceptEventAction × X NonBlockable,

PrecededBy,
Previous

StartObjectBehaviorAction X X

value returned is the value of the signal that cause the event in the previous macro-step, besides,
it requires an initial value returned in the first macro-step.

Ultimately, a part of the foundational model library from fUML is available in synchronous fUML,
namely the following binary operators for reals (+), (*), (<=), the unary operator for real (-), the
following binary operator for Booleans (and) and the unary operator for Booleans (not).

Using the Distributed Package
The meta-model describing the abstract syntax is available in the project
Hybrid fUML MetaModels by the file fUML_Syntax_Extended.di. The file made available
by the fUML ((OMG), 2012a) was extended according to the previously described items.

This meta-model is the basis for the ultra-deep embedding performed by the
embeddingM2_ASM.mtl. The execution of this transformation generates the file
Hybrid fUML Transformations\transformedFiles\embeddedM2.gs that is the formal ver-
sion of abstract syntax (only using static functions) defined by algebraic data types (see
Section 3.1).

33

The stereotypes are available in the project HybridfUMLProfile by the file
HybridfUML.profile.di. In particular, there is a sub-profile called DiscreteSynchronous
to be used for models defined by synchronous fUML. Fig. 4.3 shows the four stereotypes defined
for synchronous fUML, namely Pausable, NonBlockable, PrecededBy, and Previous.

Figure 4.3 - DiscreteSynchronous profile from HybridfUML profile.

The fUML foundational model library is available in the project fUML Models, and it is exactly
the file made available by fUML ((OMG), 2012a).

4.3 Static Semantics for Composite Structures

The CompositeStructure4fUML’s abstract syntax is formally available through the technique deep
embedding, where relations in the abstract syntax are directly embedded in first-order logic (FIKES;

MCGUINNESS, 2001). This is in accordance with the base semantics of fUML ((OMG), 2012a).
However, the base semantics does not formalize the static semantics rules because it considers that
a given model is compliant with all constraints imposed by UML and fUML ((OMG), 2012a). As
the static semantic rules for CompositeStructure4fUML are not part of fUML neither UML, they
can be defined using CLIF through the embedding technique.

The evaluation of static semantics starts reviewing the concept of uni-directionality, which is ap-
plied to signals perfectly, whereas it is not applicable for operations that have return values. Indeed,
signals can be copied and sent to multiple targets, whereas operation calls cannot since the defini-
tion of how to deal with multiple returns is not straightforward. Therefore, connectors that have
at least one end as a port (isBehavior=false, and owning classifier (isActive=false)) must have
multiplicity equals to one in the both ends. This semantics allows multiplicity greater than one

34

for active objects or ports (isBehavior=true), and, consequentelly, it allows multicast for active
objects. The informal semantics for port (isBehavior=false) is: (a) active ports implement (or the
operational semantics supports) a classifier behavior that concurrently awaits for all signals, and
for each signal received, a copy is dispatched for all the associations that connector matches the
feature from the signal; (b) for passive classes, all operations are implemented with a synchronous
call to the other end that satisfies the feature. Public values are not supported in ports.

These rules are grouped as follows: rules for the constraints, rules for ports, rules for connectors,
and rules about type compatibility between ports or parts connected by connector. In the following,
the rules considered for these groups are briefly presented.

Using the Distributed Package
All these rules are available in the project Synchronous fUML Static Semantics Verification,
in which the file that aggregates the rules is called cbuml_all.clf)(see Fig. 4.4). Additionally, a
file describing one basic rule from UML covering active classes and their inheritance as well as a
basic rule about classifier behavior and active classes are defined in the file cbuml_class.clf.

Finally, the syntax_userModel_embedded.clf is generated by the transforma-
tion embeddingM1_CLIF.mtl (see Subsection 3.3) based on a user model. The
file synchronousfUMLStaticSemanticsVerification only aggregates the files
syntax_userModel_embedded.clf and cbuml_all.clf allowing the consistency check of
all axioms and inference rules.

Note the cbuml_all.clf is consistent and its usage is consistent with two examples. This is
important since it is not enough to prove that a theory is consistent, its usage must allow consistent
models also (BEESON et al., 2011).

Figure 4.4 - Static Semantics Rules for CompositeStructure4fUML.
Source: Adapted from (ROMERO et al., 2014a).

35

Constraints

The constraints considered to define CompositeStructure4fUML are stated explicitly if they are
not covered by fUML or UML.

“Constraint 1” is not covered by fUML since fUML allows the use of operation calls and value
accesses between any active objects. Thus, the following rule is defined.

Rule Constraint 1: It is not allowed to define receptions, and public operations or public values
in the same class.

The following excerpt shows the formalized version of the above constraint:

(cl-text Constraint1
(forall (c)

(if
(buml:Class c)
(not (and (exists (r)

(form:owned-reception-general c r))
(or

(exists(a)
(form:owned-attribute-general-visible c a))

(exists(o)
(form:owned-operation-general-visible c o))

))))))

“Constraint 2” is covered by the definition of required and provided features for ports (see Con-
straints 4.2) and its derivatives are discussed in the sequel.

“Constraint 3” is a result of the usage of fUML as basis ((OMG), 2012a) (see Constraints 4.2).

“Constraint 4” is not covered by fUML since fUML allows the use of multiple connector ends,
therefore, the following rule is defined.

Rule Constraint 4: A connector must have two connector ends.

The following excerpt shows the formalized version of the above constraint:

(cl-text Constraint4
(cl-comment "Constraint4

[4] all connectors must have two ends")
(forall (c)

(if
(cbuml:Connector c)

36

(form:end-size c form:2)
)))

Using the Distributed Package
These rules are available in the project Synchronous fUML Static Semantics Verification by
the file cbuml_constraints.clf.

Ports

The concept of required and provided features as well as the related use of the attribute isConju-
gated are defined above, so it remains to discuss the definition of the attribute isBehavior, which
is defined by UML (((OMG), 2011a); pp. 186) as a mark specifying if the requests arriving at this
port should be sent to classifier owning the port, or to internal elements. Under this semantics,
and considering the previous definitions, the following set of rules is defined.

Rule Port 1: All ports (isBehavior=true) must have an abstract class as type;

• Rule Port 1.1. All ports (isBehavior=true) cannot have assembly connectors to
its internal elements;

• Rule Port 1.2. All ports (isBehavior=true, isConjugated=false), a provided fea-
ture, the owning classifier must specialize the port’s type.

• Rule Port 1.3. All ports (isBehavior=true, isConjugated=true), a required fea-
ture, at least, one assembly connector must reach the Port coming from external
elements;

Rule Port 2: All ports (isBehavior=false) must have a concrete class as type;

• Rule Port 2.1. Port (isBehavior=false) must be a specialization from just one
abstract class;

Rule Port 3: All ports in active classes must contain, at least, one reception;

Rule Port 4: All ports in passive classes must contain, at least, one public operation and no
public values.

The last two rules for ports are consequences of “Constraint 1”.

Using the Distributed Package
These rules are available in the project Synchronous fUML Static Semantics Verification by
the file cbuml_port.clf and its set of supporting rules cbuml_support.clf.

37

Connectors

Considering the elements that can be linked by connectors, it is not possible to connect DataTypes
because such a connection would mean a constraint stating that the value would be always equal
to the other end of the connection. For that reason, the following rule is defined:

Rule Connector 1: Connectors cannot be connected to a property whose type is a kind of
DataType;

Due to “Constraint 1”, the connectors relating passive classes and active classes are not allowed
(and vice-versa), which generates the Rule Connector 2.

Rule Connector 2: Connectors are not allowed to establish relationships between classes with
different value for the attribute isActive;

The semantics defined constraints the multiplicity of connectors in passive classes, which generates
the rule below.

Rule Connector 3: Connectors relating one or more ports (isBehavior=false) from an owning
classifier (isActive=false) must have multiplicity one as lower and upper in the both
connector ends;

The rest of the rules in this group covers how connectors can link two ports.

Rule Connector 4: Assembly connectors between two ports must be defined using complement
values for the attribute isConjugated;

Rule Connector 5: Delegation connectors between two ports must be defined using the same
value for the attribute isConjugated.

Using the Distributed Package
These rules are available in the project Synchronous fUML Static Semantics Verification by
the file cbuml_connector.clf.

Connectors and Type Compatibility

The definition of type compatibility depends on the coverability and predictability of each port.

Definition 4.5 (Coverability and Predictability). Coverability is satisfied by a port p if p can
communicate with the features in the other ends from its connectors. Predictability is satisfied by
a port p, if it is possible to automatically generate a predictable behavior to dispatch all requests
that can come to p evaluating its properties, its connectors, and the other ends.

38

For the following definition, we make use of the sets below:

• P , the set of ports;

• PFp, the set of features for a given port p ∈ P ;

• OEApi, i ∈ N, p ∈ P , set of features for each other connector endi owned by assembly
connectors connected to p, when the other end(oe) is a port (oe ∈ P);

• OEAWIpi, i ∈ N, p ∈ P , set of features for each other connector endi owned by assembly
connectors connected to p, when the other end(oe) is not a port (oe /∈ P);

• UOEAWIp = ∪iOEAWIpi;

• UOEAp = (∪iOEApi) ∪ UOEAWIp;

• OEDpi, i ∈ N, p ∈ P , set of features for each other connector endi owned by delegation
connectors connected to p, when the other end(oe) is a port (oe ∈ P);

• OEDWIpi, i ∈ N, p ∈ P , set of features for each other connector endi owned by dele-
gation connectors connected to p, when the other end(oe) is not a port (oe /∈ P);

• UOEDWIp = ∪iOEDWIpi;

• UOEDp = (∪iOEDpi) ∪ UOEDWIp;

Definition 4.6 (Coverability and Predictability for a given p ∈ P). The following rules express
the intuition that assembly and delegation connectors have a counterpart effect.

• Rule Type 1. Coverability is satisfied if p(isConjugated=false) then (PFp ⊇ UOEAWIp

and PFp ⊆ UOEDp).

• Rule Type 2. Coverability is satisfied if p (isConjugated=true) then (PFp ⊆ UOEAp

and PFp ⊇ UOEDWIp).

• Rule Type 3. Predicability is satisfied if p (isConjugated=false) then (OEDp is pairwise
disjoint or type of p(isActive=true)).

• Rule Type 4. Predicability is satisfied if p (isConjugated=true) then (OEAp is pairwise
disjoint or type of p(isActive=true)).

Using the Distributed Package
These rules are available in the project Synchronous fUML Static Semantics Verification by
the file cbuml_connector_type.clf.

Due to the extensive use of set operations the transformation embeddingM1_CLIF.mtl (see
Subsection 3.3) applies OCLs to formalize relations (pre-processing set operations), e.g.,
form:port-covers-assemblies and form:port-covers-delegations p).

39

4.4 Dynamic Semantics

This section provides an informal overview of the dynamic semantics of synchronous fUML. Tak-
ing into account the language’s requirements, the synchronous-reactive MoC is provided by syn-
chronous fUML, which in turn defines that it relies on the synchronous hypothesis and on the
constructive semantics. Therefore, only constructive models have interpretations.

The basic building block for concurrency in fUML is an active class. A class becomes an active
class when the modeler assigns the value true to the attribute isActive of the class. Moreover, every
concrete active class must have an activity that defines its behavior, called classifier behavior. Note
both definitions are made during the modeling. One can create an object of an active class using
the action CreateObjectAction, however, the creation does not start the classifier behavior. It is
needed to use the action StartObjectBehavior passing as parameter an active object to start the
classifier behavior. Therefore, the existence of an active object does not mean that it is running.
This work uses the term “alive” or “dead” for active objects, meaning that their classifier behavior
are running or not, respectively.

Non-terminating loops must be non-instantaneous, otherwise the system is not constructive. Recall
the pattern reactive class 4.4, reactive classes have a non-terminating loop that must be non-
instantaneous meaning that once an active object is started, it runs forever. A non-terminating
loop is not mandatory in every classifier behavior, in fact, a classifier behavior can terminate. If
there is no active object alive, nothing is computed since the basic premise of UML states that
all behavior in a modeled system is ultimately caused by actions executed by the so-called active
objects.

Indeed, synchronous fUML is a synchronous language since it has the essential and sufficient
features (BENVENISTE et al., 2000), namely:

a) Programs progress via an infinite sequence of macro-steps - the operational semantics
of synchronous fUML defines the semantics for a macro-step;

b) In a macro-step, decisions can be taken on the basis of the absence of signals - as
presented in the Subsection 4.2, the action AcceptEventAction stereotyped with Non-
blockable enables the reaction to absence, absence is indicated by the returned value
“null”;

c) Communication is performed via instantaneous broadcast - the signals sent to a port
(an active object) that it is not alive are instantaneously broadcasted to all objects
connected (if the active object is alive, it defines a different behavior, in this case,
the broadcast is not done by the semantics). Therefore, when it is defined, parallel
composition is the conjunction of associated macro-steps;

Likewise, a synchronous language, parallel composition of active objects is well-behaved and de-
terministic for constructive systems. As Esterel, synchronous fUML deals with computation
and communication as different phenomena. Computation is performed internally to active
objects and it allows more than one value for a given variable at a given macro-step. The sequence
of values for the variable is determined by the data flow and control flow dependencies. Communi-

40

cation is only allowed using signals exchanged between active objects and each one of these signals
assumes only one value at a given macro-step.

Synchronous fUML has a main activity that is defined by an activity called Main that must be
defined in the fUML model to be interpreted. This activity should create the active objects for a
given model and start them.

Semantic Domain

In order to satisfy the requirements about reuse of the semantic domain from fUML and the reuse
of the semantic domain defined by MARTE in the time model ((OMG), 2011b), the meta-model
called MARTE4fUML is defined. Again, one major concern from fUML is the compactness ((OMG),
2012a) so this work keeps the semantic domain as small as possible. Therefore, MARTE4fUML
extracts only the mandatory classes to support clocks and instants from the time model defined by
MARTE (the extraction does not support relations between instants or time bases in the semantic
domain ((OMG), 2011b)). Moreover, the Locus from the standardized semantic domain of fUML is
extended to integrate this additional semantic domain focused on clocks. Recall all objects created
during an execution are created at the locus of that execution ((OMG), 2012a).

The subset of time model from MARTE integrated in fUML, called MARTE4fUML, is shown in
Fig. 4.5. MARTE4fUML is defined in such a way that it supports chronometric clocks, those that
have relationship with the physical time. Indeed, one of the ClockTypes defined in MARTE4fUML
is the PhysicalClock. Furthermore, the clocks are managed by the Locus, in particular, the Lo-
cus has one property for a logical clock called reactionClock (nature=discrete, isLogical=true,
and unitType=LogicalTimeUnit) and another one for a logical clock called logicalClock (na-
ture=discrete, isLogical=true, and unitType=LogicalTimeUnit), moreover, it has a set with all
logical clocks in the locus logicalClocks. Finally, it has a property for the only one chronometric
clock allowed in the semantic domain, the physicalClock (nature=discrete, isLogical=false, and
unitType=TimeUnitKind).

There is one component that is not used in the synchronous fUML but it is defined in the semantic
domain. It is the SytemOfEquations, which is only used by hybrid fUML.

Using the Distributed Package
The meta-model describing the semantic domain is available in the project
Hybrid fUML MetaModels by the file fUML_Semantics_Extended.di. The file made avail-
able by the fUML ((OMG), 2012a) was extended according to the previously described items.

This meta-model is the basis for the ultra-deep embedding performed by the
embeddingM2_ASM.mtl. The execution of this transformation generates the file
Hybrid fUML Transformations\transformedFiles\embeddedM2.gs that is the formal ver-
sion of semantic domain (based on dynamic functions) defined by algebraic data types (see
Section 3.1).

41

Figure 4.5 - Abstract syntax for MARTE4fUML.

Semantic Mapping using an ASM

Once there are formal versions based on algebraic data types for the embedded abstract syntax
and for the embedded semantic domain, the semantic mapping is defined by an explicit function
from the abstract syntax into the semantic domain. However, in an operational semantics, the
concept of state of the semantic domain is defined and then a series of transitions regarding the
abstract syntax is described in terms of changes to that state. In ASMs, the concept of mutable
state is described by dynamic functions, whereas the series of transitions are defined by the firing
of transition rules.

Taking into account the embedded abstract syntax (static functions) and the embedded semantic
domain (dynamic functions, and transition rules for the extraction from the reserve), this subsection
presents the ASM mainSyn that form the operational semantics of synchronous fUML3.

Firstly, the naming decoration for functions (explained in Section 3) is extended. The prefix
function_fUML_ is used to define functions (static or dynamic) needed by the formalization of
synchronous fUML, which are not ultra-deeply embedded, e.g., function_fUML_signals. Simi-
larly, transition rules which do not have their signature ultra-deeply embedded use the naming
decoration rule_fUML_, e.g., rule_fUML_mainSyn.

Fig.4.6 shows the structure of themainSyn ASM, which is composed of: syntactics (abstract syntax)

3 While static functions never change during a run, the dynamic ones change as a consequence
of updates performed by transition rules. One important concept is the expansion of the domains,
which means new elements are created during a run from an ASM. The new elements come from
a set reserve, and its role is to provide new elements whenever needed.

42

and dynamic semantics (semantic domain and semantic mapping) (MORRIS, 1938).

Figure 4.6 - Components of mainSyn ASM.

Fig.4.7 shows the structure of the component abstract syntax of mainSyn ASM. The Core Syn-
tax has as its basic component the 1syntax_abstractSyntax_embedded.gs that is generated by
the ultra-deep embedding (embeddingM2_ASM.mtl) of the meta-model fUML_Syntax_Extended.
Subsequently, the primitive types are defined in the file 1syntax_primitiveTypes.gs us-
ing the algebraic data types defined in the 1syntax_abstractSyntax_embedded.gs. After-
wards, the 1syntax_library_embedded.gs defines the syntax of the part of the fUML
foundational library available in synchronous fUML. Finally, the stereotypes defined in the
profile HybridfUML.profile are defined by algebraic data structures in the component
2syntax_abstractSyntax_profile.gss.

Still regarding syntax, the component 3syntax_userModel_embedded.gs is generated by ultra-
deep embedding (embeddingM1_ASM.mtl) of a user model. It uses the algebraic data structures
defined in the component Core Syntax to define static functions that describe the specific formal
version of user model’s syntax. Finally, two components are defined in order to provide static func-
tions that helps to navigate (derived) in the previously defined algebraic data structures, namely
4syntax_abstractSyntax_derivedFunctions.gs and 4syntax_baseSemanticsAxioms.gs.

43

Figure 4.7 - Components of AbstractSyntax of mainSyn ASM.

Based on the AbstractSyntax component, the SemanticDomain component is defined. Fig.4.8 shows
the structure of this component of mainSyn ASM.

The Core Semantic Domain has as its basic component the 5semanticDomain_embedded.gs
that is generated by the ultra-deep embedding (embeddingM2_ASM.mtl) of the meta-
model fUML_Semantics_Extended. Subsequently, the dynamic functions and de-
rived static functions are defined in order to support the token flow semantics
by the component 6semanticDomain_tokenFlow.gs. Afterwards, the component
6semanticDomain_communication.gs defines dynamic functions that support the synchronous
communication of signals, e.g., the dynamic function function_fUML_signals. Eventually, the
dynamic functions that support the concept of synchronous agents in ASM are defined by the
component 6semanticDomain_agents.gs.

The last components of the SemanticDomain is the Derived Functions. It is com-
posed of two components that define static and static derived functions, namely
6semanticDomain_structuralFeature.gsand 6semanticDomain_time.gs. The first-mentioned
helps to manipulate structural features, and the last one has a set of helper functions to read
clocks and a naive parser of ClockConstraints (not used in synchronous fUML).

44

Figure 4.8 - Components of Semantic Domain of mainSyn ASM.

The last component of the mainSyn ASM is the Semantic Mapping that is shown in Fig.4.9.
The main purpose of this component is to define transition rules that define the opera-
tional semantics of mainSyn ASM. In the case of, operations embedded as comments in
the 5semanticDomain_embedded.gs the same name is used in the semantic mapping, e.g.,
operatio_ExecutionFactory_createExecution.

The 7mapping_structuralFeature.gs defines transition rules to add structural features
into objects. The 7mapping_environment.gs defines the operations for the locus, e.g.,
operatio_Locus_add and operatio_Locus_instantiate. The 7mapping_controlNodes.gs
defines the operations for each control node part of synchronous fUML, e.g.,
operatio_DecisionNodeActivation_fire. The 7mapping_actions.gs defines the operations for
each action part of synchronous fUML, e.g., operatio_SendSignalActionActivation_doAction.
The 7mapping_library.gs uses the Gofer capabilities in order to define the part of fUML
foundational library, e.g., operatio_Neg defined using the operator - from Gofer. The
7mapping_execution.gs defines and control the synchronous agents that are responsible to
execute an activity, e.g., operatio_Value_Execution_execute.

Finally, the 7mapping_main_Syn.gs defines the initial rule rule_fUML_initSyn and the main rule
rule_fUML_mainSyn. Each firing of the main rule corresponds to the evaluation of one macro-step.

45

Figure 4.9 - Components of SemanticMapping of mainSyn ASM.

Using the Distributed Package
Hybrid fUML ASMs is the project that contains the ASM for synchronous fUML. embeddedModel
is the directory that contains the embedded user model to be used by the ASM, which is called
3syntax_userModel_embedded.gs. Moreover, synchronousfUML is the directory that has the syn-
chronous fUML ASM, which can be loaded using the Gofer project synfUML.p. Fig. 4.10 shows
the mainSyn ASM presented in the distributed package.

46

Figure 4.10 - The mainSyn ASM in the Distributed Package.

4.5 Concluding Remarks

In this chapter, it is presented why and how the standardized abstract syntax and semantic do-
main are extended. The static semantics for composite structures, a fundamental building block
for broadcasting, is defined and explored. Afterwards, the mainSyn ASM that defines the oper-
ational semantics is presented and discussed, including the rule rule_fUML_mainSyn that defines
the meaning of one macro-step in synchronous fUML.

The conclusion is that synchronous fUML, a research language, is a synchronous language so it
exhibits the synchronous-reactive MoC, furthermore, it is formally defined by one ASM reusing
the abstract syntax and the semantic domain from fUML regarding bUML. Although embedded
user-defined models can be directly simulated by the operational semantics, this is not the goal of
the formal semantics. The goal is to evaluate the feasibility of such novel deterministic semantics
for fUML and its properties. Moreover, a well-formed user-defined model is one that has behaviors
that only depend on the structural and behavioral elements defined in the embedded abstract
syntax (it can use more than the embedded abstract syntax but this should be only used for
visualization). Lastly, a well-behaved user-defined model must be in accordance with the following

47

definition.

Definition 4.7 (Well-behaved user-defined model for synchronous fUML). A well-behaved user-
defined model regarding the operational semantics of synchronous fUML must fulfill the following
conditions:

• A macro-step computation consists of only finitely many actions, which rules out in-
stantaneous non-terminating loops;

This would prevent the evaluation of other rules with exception of those called by
operatio_Value_Execution_execute so a macro-step would never terminate;

• It does not have behaviors which conflict about writings on existent properties or cre-
ation of new properties of objects;

This would cause an error due to the detection of inconsistent update sets (ASM);

• It is constructive;

Non-constructive models are not covered by the operational semantics of syn-
chronous fUML, which is based on the constructive semantics.

Remark 4.1 (Restrictions from hardware/software viewpoint). A well-behaved user-defined model
for synchronous fUML does not satisfy the usual restrictions for a real-time system implementa-
tion defined regarding the hardware/software viewpoint. For the hardware/software viewpoint, the
usual restrictions are: (1) avoidance of dynamic features, represented in fUML by the actions Cre-
ateObjectAction and DestroyObjectAction, (2) avoidance of recursion, represented in synchronous
fUML by the possibility of the usage of the action CallBehaviorAction in a recursively manner,
(3) avoidance of instantaneous loops, in synchronous fUML, they are allowed provided that they
terminate and (4) avoidance of unbounded data types, e.g., array must have an upper bound.
Consequently, the memory boundedness and the limited usage of computation resources are not
necessarily achieved by a model describing the system view. Note those restrictions are fundamental
for the hardware/software viewpoint, while they may be too restrictive for the system viewpoint,
furthermore, they can be taken into account in the hardware/software views.

48

5 SYNCHRONOUS fUML’s CONFORMANCE STATEMENT

Although the ASM mainSyn (the operational semantics of synchronous fUML) does not define an
execution tool, its usage together with the transformation Embedding - M1 - ASM can be eval-
uated concerning conformance with the fUML specification. The Section “2 Conformance” from
fUML ((OMG), 2012a) defines the criteria for a claim regarding conformance. The following assess-
ment applies these criteria to synchronous fUML and it can be compared with the conformance
statement of the fUML reference implementation (MODELDRIVEN.ORG, 2014a).

X Conformance Level – As synchronous fUML is based on bUML that is orthogonally
defined regarding the fUML’s levels of conformance and it does not support object-
orientation (see Subsection 4.1), it is impossible to claim the level L1 since syntactical
elements from L1 are not part of the embedded abstract syntax of synchronous fUML,
e.g., Operation. However, since synchronous fUML is based on bUML that is expressive
enough to define the execution model of fUML (pp. 351; ((OMG), 2012a)), it can be
used to model systems. In this case, the static partial acceptance as defined by OMG
(elements not part of the embedded abstract syntax of synchronous fUML are ruled out
from the embedded user-defined model) is applied by synchronous fUML.

X Model Library Conformance – fUML does not require to implement the whole stan-
dardized model library so synchronous fUML is in conformance with fUML since the
operators available are in conformance with the behavior specified in fUML. The op-
erators available are: binary operators for reals (+), (*), (<=), the unary operator for
real (-), binary operator for booleans (and) and the unary operator for booleans (not)
(see Section 4.2).

X Abstract Syntax Mapping – The Embedding - M1 - ASM receives as input an XMI
(compatible with Acceleo (FOUNDATION, 2014a)), then the model is filtered taking into
account the embedded abstract syntax of synchronous fUML, and, hence, it is trans-
formed into an embedded user-defined model defined by an ASM module. Therefore,
this transformation, defined by the ultra deep embedding architecture (see Section 3),
performs the mapping from a concrete syntax available in XMI into the embedded ab-
stract syntax defined by algebraic data types, which enables execution. Note the goal of
this work is not to define an execution tool, however, the operational semantics defines
an interpreter naturally1.

X Semantic Value Mapping – Synchronous fUML applies the ultra deep embedding ap-
proach so the Values defined in the semantic domain of fUML are available as is in the
embedded semantic domain (if selected). Therefore, the Values in the embedded seman-
tic domain of synchronous fUML has a one-to-one relation to the respective Values in
the standardized semantic domain of fUML.

X Execution Environment Mapping – The abstraction of the execution environment Locus
from fUML is embedded in the semantic domain of synchronous fUML (see Section 4.4).
Therefore, it is possible to demonstrate the following aspects:

1This does not mean that the interpreter can be used in large scale as an execution tool, on the
contrary, its purpose is to explore and to research the semantics.

49

XDefinition of whether execution takes place at a single locus or may be distributed
across multiple loci – The initial rule of synchronous fUML rule_fUML_init discussed
in Section 4.4 instantiates a single locus FUML_Semantics_Loci_LociL1_Locus for the
ASM mainSyn. Therefore, all executions in synchronous fUML take place at a single
Locus.

XPersistence of extensional values – The rules discussed in the Section 4.4, namely
operatio_Locus_add and operatio_Locus_instantiate, defines that all extensional
values are stored at the Locus of the execution.

XSpecification of which objects are pre-instantiated at a locus – The initial rule of
synchronous fUML rule_fUML_init initializes opaque behaviors in order to support
the available operators of the model library. Note the interaction with the environment
is not based on the classical input/output channel or parameters, the sole interaction
with the environment available in synchronous fUML is based on signals stored by the
dynamic function function_fUML_signals discussed in Section 4.4.

× Semantic Conformance – It is allowed to avoid the object-orientation for the semantics
of fUML (pp. 6; ((OMG), 2012a)) so it is possible to demonstrate the aspects required for
the semantic conformance. Nevertheless, the use of terms synchronous/asynchronous in
fUML should not be confused with the use of these terms regarding MoCs.

XEvaluation – ValueSpecifications are evaluated using an embedded rule for the
standardized Executor. The rule operatio_Executor_evaluate receives an Executor
and a ValueSpecification and then it returns a Value. The signature and behavior of the
rule exactly match those defined in the standardized semantic mapping (see Section 4.4).

XSynchronous Execution – Synchronous fUML does not support parameters, as
stated before, the interaction with the environment is solely based on signals. More-
over, there is a naming convention that the activity Main is the sole activity to be
prepared for execution by the initial rule. Therefore, it is possible to run an arbitrary
activity (without input parameters) and waits its processing (without output parame-
ters). In order to enable that execution, it has to be defined the activity Main with a
CallBehaviorAction to the desired activity. A run of these activities is defined by the
operational semantics as the execution of a macro-step.

XAsynchronous Execution – Synchronous fUML supports the initialization of the
classifier behavior of arbitrary active classes, as exemplified in the examples presented
in this work. Concerning the activity Main, commonly, it creates active objects using
the action CreateObjectAction, initializes them and, finally, starts them using the action
StartObjectBehavior. A reaction of these classifier behaviors is defined by the operational
semantics as the execution of a macro-step at which the active classes can exchange
uniquely defined signals instantaneously.

× Base semantics – The specification states that the conformance of an interpreter
would be demonstrated by a formal proof that it respects all the definitions of the
base semantics (pp. 7;((OMG), 2012a)). However, at this point, it is known that the
base semantics is not consistent so, actually, it cannot support such semantic confor-
mance assessment (see Appendix B). Therefore, technically, the specification it-
self and, consequently, the reference implementation (MODELDRIVEN.ORG,
2014b) are not in conformance with this criteria actually. Finally, the ASM

50

mainSyn based on a formal method with a well-known integration with logic, pursued
this formal proof but it was not achieved due to such inconsistence.

• Synchronous fUML covers, in the operational semantics, only actions and object
nodes with at most one incoming and at most one outgoing edge, additionally, all actions
produce and/or consume only one object token per action’s execution in synchronous
fUML so the ObjectNodes always have upper multiplicity equal to one (see Section 4.4).

X Semantic Constraints – For details see Chapter 3.

XTime – The abstract notion of time of synchronous languages is introduced in the
semantics. The operational semantics is defined in such a way to describe a macro-step
(one tick of the abstract clock). In order to handle this newly introduced notion of time,
the meta-model MARTE4fUML is added into the semantic domain.

XConcurrency – The synchronous concurrency is introduced. This introduction
changes the semantics of ControlNodes stereotypes with Pausable and AcceptEventAc-
tions.

XInter-object communication – The inter-object communication is based on the
exchange of synchronous signals uniquely defined at a macro-step. In order to enable
broadcasting, the meta-model CompositeStructure4fUML is introduced in the abstract
syntax. Finally, all the communications are reliable and deterministic.

X Semantic Variation – For details see Chapter 3.

XEvent dispatch scheduling – The notion of a list augmented with some sort
of priority for the storage of incoming signals of an active object is replaced by a
set that stores the uniquely defined signals at a macro-step (the dynamic function
function_fUML_signals). The values of the signals are determined using the construc-
tive semantics. Finally, the reception of a signal (AcceptEventAction) does not remove
it from that set.

× Polymorphic operation dispatching – Synchronous fUML does not support object-
orientation so the relationship generalization has no semantical meaning and the action
CallOperationAction is not part of the abstract syntax of synchronous fUML.

51

6 SYNCHONOUS fUML - PRAGMATICS

This chapter explores the pragmatics of the synchronous fUML presenting two available examples.

6.1 VendingMachine

A vending machine has a coin slot and a store of gums. Each gum costs 15 cents. The machine
handles signals representing the recognition of nickels (5 cents) and dimes (10 cents) in the coin slot.
In the simplest case, these signals do not occur at the same time, however, due to the synchronous-
reactive MoC provided by synchronous fUML these signals can occur at the same time. When the
accumulated value sums 15 cents, the machine delivers a gum. Objects different from nickel and
dime, inserted in the coin slot, are rejected, likewise they do not generate signals for the system.
Moreover, the system does not give change, a change (if there exists) is accumulated for a next
processing (KATZ; BORRIELLO, 2005; GROUP, 2014).

Firstly, the structure of the system covering class diagram and composite structure diagram is
presented, and then, the behavior of the system defined by activity diagrams is shown.

Structure

Regarding the structure, Fig. 6.1 shows the class diagram for the system.

Figure 6.1 - The structure of VendingMachine modeled using synchronous fUML.

The main points are:

53

a) The system is modeled with three main active classes: VendingMachineSystem, Accu-
mulator and GumDispatcher ;

b) The Accumulator has the local variable credit that stores the current value of the credit,
furthermore, it assumes more than one value at one macro-step as the code using Esterel;

c) The abstract active classes are used by the static semantics to check validity of the
connections defined in the composite structure shown in Fig. 6.2. The abstract classes
are: GumReceiver, MoneyReceiver and CreditReceiver ;

d) The other active classes, namely PortGumReceiver, PortMoneyReceiver and GumDis-
patcher, defines the ports that perform the broadcast of signals. Their classifier behaviors
do not define behavior;

e) The signals of the system are explicitly modeled, which are: Dime, Nickel, Gum and
Credit. The latter signal has the attribute credit that defines the current value of the
credit.

f) The initial value for the signal Credit is defined by the InstanceSpecification InitCredit.

Fig. 6.2 shows the composite structure of the system. The white ports have the attribute isCon-
jugated as false and then they are input ports, while the gray ports have the attribute as false
and, consequently, they are output ports. The system has the input port moneyReceiver, which
receives the events from the environment. The signals received at a given macro-step are broad-
casted for the other endings of its connections, in this case, only the input port moneyReceiver
from the Accumulator receives its signals. The Accumulator emits signals to its output port cred-
itEmitter, which broadcasts them to the GumDispatcher. The GumDispatcher emits signals to its
output port gumEmitter, which broadcasts them to the Accumulator and to the system output
port gumReceiver. From the loop defined in the composite structure between the Accumulator and
Dispatcher, it is clear that one of them must use the stereotype Previous in their receptions in
order to guarantee constructiveness in the system.

Figure 6.2 - The composite structure of VendingMachine modeled using synchronous
fUML.

54

Behavior

The classifier behavior from the Accumulator is shown in Fig. 6.3. The behavior starts assigning
the value 0 to the local variable credit using the action AddStructuralFeatureValueAction_credit.
As it is an instance of the pattern reactive class (see pattern 4.4), it enters into a non-instantaneous
non-terminating loop. The loop begins reading (nonblocking read defined by the stereotype non-
Blockable) the signals Nickel, Dime and Gum, hence, the presence is tested. If the signal is absent
(if the returned value is “null”) the value to be used is 0, otherwise each signal defines the adequate
value being 5, 10 and -15 respectively. Afterwards, the values are summed with the local variable
credit and the computed value is assigned to the same variable using the action AddStructuralFea-
tureValueAction_credit (at the bottom of the diagram). Finally, the Credit signal is emitted to the
port creditEmitter. Note the local variable credit assumes two values at each macro-step, and it
offers local memory.

55

Figure 6.3 - The classifier behavior for the Accumulator.

56

The classifier behavior from the GumDispatcher is shown in Fig. 6.3. The behavior starts entering
in a non-instantaneous non-terminating loop because Dispatcher is an instance of the pattern
reactive class (see pattern 4.4). The loop begins with the AcceptEventAction_credit stereotyped
with previous. The application of this stereotype obligates to inform an initial value, in this case,
the value is InitialValueCredit shown in Fig. 6.1. The value for the signal in the previous macro-
step is returned, or the initial value is used in the first macro-step. Afterwards, the retrieved
value is compared by the action CallBehaviorActionLeT: <= against the constant 15 using the
FunctionBehavior (<=) part of the foundational model library from fUML. Finally, if the previous
comparison returned true, the signal Gum is emitted to the port gumEmitter.

Figure 6.4 - The classifier behavior for the GumDispatcher.

Table 6.1 shows the synchronous streams for three macro-steps for the given inputs. Its computation
is based on the constructive semantics, and, it can be roughly explained as follows. In the first
macro-step, the input signals are read, which enables the test of the presence in the Accumulator
until the test of Gum because Gum can be emitted by the Dispatcher. Concurrently, the Dispatcher
is evaluated, it reads a previous value of credit that is initially defined as 0, hence, it tests its value,
and then it reaches the control node stereotype with Pausable. Now, there is no concurrent process

57

that can generate the Gum and then it is declared absent, afterwards, the new Accumulator.credit
is computed and, finally, it emits the signal Credit. The following two macro-steps exhibits the same
deterministic behavior but with different results of computation, and, consequently, the value of
emitted signals.

Table 6.1 - Synchronous streams for VendingMachine using synchronous fUML.
Source: synchronous fUML’s simulator.

macro-step 1 macro-step 2 macro-step 3
Input Signals
Nickel true � �
Dime true � �
Output Signals
Gum � true �
Local Signals and Variables
Accumulator.credit 15 0 0
Credit true true true
Credit.credit 15 0 0
previous Credit ⊥ true true
previous Credit.credit ⊥ 15 0
previous Credit.credit (initValue=0) 0 15 0
Clocks
clock(Nickel) true false false
currentT ime(Nickel) 1 1 1
clock(Dime) true false false
currentT ime(Dime) 1 1 1
clock(Gum) false true false
currentT ime(Gum) 0 1 1
clock(Credit) true true false
currentT ime(Credit) 1 2 3

Using the Distributed Package
The VendingMachine is available in the project Synchronous Discrete Models, specifically, in
the folder VendingMachine\synchronousfUML that contains the model VendingMachine. More-
over, it contains the traces for a run of this model as well as equivalent models described using
Esterel (BERRY, 2000), Lustre (HALBWACHS et al., 1992) and Quartz (GROUP, 2014).

The evaluation of this model regarding synchronous fUML can be performed as follows.

a) Call the configured run EmbeddingM1_ASM - VendingMachine. The transformation
generates the file

58

Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

b) The generated file must be copied into the directory
Hybrid fUML ASMs\embeddedModel in order to be evaluated.

c) Run the external tool Synchronous fUML as shown in Fig. 2.8 for discrete synchronous
models;

d) Run the following commands in the console:

Load synchronous fUML

:p synfUML.p

Call initial rule from synchronous fUML

fire1 rule_fUML_initSyn

traceFH

Call main rule from synchronous fUML for evaluation of one macro-step (this
command can be executed multiple times meaning the evaluation of multiple macro-
steps; an alternative command allows the execution of the rule multiple times, e.g., 10
times - fire 10 (trace traceFG rule_fUML_mainSyn))

fire1 (trace traceFG rule_fUML_mainSyn)

Exit the synchronous fUML

fire1 (trace traceFG skip)

:quit

e) Compare the generated traces in the directory
Hybrid fUML ASMs\synchronousfUML\traces shown in Fig. 6.5 with Table 6.1;

59

Figure 6.5 - The trace for the evaluation of 2 macro-steps from VendingMachine.

Finally, the static semantics for composite structures from VendingMachine can be evaluated using
the procedure explained in Subsection 2.4.

6.2 SatelliteTrackingAndControl using UPDM

In this simplified example, an operational view is defined using the compliance level 0 from Unified
Profile For DoDAF And MODAF (UPDM) ((OMG), 2013b), i.e. based on UML.

UPDM and synchronous fUML share the UML as basis so every meta-class used by UPDM that
is part of synchronous fUML has a straightforward semantics. For the meta-classes used in UPDM
that are not part of synchronous fUML, we chose to extend UPDM in order to make them inter-
pretable using synchronous fUML. Two extensions are defined: (1) ExchangeElement is specialized
by a new stereotype called SignalExchangeElement, therefore, exchanges in the operational view
can be expressed by Classes or Signals; and, (2) OperationalStateDescription is a specialization of
Activity from UML, therefore, one can define the operational state description using state machines

60

or activities.

An Operational View (OV) describes the activities, operational elements and information exchanges
required to conduct operations. Moreover, as preconized by the UPDM, the emphasis is on the
modeling and analysis of Participants (Node), their operational activities OperationalActivity and
their communication. The computation is abstract, denoted by the operational activity actions
OperationalActivityActions, which indeed are CallBehaviorActions to activities not necessarily de-
tailed.

Next subsections explore the products produced for the description of the operational view. The
products OV-4 organization relationship chart, OV-6a operational rule model and OV-7 operational
information model were not defined.

OV-1b High-level Operational Concept Description

In the National Institute for Space Research (INPE), the satellite tracking and control center
(CRC, SatelliteTrackingAndControl) is the department responsible for the activities of tracking and
control of satellites. The CRC consists of the satellite control center (SCC, SatelliteControlCenter)
in São José dos Campos and the tracking ground stations (TrackingGroundStation) of Cuiabá
(CBA) and Alcantara (CLA). These three sites are interconnected by a private network, which is
suppressed in the sequel models to keep them simple.

The communication of the CRC with the satellites is established by the tracking ground stations
during the visibility window of the antennas. During these windows, the signals transmitted by
a satellite are sent by its antenna providing a downlink communication. The signals contain the
information of the satellite telemetry revealing its current state of operation. After the establish-
ment of a downlink, the tracking ground station provides an uplink, which is used for sending
telecommands. All control actions are planned, coordinated and executed from the CRC. During
the windows of satellites’ visibility, the CRC connects to a tracking ground station through the
network, and then it is able to receive and send data from the visible satellite.

OV-2 Operational Flow Description

OV-2 illustrates the nodes in the SatelliteTrackingAndControl as well as the need to exchange
information between the them. Fig. 6.6 shows the structural view (UML class diagram) of the
nodes. The main points are:

• SatelliteTrackingAndControl defines the boundaries of the operational view with three
ports to an outer system, rawdataReceiver, rawdataEmitter and telecommandReceiver.
The ports rawdataReceiver and rawdataEmitter communicate with the space segment
(beyond of the scope of this operational view), and the port telecommandEmitterSystem
broadcast to an outer system the telecommands defined to be sent to the space segment.
It has two parts: TrackingGroundStation and satelliteControlCenter. The multiplicity
of the TrackingGroundStation is not defined as two (CBA and CLA) to maintain the
operational view independent of the system view. Finally, SatelliteTrackingAndControl
is modeled using an active class, denoted in the diagram by a class box with an additional

61

vertical bar on either side.

• TrackingGroundStation is an active class with four ports. The ports are clearly shown
in Fig. 6.7.

• SatelliteControlCenter is the last active class with two ports.

Figure 6.6 - OV-2 - Operational flow description - UML class diagram.

Fig. 6.7 shows the communication and collaboration between the nodes defining the need to ex-
change information. It is a UML composite structure diagram, in which the white color in ports
means that they are not conjugated so they are input ports, and the gray color in ports means
that they are conjugates, therefore, they are output ports.

The communication and collaboration in the system can be explained as follows. Rawdata com-
ing from an outer system is received by the part trackingGroundStation, the data is transformed
in Telemetry and sent to the part SatelliteControlCenter. The part satelliteControlCenter sends
Telecommands to the trackingGroundStation as well as to an outer system. Finally, the part track-
ingGroundStaticion may sent Rawdata to an outer system.

Figure 6.7 - OV-2 - Operational flow description - UML composite structure diagram.

62

Note, generally, it is necessary to type a connector with an association. However, system engineers
do not use associations to support connectors because associations are viewed as a software-level
concept with weak semantics and not suitable for system-level modeling (pp.259 (OBER et al., 2011)).
Therefore, the structure of the operational view shown in Fig. 6.6 does not have associations to
support the connectors.

OV-3 Operational Resource Flow Matrix

Fig. 6.8 is the result of a query in the model focused on the UML composite structure shown in
Fig. 6.7. It shows in a tabular form the operationalExchanges with their transported information
conveyed, their source, their target and the connector(stereotyped with Needline) that realize them.
These tables are a key element in the definition of interface requirement documents (SHAMES et

al., 2012).

Figure 6.8 - OV-3 - Operational resource flow matrix.

OV-5 Operational Activity Model

The operational activity model describes the operations that are conducted in the course of achiev-
ing a mission. It describes the activities hierarchy and the nodes that performs each activity.
Fig. 6.9 shows the identified hierarchical decomposition of the operational activities. It uses a class
diagram to show how the behavior is structured, nevertheless, it is common to use activity dia-
grams with swimlanes for the product OV-5b. However, swimlanes are notational features in UML
(pp.352 ((OMG), 2011a)) so they have no semantics in synchronous fUML, and then, they could be
used only for visualization.

One important point is that each node has an owned activity to express its classifier behavior,
therefore, the relationship performs is implicit in this case.

OV-6b Operational State Transition Description

The operational state transition description is a graphical method of describing how an operational
node responds to various events by changing its state. The diagram represents the sets of events
to which the node will respond (by taking an action to move to a new state) as a function of its
current state ((OMG), 2013b).

As defined by UPDM, the OperationalStateDescription should be defined by a
state machine visualized by a state machine diagram, however, the package UPDM
L0::Core::OperationalElements::Extended introduces the possibility to define its behavior

63

Figure 6.9 - OV-5a Operational activity model - UML class diagram.

using activities, and then, interpret according to the architectural semantics. Indeed, environ-
ments of synchronous languages offer tools to visualize the resulting automata from a given
action-oriented description avoiding the explicit enumeration of states. Therefore, Fig. 6.10
and Fig. 6.11 show the state transition description for the operational nodes using activities.
Fig. 6.10 can be roughly explained as follows. In every reaction, the antenna is directed (described
by the OperationalActivityAction DirrectAntenna), then Rawdata is received, concurrently,
telecommands are received. Afterwards, RawData is (ideally) processed by an operationalActivity
and Telecommand is (ideally) processed by another operationalActivity concurrently. Finally, the
results are sent to the respective target, and the reaction ends.

Fig. 6.11 can be roughly explained as follows. In every reaction, the Telemetry is received, then it
is stored and used to prepare the telecommands. Finally, the telecommands are sent to the port
telecommandEmitter and the reaction ends.

Note the sterotypes Pausable, Nonblockable, Previous are used to define a reaction that is con-
structive, therefore, it is possible to execute the behaviors with guarantees of determinism.

OV-6c Operational Event-Trace Description

OV-6c is used to define time-based behavioral scenarios between the operational elements. Using the
architectural semantics, the previously defined diagrams can automatically generate this product
running the model. It follows an excerpt from the synchronous fUML simulator shown in Table. 4.1.

Using the Distributed Package

64

Figure 6.10 - OV-6b Operational state transition description - trackingGroundStationClas-
sifierBehavior.

Table 6.2 - Synchronous streams for SatelliteTrackingAndControl using synchronous
fUML.
Source: synchronous fUML’s simulator.

reactionClk status signal source target
1 PRESENT Telecommand SatelliteControlCenter PortTelecommandReceiver
1 PRESENT Rawdata TrackingGroundStation PortRawDataReceiver
1 PRESENT Telemetry TrackingGroundStation PortTelemetryReceiver
.

The SatelliteTrackingAndControl is available in the project Synchronous Discrete Models,
specifically, in the folder SatelliteTrackingAndControl_UPDM_OV\synchronousfUML that con-
tains the model SatelliteTrackingAndControl_UPDM_OV. Moreover, it contains the traces for a
run of this model.

The evaluation of this model regarding synchronous fUML can be performed as follows.

a) Call the configured run EmbeddingM1_ASM - SatelliteTrackingAndControl_UPDM_OV.
The transformation generates the file
Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

65

Figure 6.11 - OV-6b Operational state transition description - satelliteControlCenterClas-
sifierBehavior.

b) The generated file must be copied into the directory
Hybrid fUML ASMs\embeddedModel in order to be evaluated.

c) Run the external tool Synchronous fUML as shown in Fig. 2.8 for discrete synchronous
models;

d) Run the following commands in the console:

Load synchronous fUML

:p synfUML.p

Call initial rule from synchronous fUML

fire1 rule_fUML_initSyn

traceFH

Call main rule from synchronous fUML for evaluation of one macro-step (this
command can be executed multiple times meaning the evaluation of multiple macro-
steps; an alternative command allows the execution of the rule multiple times, e.g., 10
times - fire 10 (trace traceFG rule_fUML_mainSyn))

fire1 (trace traceFG rule_fUML_mainSyn)

Exit the synchronous fUML

fire1 (trace traceFG skip)

:quit

66

e) Compare the generated traces in the directory
Hybrid fUML ASMs\synchronousfUML\traces shown in Fig. 6.12 with Table 6.2;

Figure 6.12 - The trace for the evaluation of 1 macro-step from SatelliteTrackingAndCon-
trol.

Finally, the static semantics for composite structures from SatelliteTrackingAndControl can be
evaluated using the procedure explained in Subsection 2.4.

67

7 HYBRID fUML - AN INTRODUCTION

This chapter starts analyzing the relationship between the continuous behaviors and the physical
time. One can argue that even independent continuous behaviors are not independent in respect of
physical time, hence, there is no satisfactory solution for such composition regarding the essential
characteristics of the synchronous languages. In spite of that one can turn the composition of two
bouncing balls in a sampled-data system (OGATA, 2009; ÅSTRÖM; WITTENMARK, 2011) - in this
case, only the values assumed in the sampled instants are relevant, e.g., sample period equals 500
milliseconds, and, consequently they should compose satisfactorily because the time horizon is the
same for every ball (independent or composed) -, however, with the urgent semantics for timed
transition systems the interpretation of the model still does not fulfill the essential characteristics
of synchronous languages. The reason is the way that the time horizon are handled (one more
zero-crossing).

Consider the following table that shows the synchronous streams for the parallel composition of
three components: two independent BouncingBalls (the initial conditions are: one ball has initial
position 10 and another has initial position 2 - equals to the previous analyzed tables) and a timer
defined by a variable with derivative one and a discrete transition that resets the variable each
500ms.

signal macro-step 1 macro-step 2 macro-step 3 macro-step 4
initialPosition1 10 0 0 0
position1 10 ≈ 8.89 ≈ 8.89 ≈ 7.76
velocity1 0 ≈ −4.90 ≈ −4.90 ≈ −6.86
initialPosition2 2 0 0 0
position2 2 ≈ 0.89 ≈ 0.89 ≈ −0.23
velocity2 0 ≈ −4.90 ≈ −4.90 ≈ −6.86
time 0 500 0 200

Analyzing the synchronous stream above, the position and velocity of the ball are sampled at
instants that is not desired by the sampled-data system (e.g., the instant 700ms). Indeed, mono-
periodic sampled-data systems is easily supported by synchronous languages due to the association
of a fixed amount of physical time for every macro-step (BERRY, 2000). The following table shows
the synchronous streams of a theoretical hybrid synchronous language, where independent mono-
periodic sampled-data components can be successfully composed (using the same initial conditions
used above and sample period 500 milliseconds):

signal macro-step 1 macro-step 2 macro-step 3
initialPosition1 10 0 0
position1 10 ≈ 8.89 ≈ 5.34
velocity1 0 ≈ −4.90 −9.81
initialPosition2 2 0 0
position2 2 ≈ 0.89 ≈ 0.43
velocity2 0 ≈ −4.90 ≈ 0.49
time 0 500 1000

Note an arbitrary finite number of bouncing balls with different initial conditions can be composed

69

easily using this theoretical hybrid synchronous language. Furthermore, even though a zero-crossing
occurs between the macro-step 2 and 3 (the bouncing ball with initial position equals two), the
signal time determines that this zero-crossing must be accordingly computed but the continuous
evolution shall proceed until the pre-defined time horizon.

Now recall that there are two common patterns to stop a continuous evolution: zero-crossings
and time horizons (BENVENISTE et al., 2011). Although time horizons can be translated in zero-
crossings, time horizons are known a priori and then they offer a constructive semantics because
independently of how many concurrent components exist and how many zero-crossings occur the
amount of physical time consumed by a macro-step is fixed and known. While zero-crossings
are known a posteriori due to their inherent variability and then it defines a non-constructive
semantics (pp. 63; pp. 81; (BAUER, 2012)). One can interpret, “a priori” as input (what perfectly
fits with the abstract notion of time from synchronous language (BOURKE; SOWMYA, 2009)) and “a
posteriori” as a signal that is emitted at a macro-step (something occurs in a continuous behavior).
Moreover, time horizons are for time-triggered systems, as zero-crossings are for event-triggered
systems. Therefore, the translation of a time-horizon into a zero-crossing for a given component
has two consequences: (1) it turns a time-triggered component into an event-triggered component
and (2) the resultant event-triggered component does not know any more from the inputs how
much physical time is consumed by a macro-step - in the urgent semantics for timed transition
systems the minimum physical time for zero-crossings satisfaction is used to disambiguate the
possible multiple zero-crossings.

Still regarding time horizons, if they are treated as input that defines uniquely the amount of
physical time consumed for a given macro step, then only harmonic time horizons - defined by
integers multiple of the shortest time horizon - are valid. Otherwise, a contradiction arrives, e.g., a
macro-step receives a signal 5 seconds and another 3 seconds (meaning that the macro-step should
compute the continuous evolutions until 3 and 5), hence, it is not possible to satisfy both inputs in
the same macro-step. However, if a time horizon is translated into a zero-crossing such issue does
not occur, at first impression, because one can apply the urgent semantics for timed transition
systems and picks up the first zero-crossing. On the other hand, if a macro-step shall have the
amount of physical time consumed defined in a unique way, one has to decide explicitly what is the
zero-crossing that uniquely defines the amount of physical time consumed (in the event-triggered
systems, the physical time consumed by a macro-step is not fixed). Note a zero-crossing can be
satisfied in a macro-step firstly, and not necessarily in another, therefore, the unique definition, as
defined above, is a modeling’s choice (this is the example shown above using Hybrid Quartz, the
first-macro was stopped by the timer, while the third macro-step was stopped by the BouncingBall
with initial position 2).

In summary, the preference of zero-crossings as the fundamental mechanism to stop continuous
evolution has deep impacts on the semantics as well as on the modeling, and then the following
conjecture is defined:

Conjecture 7.1. A hybrid synchronous language shall provide a semantics where the amount
of physical time consumed by each reaction (macro-step) is uniquely defined by its
inputs or its emitted signals, moreover, likewise synchronous languages, signals exchanged be-
tween synchronous processes shall be uniquely defined at every reaction (macro-step).

70

The semantics shall support: (1) time-triggered models - based on time horizons described by
inputs that define a priori the unique amount of physical time for a given reaction (macro-step);
and (2) event-triggered models - based on zero-crossings and then a unique way to define the
amount of physical time consumption of a reaction (macro-step) based on its emitted signals
shall be provided by the modeler.

In accordance with the conjecture 7.1, a hybrid synchronous language determines a unique way
to define the physical time consumption for every macro-step, and then the macro-steps can
be totally ordered as on the synchronous languages. Consequently, the essential characteristics
of synchronous languages are fulfilled (BENVENISTE et al., 2000). However, not all models have
semantics according to the above conjecture, e.g., a model that has continuous evolution and is
event-triggered may not define a unique way to determine the physical amount of time for a given
macro-step (the presence of a zero-crossing does not any more determine the end or the beginning
of a macro-step mandatorily). Therefore, the definition 7.2 is stated, and a model has semantics,
according to the conjecture 7.1, if the model is an enichronous model.

Definition 7.2 (Enichrony). From the greek (enimeros - aware and khronos - time).
A model is enichronous if and only if either the physical time for each reaction can be uniquely
deduced from the input clocks (in time-triggered systems) or the physical time for each reaction
can be uniquely defined through the monitoring of clocks during the discrete behavior processing
(in event-triggered systems).

The above definition means that shall exist a clock tree either between the input signals associated
with physical time or between the emitted signals used to define the physical time consumption.
These clock trees have always as root the reactionClk and they are defined by sub-clocking.
Moreover, these relationships are defined by the modeler, which should consider the following
corollaries because they declare two important characteristics of the language and models defined
according to the conjecture 7.1.

Corollary 7.3. Incompatibility of the approaches. A hybrid synchronous model cannot be time-
triggered and event-triggered.
Corollary 7.4. Condition of composability and approaches. An event-triggered component does
not support nested time-triggered components.

The corollaries 7.3 and 7.4 have a profound impact on the binary relation “composition” of a
hybrid synchronous language (see Conjecture 7.1) because they define a relation � between two
composable components such that the following compositions are definable ttc � ttc, ttc � etc

and etc � etc where ttc is a time-triggered component and etc is an event-triggered component.
Therefore, a composition of two time-triggered components, if defined, produces a time-triggered
component (ttc � ttc), a composition of one time-triggered component and one event-triggered
component, if defined, produces a time-triggered component (ttc � etc) and a composition of
two event-triggered components, if defined, produces an event-triggered component or a time-
triggered component (etc � etc). The composition of one time-triggered component and one event-
triggered component such that results in an event-triggered component is not definable due to the
corollary 7.4.

71

Based on the conjecture 7.1, the next sections present an overview of the prototyped hybrid syn-
chronous language (hybrid fUML). Afterwards, the pragmatics is explored by means of examples.
Event-triggered and time-triggered systems are explored, including an example where an event-
triggered component is composed with a time-triggered component (timed Basketball). The goal
of the next sections is to provide a quick overview of how models are defined using the syntax
(syntactics) and what are their interpretations regarding the proposed operational semantics.

7.1 Language’s Decisions and Requirements

Synchronous fUML defines a synchronous language where instantaneously active objects interact
using signals in a deterministic manner (see 4). It offers a good basis for information modeling,
however, a hybrid system shall model material and energy additionally. For example, a ball has
information (for an observer1, e.g., the material’s type and a measure of its speed according to a
metric system), it is a material thing (e.g., it has mass and shape) and it can hold energy (e.g.,
kinetic energy). While information can be modeled using synchronous fUML easily, the material
and energy cannot be modeled appropriately.

Regarding control systems, implicit DAEs support material and energy modeling as well as reuse
of models. The implicit DAEs are the most general pure continuous behavior. However, commonly,
controllers are discrete because the control’s computation occurs at certain instants, using computer
algorithms. If someone chooses to consider that the converters from the continuous world to the
discrete world (analog/digital) and the converters from the discrete world to the continuous world
(digital/analog) are modeled together with the continuous behavior then only discrete behaviors
are observed in the system at certain instants. Moreover, these discrete models consider (at least
ideally) that the computation does not consume physical time so the discrete output for a given
discrete input is computed instantaneously.

Therefore, a good compromise to model control systems can be achieved by the use of implicit DAEs
encompassed by discrete behaviors executed instantaneously. (ALBERT, 2004; ÅSTRÖM; WITTEN-

MARK, 2011) argued that this viewpoint is sufficient, in the most cases, for sample-data systems
and extracts better results from a discrete controller. Moreover, this approach fits to a synchronous
language, like synchronous fUML, because computations are only performed at certain instants.
Finally, these conclusions can be generalized for hybrid systems.

The above discussion and the conjecture 7.1 lead to the following design decisions for hybrid fUML,
a hybrid synchronous language:

a) Continuous behavior is modeled using implicit DAEs (like Modelica (ASSOCIATION,
2012));

b) Every continuous behavior (or a set of continuous behaviors) is encompassed by a dis-
crete component, defined by an active object from synchronous fUML;

Only values resulted from the discrete behaviors are used to define signals (signals
exist only at certain instants);

1Information require some sort of material and energy to be perceived so it has a physical
representation, however, this discussion is beyond the scope of the present work.

72

c) Continuous behavior evaluation does not depend from the control flow state of discrete
behaviors, i.e., when time evolves the enabled continuous behaviors (based on the state
of the owning active object) shall be evaluated;

d) Physical time is globally synchronized (like Modelica (ASSOCIATION, 2012), Hybrid
Quartz (BAUER, 2012) and Zélus (BENVENISTE et al., 2014));

e) Zero-crossings define a global logical clock (like Hybrid Quartz (BAUER, 2012) and
Zélus (BENVENISTE et al., 2014)), however, only a subset of these zero-crossings deter-
mines the end/start of a macro-step;

f) The evaluation of discrete behavior is based on the synchronous fUML operational
semantics;

g) Concerning controllers, it shall enable instantaneous processing of inputs and generation
of the ouputs at the same macro-step (no delayed effect).

As a direct consequence from (a), there is no novelty defining semantics (static and dynamics) for
continuous behaviors because the standard mathematical definition is applied, e.g. the necessary
but not sufficient condition of the number of variables must be equal to number of equations.
On the other hand, the interaction of continuous and discrete behavior over physical time is the
central question about semantics of hybrid fUML, and then the following high-level requirements
are defined for hybrid fUML:

a) It shall enable modeling (syntax) of continuous behavior, discrete behavior, and tem-
poral concerns;

b) The syntax of the continuous behaviors shall be implicit DAEs;

It shall enable the definition of continuous libraries à la Modelica;

The syntax shall be defined by a subset of Modelica (ASSOCIATION, 2012);

c) The syntax of the discrete behaviors shall be defined by synchronous fUML with the
necessary extensions;

d) The syntax of temporal concerns shall be defined by a subset of CCSL defined by
MARTE ((OMG), 2011b);

e) It shall provide an operational semantics for interpretation of models focusing on the
interaction of discrete and continuous behaviors over time2;

f) The model of computation shall be the synchronous-reactive;

The operational semantics shall give semantics for constructive models;

The operational semantics shall give semantics for enichronous models;

A central concept in the semantics of hybrid fUML is the macro2-step, which is informally defined
as follows.

2DAEs, used in the examples, are solved by manually defined code using the Euler forward
method.

73

Definition 7.5 (Macro2-step). For each reaction, an iteration is started. In each iteration, syn-
chronous discrete behavior is executed and the signals are broadcasted, hence, continuous behaviors
for each active object are executed (DAEs’ numerical solving) until the satisfaction of one or more
zero-crossings, afterwards, the iteration is restarted. At some point, the limit for the consumption
of physical time is reached (a property of enichronous models, see definition 7.2), and then, a
special signal defined by the semantics is broadcasted Edge. One more macro-step takes place and
then the macro2-step terminates. Therefore, a macro2-step computation consists of only finitely
many macro-steps computation intertwined with DAEs’ numerical solving.

7.2 Syntactics

This section provides an overview of the syntax of hybrid fUML so the examples presented in
sequel can be explored and explained. Hybrid fUML is an extension of Synchronous fUML so all
the syntax of synchronous fUML are inherited by the hybrid fUML. In addition, a syntactical
element is copied from the UML super-structure ((OMG), 2011a), constraint. A Constraint is a
condition or restriction, and it is the basic building block to define equations, group of equations,
domains, and clock constraints. Equations or groups of equations are allowed to have a restricted
subset of Modelica textual syntax - derivative operator, multiplicative operator, additive operator,
and simple equality equations (pp. 81; (ASSOCIATION, 2012)) -, in such a way, that only DAEs
can be defined (it is not possible to define discrete behavior in these constraints, e.g., initial
conditions or conditional equations). Domains have also a restricted subset of Modelica textual
syntax, namely relational operators (except equality operator, due to the use of zero-crossings)
and boolean operators.

The profile from the synchronous fUML is extended with stereotypes focused on clocks, on contin-
uous behavior and on the interaction of continuous and discrete behaviors.

The stereotypes focused on clocks are imported from MARTE ((OMG), 2011b), namely Clock
and ClockConstraint. They support the definition of relations between the clocks of the model
(SignalEvents stereotyped with Clock) and clocks provided by the semantics. The semantics pro-
vides two public clocks reactionClk and physicalClk that together with the idealClk (provided by
MARTE) shall be used to define an enichronous model. A subset of the CCSL is available, e.g.,
isPeriodicOn for time-triggered systems.

The continuous behavior package is a subset of the SysMLModelica profile ((OMG), 2012b) plus
the stereotype ContinuousDomain. For example: the stereotype ModelicaEquation defines that
a constraint is a set of Modelica equations, while the stereotype ContinuousDomain is used to
constrain a ModelicaEquation that is enabled when a boolean scalar Modelica expression holds.

Finally, two stereotypes are dedicated to precisely define interaction points of continuous and
discrete behaviors. One defines a condition that determines when a continuous evolution shall
be interrupted in order to proceed with discrete behaviors (DiscreteDomain), while the other
defines that a given discrete behavior can only proceed after all possible continuous evolution
are performed at current macro2-step (Edge). DiscreteDomain constrains a discrete behavior
(without any kind of parameter) so when its boolean scalar Modelica expression is satisfied (a
zero-crossing), the continuous evolution freezes and the constrained discrete behavior is evaluated.

74

Table 7.1 - Meta-classes extended by hybrid fUML through stereotypes.

meta-class Synchronous Hybrid Available
fUML fUML stereotypes

in hybrid fUML
Kernel
Class X X ModelicaConnector
Property X X ModelicaValueProperty
Constraint × X ContinuousDomain,

DiscreteDomain,
ModelicaEquation,
ClockConstraint

Common Behaviors
SignalEvent X X Clock
Composite Structures
Connector X X ModelicaConnection
Port X X ModelicaPort
Intermediate Actions
ReadStructuralFeature_ X X Edge
ValueAction

In other words, the DiscreteDomains define jumpe in hybrid automata, whereas the constrained
discrete behaviors are the resete from hybrid automaton (HENZINGER, 1996). The stereotype for
ReadStructuralFeatureAction called Edge is defined to support the interaction of continuous and
discrete behaviors in such a way that the action blocks the activity until it can read the value
assumed at the final physical time for a given macro2-step.

Definition 7.6 (Pattern sample-then-output). Sample-then-output is a recurrent pattern in the
models defined by a hybrid synchronous language as well as in control (ALBERT, 2004; OGATA,
2009; ÅSTRÖM; WITTENMARK, 2011). It means that a component that has continuous evolution,
i.e. DAEs, retrieves the result of the continuous evolution using readings stereotyped with Edge,
and then the final state (sample) is broadcasted for other components. Afterwards, in the same
macro2-step and without physical time consumption, an output is generated based on the received
sample. Moreover, if there is a closed-loop the component defining the continuous evolution uses
the stereotype Previous in its receptions with an initial predefined value, in order to achieve con-
structiveness.

Table 7.1 shows the introduced elements in hybrid fUML. With exception of Constraint and its
stereotypes, the introduced elements are stereotypes to be applied in elements already defined by
synchronous fUML, which means that the semantics of these elements are modified in hybrid fUML
only when an introduced stereotype is applied.

Using the Distributed Package

75

The meta-model describing the abstract syntax is the same meta-model that describes the abstract
syntax of synchronous fUML. It is available in the project Hybrid fUML MetaModels by the file
fUML_Syntax_Extended.di.

The stereotypes are available in the project HybridfUMLProfile by the file
HybridfUML.profile.di. In particular, there is a sub-profile called Hybrid to be used for
models defined by hybrid fUML. Fig. 7.1 shows the stereotypes defined for hybrid fUML.

Figure 7.1 - Hybrid profile from HybridfUML profile.

7.3 Dynamic Semantics

This section provides an informal overview of the dynamic semantics of hybrid fUML. Fig. 7.2
shows the abstract LTS for the operational semantics of hybrid fUML. Hybrid fUML encompasses
the basic model of execution from the urgent semantics of timed transitions systems (HENZINGER,
1996) with an external macro-step called macro2-step (see Definition 7.5). Macro2-step defines the
constructive semantics for one reaction through a fixpoint between the interaction of continuous
and discrete behaviors, further, at the fixpoint, all signals should be defined, otherwise the system
is not constructive. If there is no fixpoint, the system is not constructive.

Consider an event-triggered enichronous model, the semantics can be roughly explained by a search

76

for a fixpoint in the macro2-step. Therefore, the following steps are done and monitored until a
fixpoint :

a) The discrete behaviors are performed using the constructive semantics (a macro-step)
defined by synchronous fUML.

The actions ReadStructuralFeatureAction stereotyped with Edge only return value
when the signal Edge is present, otherwise they block the control flow.

b) Once a fixpoint is reached, the semantics checks if some of the signals that uniquely
defines the physical time is present.

If yes, the semantics defines a special signal called Edge.
If no, nothing.

c) Afterwards, the continuous behaviors starts:
All enabled continuous behaviors are collected. The conditions for the collection of

a continuous behavior are: there is an instance of the object that defines the continuous
behavior, its (parent) owning object is alive and its continuous domain (if existent)
holds;

It checks if there is no discrete domain (jumpe in the hybrid automaton (HEN-
ZINGER, 1996)) enabled and Edge is absent.

If yes, it proceeds the continuous evolution (where each active object has a set
of DAEs elaborated through flattening), further, it monitors the discrete domains and
the continuous domains. When a zero-crossing is detected, it stops the evolution.

If no, nothing.

Figure 7.2 - The abstract LTS defined by the hybrid fUML’s MoC.

Now, consider a time-triggered enichronous system, the semantics is similar (the differences are
highlighted in the below text). The following steps are done and monitored until a fixpoint:

a) The discrete behaviors are performed using the constructive semantics (a macro-step)
defined by synchronous fUML.

77

The actions ReadStructuralFeatureAction stereotyped with Edge only return value
when the signal Edge is present, otherwise they block the control flow.

b) Once a fixpoint is reached in the macro-step, the semantics checks if some of the signals
that uniquely defines the physical time is present in the first tick of the global
logical clock.

If yes, the semantics checks if they (may be more than one) are compat-
ible, and then it defines a time horizon.

If no, it checks if the time horizon was reached by the continuous be-
haviors, if yes the semantics defines a special signal called Edge, otherwise,
nothing.

c) Afterwards, the continuous behaviors starts:

All enabled continuous behaviors are collected. The conditions for the collection of
a continuous behavior are: there is an instance of the object that defines the continuous
behavior, its (parent) owning object is alive and its continuous domain (if existent)
holds;

It checks if there is no discrete domain (jumpe in the hybrid automaton (HEN-
ZINGER, 1996)) enabled and Edge is absent.

If yes, it proceeds the continuous evolution (where each active object has a set
of DAEs elaborated through flattening) until the time horizon, further, it monitors
the discrete domains and the continuous domains. When a zero-crossing is detected, it
stops the evolution.

If no, nothing.

In the operational semantics, each evaluation of a macro2-step ticks the reactionClk, each evaluation
of a macro-step ticks the logicalClk, and, finally, the evolution of physical time is measured in
seconds by the physicalClk.

Semantic Domain

Recall hybrid fUML encompasses implicit DAEs by synchronous active objects. Thus, independent
of the strategy to store computed values for continuous properties during a continuous evolution
(intermediate values), each continuous property assumes one value at the beginning of the contin-
uous evolution and one value at the end of the continuous evolution (determined by a zero-crossing
or a time horizon). Therefore, in hybrid fUML, continuous properties shall assume more than one
value at a macro-step. A property can assume more than one value at a macro-step in synchronous
fUML, consequently, in hybrid fUML. This guarantees that extensions or changes are not needed in
the already defined semantic domain from synchronous fUML in order to support continuous prop-
erties. The reason is that synchronous fUML deals with computation as a different phenomenon
from the communication.

Constraints, per se, do not demand additional elements in the semantic domain. Nevertheless,
ContinuousDomains together with the generation of equations based on UML composite structures
lead to the necessity of an element to store the set of equations for an active object since they are

78

dynamically defined. Therefore, an element called SystemOfEquations is required in the semantic
domain of hybrid fUML. It has as properties an active object and a set of constraints.

Using the Distributed Package
The meta-model describing the semantic domain is the same meta-model that describes the se-
mantic domain of synchronous fUML. It is available in the project Hybrid fUML MetaModels by
the file fUML_Semantics_Extended.di.

Semantic Mapping using an ASM

Taking into account the embedded abstract syntax (static functions) and the embedded semantic
domain (dynamic functions, and transition rules for the extraction from the reserve), this subsection
presents the ASM mainHyb that form the operational semantics of hybrid fUML.

Fig.7.3 shows the structure of the mainHyb ASM, which is composed of: the whole synchronous
fUML and the semantic mapping of hybrid fUML.

Figure 7.3 - Components of mainHyb ASM.

The last component of the mainHyb ASM is the Semantic Mapping that is shown in Fig.7.4. The
main purpose of this component is to define transition rules that define the operational semantics
of mainHyb ASM.

The 8mapping_evaluateExpressions.gs defines a naive numerical solver based on the Euler
forward method without a parser. The 8mapping_discreteDomain.gs defines the transition rules
that freeze a continuous evolution. The 8mapping_continuousDomain.gs defines the transition
rules that select and define the equations to be numerically solved in a given macro-step.

Finally, the 8mapping_main_Hyb.gs defines the main rule rule_fUML_mainSyn. Each firing of the
main rule corresponds to the evaluation of one macro2-step.

79

Figure 7.4 - Components of SemanticMapping of mainHyb ASM.

In the ASM mainHyb, four initial rules are available:

a) rule_fUML_initSim - used for simulation of models, it assumes that the model is a
time-triggered model (clock constraints are not mandatory in the model) and each
macro2-step consumes per (period) times ds (discretization step) seconds;

b) rule_fUML_initTimed - used for time-triggered models, it assumes that the model has
clock constraints defining the model as an enichronous model using the strategy in
which every macro2-step consumes a fixed amount of physical time, e.g., it is used for
Example 8.3.1;

c) rule_fUML_initTimed2 - used for time-triggered systems, it demands that the model
has clock constraints defining the model as an enichronous model, and the model or
the environment generates signals to be received by the model related somehow with
the physicalClk. It uses the strategy in which a macro2-step does not consume neces-
sarily a fixed amount of physical time. The consumption depends on the presence of
signals related with physicalClk, e.g., it is used for Example 8.3.2, Example 8.3.3 and
Example 8.3.4;

d) rule_fUML_initEvent - used for event-triggered systems, it demands that the model
has clock constraints defining the model as an enichronous model and the model or
the environment generates signals to be received by the model related somehow with
the reactionClk, e.g., it is used for Example 8.2.1 and Example 8.2.2. Additionally, it
requires a discretization step.

Remark 7.1 (SystemOfEquations and DAE solvers). Hybrid fUML supports the use of multiple
DAE solvers, with different integration methods and/or integration step size, one for each active
object since each SystemsOfEquations can be computed independently provided that the final phys-
ical time is the same for all active objects. When using a single integration method and a single step

80

size, the choice of these parameters for a single solver is governed by the SystemOfEquations that
demands the smaller step size. The SystemsOfEquations provides a way to define different parame-
ters for different solvers, which can improve the overall precision and time required for the numerical
solving (BENVENISTE et al., 2012). Finally, the transition rule rule_fUML_computeEquations in
the component 8mapping_continuousDomain.gs is the rule to be changed for the integration of a
DAE solver.

Remark 7.2 (Domains and DAE solvers). In the case of the substitution of the rudimentary numer-
ical solving used in the mainHyb (defined in the component 8mapping_evaluateExpressions.gs)
by one DAE solver, the Domains shall be pre-processed evaluating the possible discrete variables
(stereotyped with ModelicaValueProperty and variability equals to discrete) before the call to the
DAE solver. Once the discrete variables are evaluated, only continuous variable are present in the
domains and then they define zero-crossings that can be sent to the DAE solver for monitoring.

Using the Distributed Package
Hybrid fUML ASMs is the project that contains the ASM for hybrid fUML. embeddedModel is
the directory that contains the embedded user model to be used by the ASM, which is called
3syntax_userModel_embedded.gs. Moreover, hybridfUML is the directory that has the hybrid
fUML ASM, which can be loaded using the Gofer project hybfUML.p. Fig. 7.5 shows the mainHyb
ASM presented in the distributed package.

Figure 7.5 - The mainHyb ASM in the Distributed Package.

81

7.4 Concluding Remarks

In this technical chapter, it is presented why and how the abstract syntax and semantic domain of
synchronous fUML are extended. Afterwards, the mainHyb ASM that defines the operational se-
mantics is presented and discussed including the rule rule_fUML_mainHyb that defines the meaning
of one macro2-step in hybrid fUML.

A well-formed user-defined model is one that has behaviors that only depend on the structural and
behavioral elements defined in the embedded abstract syntax (it can use more than the embedded
abstract syntax but this should be only for visualization). Lastly, a well-behaved user-defined
model shall be in accordance with the following definition.

Definition 7.7 (Well-behaved user-defined model for hybrid fUML.). A well-behaved user-defined
model regarding the operational semantics of hybrid fUML must fulfill the following characteristics:

• It is a well-behaved user-defined model for synchronous fUML (see Definition 4.7)

• It is an enichronous model (see Definition 7.2);

• A macro2-step computation consists of only finitely many macro-steps and

In time-triggered models, this computation always consumes at least one instant
of the physicalClk;

In event-triggered models, this computation consumes zero physical time if one of
the signals that defines the physical time consumption is present in the input signals,
or it always consumes an amount of the physical time notwithstanding infinitesimal;

It rules out ill-formed models and time-triggered models that exhibit the Zeno
behavior. Note event-triggered models with Zeno behavior may be well-behaved (e.g.,
the Example 8.2.1 in which the BouncingBall model emits a signal when it hits the floor,
and this signal is used to determine the physical time consumption at a macro2-step)
so this is a slightly relaxed version of the liveness assumption of hybrid automata (HEN-
ZINGER, 1996).

In fact, hybrid fUML is a synchronous language since it has the essential and sufficient
featuress (BENVENISTE et al., 2000), which are:

a) Programs progress via an infinite sequence of macro2-steps - the operational semantics
of hybrid fUML defines the semantics for a macro2-step that encapsulate finitely many
macro-steps;

b) In a macro2-step, decisions can be taken on the basis of the absence of signals - as
presented in the Subsection 4.2 the action AcceptEventAction stereotyped with Non-
blockable enables the reaction to absence;

c) Communication is performed via instantaneous broadcast - provided that a model is well-
behaved, the parallel composition is given by the conjunction of associated
macro2-steps;

82

8 HYBRID fUML - PRAGMATICS

The following sections explore the pragmatics of the language presenting meaningful small ex-
amples. It begins presenting how continuous libraries can be defined à la Modelica. Afterwards,
event-triggered systems are explored, and, finally, time-triggered are evaluated.

8.1 Libraries

This subsection shows that continuous libraries can be defined in hybrid fUML. Moreover,
satisfying the requirement the syntax shall be defined by a subset of Modelica (ASSOCIATION,
2012), hybrid fUML reuses a part of the profile SysML-Modelica ((OMG), 2012b) and, con-
sequently, can reuse parts of the standard library from Modelica. The reuse is restricted to
models that are described by DAEs in the Modelica standard library, e.g., the component
Modelica::Mechanics::Translational::Components::Mass.

8.1.1 Mass, a reusable continuous component

Fig. 8.1 shows the components defined to support the BouncingBall example. If a transforma-
tion from Modelica to SysML is available, one will be able to import these elements. Nonetheless,
they are defined manually. Moreover, Modelica (ASSOCIATION, 2012) uses two different connectors
instead one RealConnector, namely RealInput and RealOutput. In addition to the Modelica defini-

Figure 8.1 - The (pure) continuous components defined to support BouncingBall.

tions, a ContinuousDomain is defined for the component Mass. It guarantees that the equations
will only be evaluated when the continuous domain holds. As in Modelica, the property value
from RealConnector is marked as discrete, which means that it is treated as a constant during the
evaluation of a possible DAE with it. Moreover, the property force in Flange is a flow so all the
elements connected with it shall sum to zero (it supports the third Newton’s law, the sum of all
forces acting at a specific point is zero). Note this model does not have behavior in hybrid fUML
because it does not have active objects, therefore, it defines reusable components that must be put
in context to exhibit behavior.

83

Using the Distributed Package
This library can be found in the project Hybrid Models as part of the follow-
ing models: bouncingBallReviewedEvent, bouncingBallReviewedController and
bouncingBallReviewedControllerZeroCrossing.

8.2 Event-Triggered Systems

Taking into account event-triggered systems, two examples are shown. The first one is the classical
BouncingBall modeled as an enichronous system using hybrid fUML and the components defined
in Example 8.1.1. In this simple case, every macro2-step is associated with one clock that ticks
when the ball hits the floor defining univocality a variable consumption of physical time. The
BasketBall is a controlled system of the type on-off, and then two signals are used to define the
enichronous system.

The examples are presented by their diagrams, which are grouped in three categories: structure,
discrete behavior and temporal concerns. Structure defines all the structural aspects of the
example, including classes, composite structures, equations and domains. Moreover, composite
structures are used to model relationships between elements used from the continuous library as
well as the relationships between active objects. Discrete behavior applies activities to model all
sort of behaviors, which are mainly divided in: classifier behaviors and behaviors triggered by
discrete domains (transfer functions). Temporal concerns establish the relationships between the
clocks provided by the semantics(reactionClk and physicalClk) and the clocks of the models. In
the case of event-triggered systems, the main relation is subclocking expressed in CCSL using
isCoarserThan.

8.2.1 BouncingBall

The bouncing ball system (GOEBEL et al., 2009; KURZHANSKI; VARAIYA, 2009; BAUER, 2012;
POUZET et al., 2014) models a ball as a point of mass with some potential energy due to its
position, velocity, mass and the earth (inertial reference frame) gravity field. The system describes:
(1 - continuous behavior) the falling and rising movement, which is defined by the Newton’s sec-
ond law (one-dimensional case); and, (2 - discrete behavior) the hitting of the ball on the floor,
in which a fraction of kinetic energy is lost, expressed by a loss of the velocity (parametrized by
the restitution coefficient, restCoef ∈ R), and the direction of velocity is changed. In the case
of restCoef ∈ (0, 1), this hybrid model exhibits the Zeno behavior where physical time does not
diverge.
From here on, it is assumed the following conventions: forces acting in the downward direction are
negative forces while the forces that act in the upward direction are positive. Likewise, an object
moving downward (i.e., a falling object) will have a negative velocity.
In this work, all instances of this example assume the following initial conditions and parameters:
position = 10, velocity = 0, mass = 1, restCoef = 0.5 and g = −9.81.

It is an event-triggered system where the end of each macro2-step is defined by the presence of

84

the clock of a signal emitted when the ball hits the floor.

Structure

Regarding the structure, Fig. 8.2 shows the class diagram for the system.

Figure 8.2 - The structure of BouncingBall modeled using hybrid fUML and library’s com-
ponents.

The main points are:

a) The system is modeled with an active class, Plant, which has the attributes rest-
Coef, gravitationalForce and output, two parts (reused from the library, namely Mass
and Force), and three behaviors: actBouncingBallReviewedEventClassifierBehavior, act-
BouncingBallReviewedEventConstructor, and actHitTheFloor.

b) The active class has a ModelicaEquation without domain, which means that it is added
to the DAEs always. The equation states that the gravitationalForce from the Plant
shall be used to define the value of the part Force.

c) actBouncingBallReviewedEventClassifierBehavior is the behavior in charge of the
state’s management of the active class, however, the bouncing ball does not have a
state and then this behavior maintains an active object alive (running) only.

d) actBouncingBallReviewedEventConstructor is responsible for constructing the objects
needed as well as for defining the initial conditions. Due to the terseness of fUML, this
behavior is large even for simple examples like this one.

e) actHitTheFloor defines the state transfer function when the mass hits the floor. It is
constrained by the DiscreteDomainForHitTheFloor, which is stereotyped with Discrete-
Domain. The expression defined by this constraint is evaluated during the continuous
evolution, and when the boolean scalar expression is satisfied, the continuous evolution
freezes. In addition, this behavior emits a signal called HitTheFllor that can be used
by other component and it is referenced by the CCSL defining enichrony (see Fig. 8.6).

Fig. 8.3 shows the composite structure that defines the relationship between the part Force and
Mass. It uses a connector stereotyped with ModelicaConnection, which enables the generation of
the complementary equations.

85

Figure 8.3 - The structure of the library’s use in the BouncingBall modeled using hybrid
fUML.

The final set of DAEs, generated by the operational semantics for this example, are described by the
equations 8.1a to 8.1h. When the continuous evolution must proceed, the operational semantics
identifies active objects that have ContinuousDomains enabled. Considering the attribute mass
from Mass equals one (it is initialized as one in the actBouncingBallReviewedEventConstructor),
the MassDynamics (see Fig. 8.1) from Mass is identified, which leads to the equations 8.1a,
8.1b, 8.1c and 8.1d. Afterwards, the equations defined in the active object without domain are
selected 8.1e, then the composite structure 8.3 is navigated collecting the equations for connected
instances 8.1f (again, actBouncingBallReviewedEventConstructor creates an instance of Force).

Finally, still using the composite structure shown in Fig. 8.3, additional equations are generated
using the semantics of Modelica for potential connections (they are equals 8.1g), and flow con-
nections (sum to zero 8.1h). During the solving of the generated equations, the discrete variables
are treated as constants (mass.mass and gravitationalAcceleration), which satisfies the necessary
condition: number of variables equals to number of equations.

der(mass.velocity) = mass.acceleration (8.1a)

der(mass.position) = mass.velocity (8.1b)

mass.mass ∗mass.acceleration = mass.flange_a.force (8.1c)

mass.flange_a.position = mass.position (8.1d)

gravitationalForce.force.value = gravitationalAcceleration (8.1e)

gravitationalForce.flange.force = −gravitationalForce.force.value (8.1f)

mass.flange_a.position = gravitationalForce.flange.position (8.1g)

mass.flange_a.force+ gravitationalForce.flange.force = 0 (8.1h)

Discrete Behavior

The classifier behavior from the Plant is shown in Fig. 8.4. It calls the activity actBouncingBall-
ReviewedEventConstructor to create elements and to define the initial conditions, and then starts
an infinity loop to keep the instantiated active object alive (if there is no active object alive, the
interpretation of a given model ends). Note the infinity loop is not instantaneous, otherwise the fix-
point does not exist in the macro-step. Therefore, the DecisionNode is stereotyped with Pausable,
which indicates that activity is evaluated once in every macro2-step.

The activity actHitTheFloor shown in Fig. 8.5 is called during a macro2-step, when its Discrete-

86

Figure 8.4 - The classifier behavior for the Plant.

Domain holds. In this case, the discrete behavior is executed changing the value of the attribute
velocity (the action AddStructuralFeatureValueAction_velocity) in the part mass using the result
of vel′ = vel × −restCoef . During the discrete behavior, it is not allowed to use equations so
vel′ = vel × −restCoef is described by actions calling discrete libraries, e.g., Neg returns the
received real number multiplied by -1, * returns the result of the multiplication of two received
real numbers.

Furthermore, this activity sends the signal HitTheFloor to the output (described in the activity
by the action SendHitTheFloor). Note HitTheFloor is a pure signal, which allows its emission in
the same macro2-step without problems (for example due to a composition), nevertheless, this is
not the case for signals with attributes. In the last case, the emissions in a given macro2-step shall
have the same values for all attributes because a signal is uniquely defined in a macro2-step.

Temporal concerns

Lastly, the CCSL shown in Fig. 8.6 defines that the system is enichronous. It defines that for
each tick of the reactionClk there exists a tick from the clock of the event HitTheFloorSignalEvent
(they coincide). The semantics interprets this relationship as a definition of a uniquely variable
consumption of physical time for each macro2-step, therefore, when there exists a tick of the clock
HitTheFloor, the Edge is defined (no more continuous evolution, and one more macro-step).

Table 8.1 shows the synchronous streams for this example. It shows the value of selected variables
at end of macro2-step because these variables can assume more than one value during the evaluation
of a given macro2-step, whereas signals can have just one value for a entire macro2-step.

The results can be roughly explained as follows. Each macro2-step starts with the execution of a
macro-step, which evaluates actBouncingBallReviewedEventClassifierBehavior, then it determines
the equations as discussed above and solves them until the satisfaction of the DiscreteDomain-
ForHitTheFloor, hence, a new evaluation of a macro-step is started, now the actBouncingBallRe-
viewedEventClassifierBehavior is paused and the activity actHitTheFloor is enabled. The activity
actHitTheFloor changes the value of velocity and generates the signal HitTheFloor. Afterwards,
the semantics detects the related event, and then defines the Edge. Once more, a macro-step is

87

Figure 8.5 - The behavior of the activity hitTheFloor.

Figure 8.6 - The clock constraint defining the BouncingBall as an enichronous system.

evaluated but there is no activity to be run and then the macro2-step ends.

Using the Distributed Package
The BouncingBall is available in the project Hybrid Models, specifically, in the folder
BouncingBall\hybridfUML that contains the model bouncingBallReviewedEvent. Moreover, it
contains the traces for a run of this model as well as equivalent models described using Hybrid
Quartz (GROUP, 2014), Modelica (ASSOCIATION, 2012) and Zélus (POUZET et al., 2014).

The evaluation of this model regarding hybrid fUML can be performed as follows.

a) Call the configured run EmbeddingM1_ASM - BouncingBallReviewedEvent. The
transformation generates the file
Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

b) The generated file must be copied into the directory
Hybrid fUML ASMs\embeddedModel in order to be evaluated.

88

Table 8.1 - Synchronous streams for BouncingBall using hybrid fUML.
Source: hybrid fUML’s simulator

macro2-step 1 macro2-step 2 macro2-step 3
variables
mass.mass 1 1 1
gravitationalAcceleration -9.81 -9.81 -9.81
mass.position ≈ −0.10 ≈ −0.02 ≈ −0.02
mass.velocity ≈ 7.06 ≈ 3.53 ≈ 1.81
signals
HitTheF loor true true true
clocks
clock(HitTheF loor) true true true
currentT ime(HitTheF loor) 1 2 3
currentT ime(reactionClk) 1 2 3

c) Run the external tool Hybrid fUML;

d) Run the following commands in the console:

Load hybrid fUML

:p hybfUML.p

Call initial rule from hybrid fUML

fire1 (rule_fUML_initEvent 0.01)

traceFH

Call main rule from hybrid fUML for evaluation of one macro2-step (this command
can be executed multiple times meaning the evaluation of multiple macro2-steps; an
alternative command allows the execution of the rule multiple times, e.g., 10 times -
fire 10 (trace traceFG rule_fUML_mainHyb))

fire1 (trace traceFG rule_fUML_mainHyb)

Exit the hybrid fUML

fire1 (trace traceFG skip)

:quit

e) Compare the generated traces in the directory Hybrid fUML ASMs\hybridfUML\traces
shown in Fig. 8.7 with Table 8.1 1;

1The last value for velocity in the hybrid trace (hybrid41.txt) is -14.1264, however, it does not
exhibit the value at the end of macro2-step since a discrete behavior is executed after the continuous
evolution.

89

Figure 8.7 - The trace for the evaluation of 1 macro2-step from BouncingBall.

The model can be evaluated with different discretization steps. Moreover, alternatively, it can be
evaluated using the initial rule for simulation since the emitting of the signal HitTheFloow never
compromises the constructiveness (it does not have values and once present it is always present
at a given macro2-step), e.g., fire1 (rule_fUML_initSim 100 0.01).

8.2.2 BasketBall

The BasketBall system reuses the BouncingBall system as a hybrid plant (one dimensional case
without disturbances) and adds a discrete controller, which shall maintain the ball bouncing with
a maximal height equals to 10 meters. The controller does not need to know the plant state to
define the control force because the plant’s behavior is well-defined and known so the controller
is defined by the type on-off. Therefore, when the ball has its kinetic energy close to zero (it is
defined an ε error of 0.01 m/s for the velocity of the ball), the force actuator is turned on applying
a force of 24254 newtons. Afterwards, the actuator should be turned off.

This example is interesting for this work since it reuses a hybrid plant largely analyzed in the current
work and in the literature (GOEBEL et al., 2009; BAUER, 2012; POUZET et al., 2014). Furthermore,

90

the act of turning on and off the force actuator can be modeled in a large number of ways including
the following ones:

a) an event-triggered system with one event - when the ball has its kinetic energy close to
zero an event happens “turn on”, and the processing of this event changes immediately
the ball velocity (like in the BouncingBall but at the top and adding energy instead of
loosing), in this case, the event of “turn off” is not needed.

b) an event-triggered system with two events - when the ball has its kinetic energy close
to zero an event happens “turn on”, and the processing of this event defines a value
for the external force actuator in the plant so the velocity is changed if the ODEs are
solved. Consequently, it is mandatory to define a “turn off” that can be based on the
kinetic energy so if velocity is greater than an error the force actuator should be turned
off, however, it also should consider the physical time consumption during the ODEs
solving for the event “turn on”.

c) a time-triggered system - the controller periodically checks the kinetic energy of the
hybrid plant (matching the dynamics of the system), when it is under a threshold the
force actuator is “turned on”, otherwise it is “turned off”. Therefore, the physical time
consumed during the ODEs solving for the event “turn on” is considered in the definition
of the period.

Fig. 8.8 shows the numerical comparison between the BouncingBall system (red and blue lines),
and the option (c) - BasketBall modeled as a time-triggered system - using sample period of 0.001s
(light blue and green lines).

The BasketBall modeled as an event-triggered system with two events is roughly described as
follows. When the BouncingBall (from the Example 8.2.1) has its kinetic energy close to zero
an event happens “turn on”, and the processing of this event defines a value for the external
force actuator in the plant so the velocity is changed if the DAEs are solved. Consequently, it is
mandatory to define a “turn off” that can be based on the kinetic energy so if velocity is greater
than an error the force actuator should be turned off.

Note the hybrid plant to be controlled is the BouncingBall presented in the Example 8.2.1, an event-
triggered system, furthermore, the controller is informally defined as an event-triggered system
(based on two events “turn on” and “turn off”). Therefore, according to the corollary 7.3 the type
of systems are compatible, and, in addition, it is possible to define the resultant composition as
a time-triggered system or an event-triggered system(see corollary 7.4). This example models the
resultant composition as an event-triggered system.

Structure

Regarding the structure, Fig. 8.9 shows the class diagram for the system. The main differences
from the previous example are the presence of the system PlantController, the presence of the
controller Controller and new signals, namely plantInRange, plantOutRange and ControlForce.

The system is modeled with three active classes:

91

Figure 8.8 - Numerical results from a simulation of BouncingBall and BasketBall.
Source: ((OSMC), 2014) (integration method: Euler).

Figure 8.9 - The structure of BasketBall modeled using hybrid fUML and library’s com-
ponents.

a) PlantController - it models the closed-loop, and it has two parts the Plant and the
Controller.

b) Plant - it has the attributes restCoef, gravitationalForce, controlForceValue and clos-
eToTop, three parts (instances from the library, namely mass, gravitationalForce and
controlForceValue), and five behaviors: actClassifierBehavior, actConstructor, actHit-
TheFloor, actEmitInRange and actEmitOutRange.

The attributes restCoef and gravitationalForce are the same from the previous
example.

92

The attribute controlForce defines the control force applied to the plant, it is defined
as equals to value of the part controlForce so a value different from 0 changes the solution
from the DAEs.

The attribute closeToTop is defined to avoid repeated executions of the activities
that detect the events “on” and “off”.

The parts mass and gravitationalForce are the same from the previous example.

The part controlForce defines a force actuator inside the plant.

actClassifierBehavior is the behavior in charge of the state’s management of the
active class. In this case, the behavior receives the control signal and changes the value
from its attribute controlForceValue.

actConstructor is responsible for constructing the objects needed as well as for
defining the initial conditions.

actHitTheFloor is the same from the previous example, it defines the state transfer
function when the mass hits the floor. It is constrained by the DiscreteDomainForHit-
TheFloor, which is stereotyped with DiscreteDomain. The expression defined by this
constraint is evaluated during the continuous evolution, and when the boolean scalar
expression is satisfied, the continuous evolution freezes. In addition, this behavior emits
a signal called HitTheFllor that can be used by other component.

actEmitInRange it defines the state transfer function when the BouncingBall has
its velocity and position close to the predefined error. It assigns true for the attribute
closeToTop and sends the signal PlantInRange (“turn on”).

actEmitOutRange it defines the state transfer function when the BouncingBall has
its velocity and position close to the predefined error and to the top. It assigns false for
the attribute closeToTop and sends the signal PlantOutRange (“turn off”).

c) Controller - it has one behavior controllerClassifierBehavior, which receives PlantIn-
Range or PlantOutRange and, accordingly, the signal ControlSignal is sent to the plant.

Fig. 8.10 shows the composite structure that defines the relationships between the parts Forces and
Mass. It uses two connectors stereotyped with ModelicaConnection, which enables the generation
of the complementary equations (in the same way described in the example above).

Fig. 8.11 shows how Plant and Controller interact. It is a classical closed-loop, where the events of
Plant, namely PlantInRange and PlantOutRange, are received by the Controller, afterwards, the
controller computes the ControlSignal and sends to the Plant. Regarding synchronous languages,
this loop shall be broken using a Previous stereotype (the gray ports are conjugated so they emit
signals, whereas the white ports receive signals).

Discrete Behavior

Concerning the behavior of the system, Fig. 8.12 shows the behavior for the activity plantInRange.
It changes the value of the attribute closeToTop to disable the DiscreteDomainForInRange, and
emits the signal PlantInRange.

93

Figure 8.10 - The composite structure of the library’s usage in BasketBall modeled using
hybrid fUML.

Figure 8.11 - The composite structure of the BasketBall modeled using hybrid fUML.

The activity controllerClassifierBehavior from the Controller, shown in Fig. 8.13, uses two Ac-
ceptEventActions stereotyped with NonBlockable in parallel to test the current state of the plant,
hence, defines the adequate control force, then sends to the Plant, and finally pauses (using the
stereotype Pausable in the DecisionNode). Due to the constructive semantics, even though the ac-
cept actions are stereotyped with nonblockable, they only return value when there is an available
value different from the absent or there is no chance for the emission of those signals. As there are
activities that can generate those signals during a macro2-step, these actions holds the execution
of the controller until the definition of the Edge in the semantics. Therefore, the determination of
the control force occurs when there is no more chance for physical time consumption in the current
macro2-step. Furthermore, the controller behavior is instantaneous, which means the state of the
plant is received, processed by discrete behavior and sent at the same macro2-step.

Note if in a given macro2-step the signals PlantInRange and PlantOutRange are both absent, the
controller dies (its classifier behavior ends) because both control tokens go to the FlowFinalNode2.
Moreover, the presence of both signals in the same macro2-step generates a nondeterministic behav-
ior. Fortunately, the situation where both signals are present at the same macro2-step is guaranteed
by a combination of the model and the semantics taking into account the CCSL defined in the
Fig. 8.15 because once one of these signals are defined no more continuous evolution occurs (the
physical time consumption is variable but uniquely defined), and then it is impossible to satisfy at
the same macro2-step the domains DiscreteDomainForInRange and DiscreteDomainForOutRange.

2This issue can be resolved by changes in the model, e.g., establishing a priority

94

Figure 8.12 - The behavior of the activity plantInRange.

Nevertheless, if someone changes the CCSL, e.g., due to the needs of a composition, it can be the
case that the system is not constructive because the emission of different ControlSignals occurs at
the same macro2-step.

The actClassifierBehavior from Plant, shown in Fig. 8.14, instantiates the pattern Sample-then-
output (see 7.6) because, in order to achieve constructiveness, it uses the stereotype Previous,
with an initial value as 0 for the control force, in the action AcceptEventAction_controlForce and
it stereotypes the reading actions of the attributes from the parts (CBReadStructuralFeatureAc-
tion_p and CBReadStructuralFeatureAction_v) with Edge. The main effects achieved are: (1) the
composition with the controller is constructive, (2) the control force used for the initial value prob-
lem is defined by the previous controller execution (or 0 in the first activation of the plant) and it
holds during the DAEs solving and (3) when the edge is defined the values of position and velocity
are sampled.

Note the plant breaks if the previous macro2-step did not execute the controller because the null
value is returned by the accept action, and then the next read action breaks3.

Temporal concerns

Finally, Fig. 8.15 shows the CCSL that defines the system as an enichronous one. One method to
relate two independent clocks is through subclocking so the CCSL defines two subclocks from the
reactionClk one for each clock related to the events. The semantics interprets these relationships as
a definition of a uniquely variable consumption of physical time for each macro2-step, therefore, if
after a macro-step there exists the clock PlantInRange or PlantOutRange, the Edge is defined (no
more continuous evolution, and one more macro-step). Note the model and this CCSL together
avoid the nondeterministic case where both clocks are present in the same macro2-step, while it
does not enforce that a tick from reactionClk should tick one of the subclocks (which can cause

3Therefore, the model should be enhanced to remove this issue (see Fig. 8.25 for one solution
based on changing the model.).

95

Figure 8.13 - The classifier behavior for the Controller.

the permanent interruption of the controller, it dies in this case).

Table 8.2 shows the synchronous streams for this example, using the same convention presented
previously.

The results can be roughly explained as follows. Each macro2-step starts with the execution of a
macro-step, which evaluates actClassifierBehavior that defines the value for controlForce using the
previous signal from the controller or zero for its first activation and it blocks on the reading of the
values for the mass achieved at the edge. In the same macro-step, the controller is evaluated and
it blocks on the accept actions for the plant state. Therefore, a fixpoint is reached in the macro-
step finishing it. Afterwards, the semantics determines the equations as discussed above and solve
them until the satisfaction of the DiscreteDomainForInRange, DiscreteDomainForOutRange or
DiscreDomainForHitTheFloor. In case of DiscreDomainForHitTheFloor, the continuous evolution
is frozen, a new macro-step is evaluated, and then the activity actHitTheFloor can evolve changing
the value of velocity and sending the signal HitTheFloor. Hence, the continuous evolution is un-
frozen until the satisfaction of one DiscreteDomain. At some point, the semantics detects a clock
related to the reactionClk, and then defines the edge. Once more, a macro-step is evaluated, which

96

Figure 8.14 - The classifier behavior for the Plant and a possible description using Alf.

let the plant classifier behavior emit the plant state and the controller emit the control force.

Note during the third macro2-step it occurs a zero-crossing in the plant (DiscreDomainForHitThe-
Floor), it is processed and the macro2-step continues until the presence of one of the clocks related
to the reactionClk, furthermore, the behavior’s of the controller is instantaneous, i.e., its output is
available in the same macro2-step. Therefore, the zero-crossings detected in the plant or in other
possible composed components do not change the semantics of the plant/controller composition.

Lastly, due to the magnitude of the control force the system is extremely sensitive to the step size
used in the numerical approximation of the DAEs so the marginal stability shown in the numerical
results above is coupled with the step 0.001s received by the semantics as a parameter for the
forward Euler approximations, which in turn leads to the graph shown in Fig. 8.8.

Using the Distributed Package

97

Figure 8.15 - The clock constraints defining the BasketBall as an enichronous system.

Table 8.2 - Synchronous streams for BasketBall using hybrid fUML.
Source: hybrid fUML’s simulator.

macro2-step 1 macro2-step 2 macro2-step 3
Variables
mass.mass 1 1 1
gravitationalAcceleration -9.81 -9.81 -9.81
controlForce -24254 0 -24254
mass.position 10 ≈ 10 ≈ 10
mass.velocity 0 ≈ −24.26 ≈ 0
Signals
PlantInRange true � true
P lantOutRange � true �
ControlForce true true true
ControlForce.force −24254 0 -24254
Clocks
clock(ControlForce) true true true
currentT ime(ControlForce) 1 2 3
clock(PlantInRange) true false true
currentT ime(PlantInRange) 1 1 2
clock(PlantOutRange) false true false
currentT ime(PlantOutRange) 0 1 1
currentT ime(reactionClk) 1 2 3

The BasketBall is available in the project Hybrid Models, specifically, in
the folder BouncingBallControlled\hybridfUML that contains the model
bouncingBallReviewedControllerZeroCrossing. Moreover, it contains the traces for a
run of this model.

The evaluation of this model regarding hybrid fUML can be performed as follows.

a) Call the configured run EmbeddingM1_ASM - BouncingBallReviewedControllerZeroCrossing.
The transformation generates the file
Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

b) The generated file must be copied into the directory
Hybrid fUML ASMs\embeddedModel in order to be evaluated.

98

c) Run the external tool Hybrid fUML;

d) Run the following commands in the console:

Load hybrid fUML

:p hybfUML.p

Call initial rule from hybrid fUML

fire1 (rule_fUML_initEvent 0.001)

traceFH

Call main rule from hybrid fUML for evaluation of three macro2-steps

fire 3 (trace traceFG rule_fUML_mainHyb)

Exit the hybrid fUML

fire1 (trace traceFG skip)

:quit

e) Compare the generated traces in the directory Hybrid fUML ASMs\hybridfUML\traces
shown in Fig. 8.16 with Table 8.2;

Figure 8.16 - The trace for the evaluation of 3 macro2-steps from BasketBall.

99

8.3 Time-Triggered Systems

Regarding time-triggered systems, three examples are shown. The treatment of the DAEs and
continuous evolution are the same from the previous examples, while the difference is how to
determine the consumption of physical time. The first example is the BasketBall, a turn on-off
controller, modeled as a time-triggered system. Afterwards, the SpringMassDamper, a proportional
controller, is modeled using a mono-periodic behavior and, finally, using a multi-periodic behavior.

8.3.1 BasketBall as a time-triggered system

Recall the BasketBall modeled as a time-triggered is roughly described as follows. The controller
periodically checks the kinetic energy of the hybrid plant (matching the dynamics of the system),
when it is under a threshold the force actuator is “turned on”, otherwise it is “turned off”.

Note the plant to be controlled is the BouncingBall presented in the previous examples, an event-
triggered system, furthermore, the controller is a time-triggered system (a periodic controller based
on samples). Therefore, according to the corollary 7.3 the types of systems are incompatible, and,
consequently, the corollary 7.4 determines that the only possible resultant composition is a time-
triggered system.

Structure

From the description above and starting from the structure of the previous example (see Fig. 8.9),
one can remove the signals PlantInRange and PlantOutRange as well as the elements defined to
support their emission, what leads to the class diagram shown in Fig. 8.17.

Figure 8.17 - The structure of timed BasketBall modeled using hybrid fUML and library’s
components.

100

All the reminiscent elements in the structure of the timed BasketBall are the same from the previous
version, the differences are: the controller behavior and the CCSL defined.

Discrete Behavior

The controller is changed to receive the plant state (blocking read) instead of PlantInRange or
PlantOutRange, hence, the kinetic energy is checked using discrete behavior applying the same
previous conditions described in the DiscreteDomains, then the control force is emitted, and,
lastly, the activity pauses (DecisionNode stereotyped by Pausable). Fig. 8.18 shows the controller
behavior.

Recall the plant instantiates the pattern sample-then-output so the controller receives the plant
state only after the continuous evolution was performed and the system is at the edge.

Figure 8.18 - The classifier behavior for the Controller and a possible representation using
Alf.

Temporal concerns

Finally, the CCSLs shown in Fig. 8.19 define that the system is enichronous. As a time-triggered
system it defines that physicalClk is the discretization of idealClk by 0.001 seconds, then it declares

101

a logical clock that ticks for each tick from the physicalClk (isPeriodicOn physicalClk period 1),
and, finally, it equalizes the reactionClk with the newly declared clock. The semantics interprets
these relationships as a definition of a fixed consumption of physical time for each macro2-step,
which means each macro2-step consumes 0.001 seconds in its continuous evolution (if there is no
DAEs to be solved, the semantics generates an error because time is expected to evolve but there
is no DAEs to be solved).

Figure 8.19 - The clock constraint defining the timed BasketBall as an enichronous system.

Table 8.3 shows the synchronous streams for this example, using the same convention presented
previously except for the exhibition of the physicalClk.

The results can be roughly explained as follows. Each macro2-step starts with the execution of a
macro-step, which evaluates actClassifierBehavior that defines the value for controlForce using the
previous signal from the controller or zero for its first activation and it blocks on the reading of
the values for the mass achieved at the edge. In the same macro-step, the controller is evaluated
and it blocks on the accept action for the plant state. Therefore, a fixpoint is reached in the
macro-step finishing it. Afterwards, the semantics determines the equations as discussed above
and solve them until the satisfaction of the DiscreteDomainHitTheFloor or the elapsed time equals
to 0.001 seconds. In case of DiscreDomainForHitTheFloor, the continuous evolution is frozen, a
new macro-step is evaluated, and then the activity actHitTheFloor can evolve changing the value
of velocity and sending the signal HitTheFloor. Hence, the continuous evolution is unfrozen until
the satisfaction of the DiscreteDomainHitTheFloor or the elapsed time equals to 0.001 seconds.
At some point, the physicalClk reaches the time horizon and then it defines the edge. Once more,
a macro-step is evaluated, which let the plant classifier behavior emit the plant state, and the
controller emit the control force.

Note the first macro2-step does not consume physical time because the semantics is defined to
solve the DAEs using the interval between the previous tick of the reactionClk and the current
one (at the first macro2-step there is no previous tick). Recall this interval is used for numerical
approximations, while the macro2-step is executed instantaneously from an external viewpoint.

The model defines that plant and controller run in lock-step so the issues about the presence or
absence of events generated by the plant are removed (from the event-triggered version), while
the controller is always executed based on the current plant state. Therefore, the zero-crossings

102

Table 8.3 - Synchronous streams for timed BasketBall using hybrid fUML.
Source: hybrid fUML’s simulator.

macro2-step 1 macro2-step 2 macro2-step 3
Variables
mass.mass 1 1 1
gravitationalAcceleration -9.81 -9.81 -9.81
controlForce -24254 0 0
mass.position 10 ≈ 10 ≈ 9.97
mass.velocity 0 ≈ −24.26 ≈ −24.27
Signals
ControlForce true true true
ControlForce.force −24254 0 0
Clocks
clock(ControlForce) true true true
currentT ime(ControlForce) 1 2 3
currentT ime(reactionClk) 1 2 3
physicalClock 0 0.001 0.002

detected in the plant or in other possible composed components do not change the semantics of the
plant/controller composition even if someone changes the CCSL (maintaining as a time-triggered
system). Nonetheless, a small change in the periodicity leads to an utterly different numerical
results as discussed in the previous example. Moreover, the collection of the signal PlantState for
the period 0.001 seconds generates the same graph shown in Fig. 8.8.

Finally, this is the simplest form to deal with physical time in synchronous languages, where each
macro-step consumes a fixed amount of physical time.

Using the Distributed Package
The timed BasketBall is available in the project Hybrid Models, specifically,
in the folder BouncingBallControlled\hybridfUML that contains the model
bouncingBallReviewedController. Moreover, it contains the traces for a run of this model.

The evaluation of this model regarding hybrid fUML can be performed as follows.

a) Call the configured run EmbeddingM1_ASM - BouncingBallReviewedController. The
transformation generates the file
Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

b) The generated file must be copied into the directory
Hybrid fUML ASMs\embeddedModel in order to be evaluated.

c) Run the external tool Hybrid fUML;

d) Run the following commands in the console:

Load hybrid fUML

103

:p hybfUML.p

Call initial rule from hybrid fUML

fire1 rule_fUML_initTimed

traceFH

Call main rule from hybrid fUML for evaluation of three macro2-steps

fire 3 (trace traceFG rule_fUML_mainHyb)

Exit the hybrid fUML

fire1 (trace traceFG skip)

:quit

e) Compare the generated traces in the directory Hybrid fUML ASMs\hybridfUML\traces
shown in Fig. 8.20 with Table 8.3;

Figure 8.20 - The trace for the evaluation of 3 macro2-steps from timed BasketBall.

104

8.3.2 SpringMassDamper

The example shown in Fig. 8.21 is adapted from (ELMQVIST et al., 2012) in such a way to be
compatible with available version of Modelica specification in OpenModelica ((OSMC), 2014).

package SpringMassDamperPackage
// Plant
model Plant

parameter Modelica.SIunits.Mass m = 1;
parameter Modelica.SIunits.TranslationalSpringConstant k = 1;
parameter Modelica.SIunits.TranslationalDampingConstant b = 0.1;
Modelica.SIunits.Position x(start = 1, fixed = true) "Position";
Modelica.SIunits.Velocity v(start = 0, fixed = true) "Velocity";
Modelica.SIunits.Force f "Force";

equation
assert(m > 0, "Mass is outside of the domain of validity", AssertionLevel.error);
der(x) = v;
m * der(v) = f - k * x - b * v;

end Plant;
//Controller
model Controller

extends Plant;
constant Real K = 1 "Gain of speed P controller";
constant Modelica.SIunits.Velocity vref = 2 "Speed ref.";
discrete Real vd;
discrete Real u;

equation
//SAMPLED-DATA SYSTEM

when sample(0, 1) then
vd = v;

u = K * (vref - vd);
f = u;

end when;
end Controller;

end SpringMassDamperPackage;

Figure 8.21 - SpringMassDamper modeled using Modelica.
Source: Adapted from (ELMQVIST et al., 2012).

It models a continuous plant composed of a spring, a mass and a damper and described by the
initial value problem 8.2.

x =
[
position

velocity

]
, x ∈ R2 (8.2a)

f1(t) := ẋ1 = x2 (8.2b)

f2(t) := mẋ2 = F (t)− kx1 − bx2 (8.2c)

x1(0) = 1 (8.2d)

x2(0) = 0 (8.2e)

where m is the mass of the mass, k is the spring constant (the spring force is proportional to the
position), b is the damping coefficient (the damper force is proportional to the velocity) and F(t)
is an external force used to control the plant.

A proportional controller for a spring-mass-damper plant is modeled providing the controlled ex-

105

ternal force for the plant. It is a discrete controller so it is based on sampled data retrieved
from the continuous plant. This is described by the equations encompassed by when sample(0, 1)
in Fig. 8.21, which means starting from time 0 for each second this set of equations should be
evaluated. The constructor when equations defines conditional functions, moreover, using sample
operator a zero-crossing detection can be defined based on the evolution of physical time simulated
by Modelica.

This example is a minimalist time-triggered system because it retrieves the plant state periodically,
and this period also triggers the discrete computation of the control force as well as the sending
of the control force to the plant. Indeed, there is only one period due to the instantaneous effect
desired for the closed loop (see Example 8.3.2). However, the example 8.3.3 models a variation,
where an observer, using another period, checks the control force against a threshold.

The physical time consumption was defined by events or by a relation with the reactionClk (the
simplest form to deal with physical time in synchronous languages until now. This example intro-
duces an elaborated technique used in synchronous language to deal with physical time, which is
the reception of signals meaning time. For example, each Tick means one second. While previous
techniques do not need external collaboration to proceed, the one introduced in this example needs
one or more behaviors that generate the signals meaning time so, in order to support simulation,
the system is closed (the external behavior is modeled inside the system).

Different from synchronous languages, the semantics of a hybrid synchronous language deals with
those signals (meaning time) retrieving the time horizon for a mandatory continuous evolution (it
shall have at least one active object with DAEs enabled). Note the hybrid synchronous semantics
of those signals does not conflict with the abstract notion of time from the synchronous languages
(multiform of time) because when those signals are present the semantics’s physical time evolves
synchronously with the external one, whereas when they are absent there is no physical time
advancement in a time-triggered system.

As a result, it is possible to process a macro2-step containing only pure discrete behaviors without
any impact on the hybrid behavior (triggered by events generated outside of the closed model),
and the notion of different (real-time) rates of execution for discrete behaviors emerges (see next
example).

Structure

Fig. 8.22 shows the structure of the system. The system is modeled with three active classes:
SpringMassDamperPlantController, Plant, and Controller. The main points are:

a) SpringMassDamperPlantController models the closed-system, and its parts (Plant and
Controller) interaction is better described using the composite structure diagram shown
in Fig. 8.23. Its classifier behavior SpringMassDamperPlantControllerClassifierBehavior
generates the signals meaning time to enable simulation.

b) Plant has the same set of variables and equations (continuous behavior described in
PlantDynamics) from the Modelica model in Fig. 8.21. Additionally, there is the Plant-
DynamicsDomain, which reflects the transformation from the explicit assumption (as-

106

sert) into the domain for the set of equations. Further, it has two behaviors: PlantClas-
sifierBehavior and PlantConstructor. The latter one instantiates the properties and
initial values. PlantClassifierBehavior is the behavior in charge of the state’s manage-
ment of the active class, and is examined later. Note this plant uses equations, while
the previous ones use libraries.

c) Controller uses constants embedded in the discrete behavior, further, the discrete vari-
ables are modeled as signals. ControllerClassifierBehavior is the behavior in charge of
the state’s management of the class, and is examined later.

d) PlantStateSignal is the signal that contains the discrete data about the velocity (vd in
the Modelica model).

e) ControlSignal contains the control force (u in the Modelica model).

f) Tick is the signal to be received by the Controller for each activation.

Figure 8.22 - The structure of SpringMassDamper modeled using hybrid fUML.

Fig. 8.23 shows the classical interaction between plant and controller for a discrete controller,
including the signal tick (Fig. 8.23 uses the gray color to indicate that a port is conjugated). The
exception is that tick is not received by the plant containing sensors and actuators because plant
is defined to be flexible (this is elaborated hereafter).

Discrete Behavior

Fig. 8.24 showns the SpringMassDamperPlantControllerClassifierBehavior, which is in charge of
sending a Tick signal to the Controller (CSendTick). In addition, it uses the stereotype Pausable
in two control nodes (JoinNode and DecisionNode). The join node stereotyped in the beginning
of the behavior pauses the behavior without the generation of a Tick, and, consequently, it is

107

Figure 8.23 - The composite structure of SpringMassDamper modeled using hybrid fUML.

possible to analyze the semantics for a time-triggered system without the reception of a signal
meaning time. The semantics of the behavior is simple, the Tick signal is present only in the even
macro2-steps (see Table 8.4).

Figure 8.24 - The classifier behavior for the SpringMassDamperPlantController.

The plant classifier behavior is shown in Fig. 8.25. Once again, it instantiates the pattern Sample-
then-output (see 7.6) because, in order to achieve constructiveness, it uses the stereotype Previous,
with an initial value as 0 for the control force, in the action PAcceptEventAction_controlSignal and
it stereotypes the reading action (PBReadStructuralFeatureAction_velocity_Edge) with Edge. The
main effects achieved are: (1) the composition with the controller is constructive, (2) the control
force used for the initial value problem is defined by the previous controller execution (or 0 in the
first activation of the plant) and it holds during the DAEs solving and (3) when the edge is defined
the value of velocity is sampled.

108

However, differently from the previous presented behavior (see Fig. 8.14), it uses a condition to
check if the controller ran in the previous macro2-step. If the controller ran in the previous macro2-
step the control force is retrieved from the signal, otherwise there is no change in the control force
and the value holds during a possible continuous evolution until the edge. This condition avoids
an error when the controller did not run in the previous macro2-step, and it enables broadcasting
the sampled plant state even in the absence of the control signal. Therefore, this plant is flexible
attending different temporal demands for the updated sample plant state.

Figure 8.25 - The classifier behavior for the Plant and a possible description using Alf.

Fig. 8.26 shows the ControllerClassifierBehavior, which awaits for a Tick (blocking read, it returns
value different from null only), then it awaits the plant state, hence, the proportional control law
is performed (force = (2− velocity)) and the signal is sent.

Nevertheless, what makes this controller different is its time-triggered nature. Due to the waiting
for a signal meaning time, it only runs when there is an updated sampled plant state that matches

109

its temporal requirements. These temporal requirements remain abstract in the behavior (CCSLs
define what it really means).

Figure 8.26 - The classifier behavior for the Controller.

Temporal concerns

Lastly, the CCSLs shown in Fig. 8.27 define that the system is enichronous. As a time-triggered
system it defines that physicalClk is the discretization of idealClk by 0.01 seconds, it declares a
logical clock that ticks with a period of 100 ticks from the physicalClk (isPeriodicOn physicalClk
period 100), and then it equalizes the clock from the SecondSignalEvent with the newly declared
clock. Afterwards, it determines that the newly declared clock is a subclock from the reactionClk.

The semantics interprets these relationships as a definition of a fixed known consumption of physical
time for each tick from the clock SecondSignalEvent in a macro2-step, which means a macro2-step
may consume 1 second in its continuous evolution (if there is no DAEs to be solved, the semantics
generates an error because time is expected to evolve but there is no DAEs to be solved).

110

Figure 8.27 - The clock constraints defining the SpringMassDamper as an enichronous
system.

Table 8.4 shows the synchronous streams for this example including the physicalClk. Additionally,
Fig. 8.28 shows the continuous and discrete values produced by the hybrid fUML’s simulator and
OpenModelica ((OSMC), 2014).

The results can be roughly explained as follows. Each macro2-step starts with the execution of a
macro-step, which evaluates PlantClassifierBehavior that defines the value for controlForce when
there exists previous signal from the controller or zero for its first activation and it blocks on the
reading of the velocity achieved at the edge. In the same macro-step, the controller is evaluated and
it blocks on the accept action for the Tick. Also, the SpringMassDamperPlantControllerClassifier-
Behavior pauses in the join node. Therefore, a fixpoint is reached in the macro-step finishing it.
Afterwards, the semantics detects that it is evaluating a time-triggered system and there is neither
direct relationship between reactionClk and physicalClk or a clock related to the reactionClk and
physicalClk, therefore, the semantics define the edge without consumption of physical time. Once
more, a macro-step is evaluated, which let the plant classifier behavior emit the plant state, the
controller behavior is still blocked by the absence of the Tick. At some point, the SpringMass-
DamperPlantControllerClassifierBehavior emits the Tick, and then the semantics detects it and
define a time horizon of 1 second for the current macro2-step. Afterwards, the semantics determines
the equations as discussed above and solve them until the elapsed time equals to 1 seconds and
then it defines the edge. The edge allows the plant classifier behavior to emit the updated sampled
plant state, which is instantaneously received and processed by the controller broadcasting the
control force.

As explained before, the first Tick received by the system does not generate continuous behavior
evaluation (shown in Fig. 8.28 by three ticks of the reactionClk in the value 0 from the physicalClk)
because the continuous behavior is evaluated from the previous tick to the current one.

Fig. 8.28 shows that the numerical results from the hybrid fUML’s simulator match those generated
by OpenModelica ((OSMC), 2014). Moreover, it shows how the physicalClk evolves in function of the
reactionClk and of the SecondSignalEvent. Note the PlantStateSignal is generated, at least, twice for
a given SecondSignalEvent due to its behavior that always broadcast the updated sampled data for
every macro2-step, whereas the ControlForceSignal is uniquely defined for each SecondSignalEvent.

111

Table 8.4 - Synchronous streams for SpringMassDamper using hybrid fUML.
Source: hybrid fUML’s simulator.

macro2-step 1 macro2-step 2 macro2-step 3
Variables
mass 1 1 1
springConstant 1 1 1
dampingCoefficient 0.1 0.1 0.1
controlForce 0 0 2
position 1 1 1
velocity 0 0 0
Signals
SecondSignalEvent � true �
ControlSignal � true �
ControlSignal.force ⊥ 2 ⊥
PlantStateSignal true true true
P lantStateSignal.velocity 0 0 0
Clocks
clock(SecondSignalEvent) false true false
currentT ime(SecondSignalEvent) 0 1 1
clock(ControlSignal) false true false
currentT ime(ControlSignal) 0 1 1
clock(PlantStateSignal) true true true
currentT ime(PlantStateSignal) 1 2 3
currentT ime(reactionClk) 1 2 3
physicalClk 0 0 0

Using the Distributed Package
The SpringMassDamper is available in the project Hybrid Models, specifically,
in the folder SpringMassDamperControlled\hybridfUML that contains the model
SpringMassDamperPlantControllerDifferentPreReaction. Moreover, it contains the traces for
a run of this model as well as an equivalent model defined using Modelica (ASSOCIATION, 2012).

The evaluation of this model regarding hybrid fUML can be performed as follows.

a) Call the configured run EmbeddingM1_ASM - SpringMassDamperPlantControllerDifferentPreReaction.
The transformation generates the file
Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

b) The generated file must be copied into the directory
Hybrid fUML ASMs\embeddedModel in order to be evaluated.

c) Run the external tool Hybrid fUML;

d) Run the following commands in the console:

Load hybrid fUML

112

Figure 8.28 - Simulation data comparing a Modelica’s simulator and hybrid fUML’s sim-
ulator.
Source: ((OSMC), 2014) (integration method: Euler, integration step size:
0.01).

:p hybfUML.p

Call initial rule from hybrid fUML

fire1 rule_fUML_initTimed2

traceFH

Call main rule from hybrid fUML for evaluation of three macro2-steps

fire 3 (trace traceFG rule_fUML_mainHyb)

Exit the hybrid fUML

fire1 (trace traceFG skip)

:quit

e) Compare the generated traces in the directory Hybrid fUML ASMs\hybridfUML\traces
shown in Fig. 8.29 with Table 8.44;

4Table 8.4 shows the clocks for the signals ControlSignal and PlantStateSignal which are not
necessarily the same from the signal events used by the model.

113

Figure 8.29 - The trace for the evaluation of 3 macro2-steps from SpringMassDamper.

8.3.3 A multi-periodic SpringMassDamper

Taking into account the Example 8.3.2 in which a hybrid plant (SpringMassDamper) is controlled
by a discrete proportional controller. The current example is aimed to explore how the notion of
different (real-time) rates of execution for discrete behaviors are supported by hybrid fUML.

Regarding the previous example and in order to evaluate multi-periodicity in a hybrid synchronous
language, where only harmonic periods - defined by integers multiple of the shortest period - are
valid, one can define an observer that checks if the control force emitted by the controller is in a
previously defined range.

Therefore, the previous example is extended with an observer. The observer is a time-triggered
component that is performed two times slower than the controller, and it checks if the control force
is less than 10 then it emits a new signal ControllerIsOutOfRange. Hence, without changes in the
continuous behavior of the system and analyzing the Fig. 8.28, the signal ControllerIsOutOfRange
shall be emitted in each macro2-step where the observer behavior runs.

114

Structure

Fig. 8.30 shows the structure for the system. The structural differences from the previous example
are the additions of an active class for the Observer as well as its classifier behavior and the signal
emitted by it ControllerIsOutOfRange.

Figure 8.30 - The structure of multi-periodic SpringMassDamper modeled using hybrid
fUML.

Also, the active objects are connected accordingly. The composite structure shown in Fig. 8.31 de-
termines how the communication between the active objects is established as well as between the
system and the environment. Likewise synchronous languages, hybrid fUML supports the substi-
tution of the behavior SpringMassDamperPlantControllerClassifierBehavior by external writings
in the input ports, now, explicitly defined in the model.

Therefore, one can compose the system plugging other components to the input ports or the
output ports (conjugated ports - output ports - are indicated by the gray color). Still regarding
the composite structure shown in Fig. 8.31, it is the first example that uses broadcasting explicitly
because the control signal is sent to the plant and to the observer instantaneously.

Discrete Behavior

Fig. 8.32 shows the extended version for the SpringMassDamperPlantControllerClassifierBehavior.
This behavior creates the ports to interact with the environment, namely SCreateObjectAction_-
second, SCreateObjectAction_2seconds and SCreateObjectAction_alarm.

Afterwards, it consumes tree macro2-steps in its internal loop, the first macro2-step is consumed by
the join node stereotyped with Pausable, the second one emits the signal Tick for the ports second-

115

Figure 8.31 - The composite structure of multi-periodic SpringMassDamper modeled using
hybrid fUML.

Figure 8.32 - The classifier behavior for the SpringMassDamperPlantController.

Port and 2SecondsPorts (those signals are broadcasted to the controller and observer respectively)
and, finally, it emits the signal Tick for the port secondPort. Therefore, the expected semantics
for the system’s behavior is that in one macro2-step the state of the system is not changed, the
subsequently macro2-step the controller, the plant and the observer may change the state of the

116

system, and the next macro2-step only the controller and the plant may change the state of the
system.

Fig. 8.33 shows the ObserverClassifierBehavior, it has the typical structure of a time-triggered
component, i.e., it awaits the signal meaning time OAcceptEventAction_2Seconds, and then it
awaits the signals to be processed OAcceptEventAction_controlSignal. With the control signal, it
checks the predefined range, and if it is not in the range a signal is sent to its output port.

Figure 8.33 - The classifier behavior for the Observer.

Temporal concerns

Lastly, the CCSLs shown in Fig. 8.34 are defined ensuring that the multi-periodic SpringMass-
Damper is an enichronous system. They are an extension of the previous ones (see Fig. 8.27),
where a logical clock with period 200 is defined and equalized to the 2SecondsSignalEvent in
ClockConstraint2Seconds, and a tree is explicitly declared in the ClockConstraintReactionClk us-
ing subclocking. The tree has as root the reactionClk, its child is SecondSignalEvent, which has as

117

child the 2SecondsSignalEvent.

The semantics interprets these CCSLs allowing two types of macro2-steps: (1) a pure discrete one
that ticks only reactionClk and (2) a hybrid one that ticks the reactionClk and the SecondSig-
nalEvent. In addition, when the SecondSignalEvent ticks the 2SecondsSignalEvent may tick only
when its period is respected. For example, at 1 second, if the system receives a 2SecondsSignalEvent
the semantics generates an error because it does not respect the period defined so the indirect re-
lationship between the clocks SecondSignalEvent and 2SecondsSignalEvent shall be respected.

Figure 8.34 - The clock constraint defining the multi-periodic SpringMassDamper as an
enichronous system.

Table 8.5 shows the synchronous streams for this example including the physicalClk. As the Spring-
MassDamperPlantControllerClassifierBehavior defines two hybrid macro2-steps instead of one in
the previous example, the results are shifted left so the third macro2-step contains continuous
evolution. At the end of the third macro2-step the physicalClk has 1 second as value.

Note the clock of PlantStateSignal is equally fast as the reactionClock, which is a consequence of its
flexible behavior. In fact, one can use static analysis of the composite structure shown in Fig. 8.30
to infer that the only interesting rate of execution of the plant behavior is the execution’s rate of
the active class connected to it, namely the controller, and then define its execution’s rate as the
same of the controller5.

Using the Distributed Package
The multi-periodic SpringMassDamper is available in the project Hybrid Models, specif-
ically, in the folder SpringMassDamperControlled\hybridfUML that contains the model
SpringMassDamperPlantControllerDifferentPreReactionObserver. Moreover, it contains the
traces for a run of this model.

The evaluation of this model regarding hybrid fUML can be performed as follows.

5The operational semantics of hybrid fUML does not do this kind of inference, which is com-
monly found in synchronous declarative languages (BENVENISTE et al., 1991; HALBWACHS et al.,
1992)

118

Table 8.5 - Synchronous streams for multi-periodic SpringMassDamper using hybrid
fUML.
Source: hybrid fUML’s simulator.

macro2-step 1 macro2-step 2 macro2-step 3
Variables
mass 1 1 1
springConstant 1 1 1
dampingCoefficient 0.1 0.1 0.1
controlForce 0 0 2
position 1 1 ≈ 1.44
velocity 0 0 ≈ 0.80
Signals
SecondSignalEvent � true true
ControlSignal � true �
ControlSignal.force ⊥ 2 ≈ 1.19
2SecondsSignalEvent � true �
ControllerIsOutOfRange � true �
PlantStateSignal true true true
P lantStateSignal.velocity 0 0 ≈ 0.80
Clocks
clock(SecondSignalEvent) false true true
currentT ime(SecondSignalEvent) 0 1 2
clock(ControlSignal) false true true
currentT ime(ControlSignal) 0 1 2
clock(2SecondsSignalEvent) false true false
currentT ime(2SecondsSignalEvent) 0 1 1
clock(ControllerIsOutOfRange) false true false
currentT ime(ControllerIsOut . . .) 0 1 1
clock(PlantStateSignal) true true true
currentT ime(PlantStateSignal) 1 2 3
currentT ime(reactionClk) 1 2 3
physicalClk 0 0 1

a) Call the configured run
EmbeddingM1_ASM - SpringMassDamperPlantControllerDifferentPreReactionObserver.
The transformation generates the file
Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

b) The generated file must be copied into the directory
Hybrid fUML ASMs\embeddedModel in order to be evaluated.

c) Run the external tool Hybrid fUML;

d) Run the following commands in the console:

Load hybrid fUML

119

:p hybfUML.p

Call initial rule from hybrid fUML
fire1 rule_fUML_initTimed2

traceFH

Call main rule from hybrid fUML for evaluation of three macro2-steps
fire 3 (trace traceFG rule_fUML_mainHyb)

Exit the hybrid fUML
fire1 (trace traceFG skip)

:quit

e) Compare the generated traces in the directory Hybrid fUML ASMs\hybridfUML\traces
shown in Fig. 8.35 with Table 8.56;

Figure 8.35 - The trace for the evaluation of 3 macro2-steps from multi-periodic Spring-
MassDamper.

6Table 8.5 shows the clocks for the signals which are not necessarily the same from the signal
events used by the model.

120

8.3.4 InvertedPendulum

The inverted pendulum (OGATA, 2009; ROMERO et al., 2012; ROMERO; SOUZA, 2012; ROMERO;

FERREIRA, 2012) is a model of the attitude control for satellite launch vehicles at their departure.
The objective of the attitude control problem is to keep the vehicle in a vertical position. The
uniqueness of an inverted pendulum, due to its natural instability, provides various research in
areas of systems, control and hardware/software. Furthermore, the inverted pendulum is a classic
hybrid system, since it is composed of continuous behavior (stabilization of the pendulum in the
vertical axis) and discrete behavior (mode management).

This example considers the following requirements and assumptions regarding an inverted pendu-
lum mounted on a cart: there are requirements to control angle and angular velocity of the rod as
well as to control position and velocity of the cart, the state of the system can be fully observed,
the cart and the pendulum only move to right and left so it is a two-dimensional problem; the cart
and the pendulum are not affected by friction; the center of gravity of the pendulum’s rod is at its
geometric center; and its inertia momentum is zero (0). Consequently, the system can be described
according to Eq. 8.3 after its linearization (OGATA, 2009).

x =


position

velocity

angle

angularV elocity

 , x ∈ R4 (8.3a)

f1(t) := Mlẋ4 = (M +m)gx3 − u (8.3b)

f2(t) := Mẋ2 = u− gmx3 (8.3c)

where: M = 2 is the mass of cart, m = 0.1 is the mass of the rod, l = 0.5 is the length of the rod,
g = −9.81 is the Earth’s gravitational acceleration and u is the control force.

There are two modes of the required proportional controller: (1) fine mode - used when the pen-
dulum is stabilized demanding less effort, its proportional constant K was defined by the tech-
nique of pole placement and the result is Kfine = {0.1020408, 0.4081633, 26.63102, 4.2040816}
and (2) coarse mode - used when the pendulum is not well-stabilized demanding more effort,
its proportional constant K was defined by the technique of pole placement and the result is
Kcoarse = {417.95918, 208.97954, 613.55954, 136.4898}. In fact, the different Ks demand different
sample periods, however, the example is based on the fast rate (FORGET et al., 2008) equals to 0.05
seconds defined by Kcoarse. Such choice simplifies the discrete behaviors because only one sample
period is defined.

Table 8.3.4 shows the models for InvertedPendulum using Modelica, Hybrid Quartz and hybrid
fUML7. The controllers (in each language) have two modes determined by the variable modeFine.
When modeFine is true, Kfine is used to compute the control force u, otherwise Kcoarse is used. At

7Note these models can be defined differently using the same language.

121

this point, these models should be self-explained. Furthermore, hybrid fUML needs the additional
descriptions shown in Fig. 8.36. Finally, this work does not consider a textual representation for the
structure defined by a hybrid fUML model, consequently, only the UML class diagram is available
for comparison, while possible Alf representations are used to enable behavioral comparison based
on textual notations.

122

Ta
bl
e
8.
6
-C

om
pa

rin
g
th
e
m
od

el
s
fo
r
In
ve
rt
ed
Pe

nd
ul
um

us
in
g
M
od

el
ic
a,

H
yb

rid
Q
ua

rt
z
an

d
hy

br
id

fU
M
L.

M
o

d
el

ic
a

H
y

b
ri

d
Q

u
ar

tz
H

y
b

ri
d

fU
M

L

S
tr

u
ct

u
re

an
d

C
o

n
ti

n
u

o
u

s
B

eh
av

io
r

S
tr

u
ct

u
re

S
tr

u
ct

u
re

an
d

C
o

n
ti

n
u

o
u

s
B

eh
av

io
r

pa
ck

ag
e

Pe
nd

ul
um

Fi
na

lP
ac

ka
ge

mo
de

l
Pl

an
t

pa
ra

me
te

r
Mo

de
li

ca
.S

Iu
ni

ts
.M

as
s

M
=

2
"C

ar
t

ma
ss

";
pa

ra
me

te
r

Mo
de

li
ca

.S
Iu

ni
ts

.M
as

s
m

=
0.

1
"P

en
du

lu
m

ma
ss

";
pa

ra
me

te
r

Mo
de

li
ca

.S
Iu

ni
ts

.L
en

gt
h

l
=

0.
5

"P
en

du
lu

m
le

ng
th

";
Mo

de
li

ca
.S

Iu
ni

ts
.P

os
it

io
n

x;
Mo

de
li

ca
.S

Iu
ni

ts
.V

el
oc

it
y

x_
do

t;
Mo

de
li

ca
.S

Iu
ni

ts
.A

ng
le

th
et

a(
st

ar
t

=
0.

1)
;

Mo
de

li
ca

.S
Iu

ni
ts

.A
ng

ul
ar

Ve
lo

ci
ty

th
et

a_
do

t;
Mo

de
li

ca
.S

Iu
ni

ts
.F

or
ce

f;
eq

ua
ti

on
de

r(
x)

=
x_

do
t;

de
r(

th
et

a)
=

th
et

a_
do

t;
M

*
l

*
de

r(
th

et
a_

do
t)

=
(M

+
m)

*
9.

81
*

th
et

a
-

f;
M

*
de

r(
x_

do
t)

=
f

-
m

*
9.

81
*

th
et

a;
as

se
rt

(
(M

>
0

an
d

m
>

0
an

d
l

>
0)

,
"D

om
ai

n
of

va
li

di
ty

",
As

se
rt

io
nL

ev
el

.e
rr

or
);

en
d

Pl
an

t;
mo

de
l

Co
nt

ro
ll

er
ex

te
nd

s
Pl

an
t;

co
ns

ta
nt

Re
al

[4
]

kF
={

0.
10

20
40

8,
0.

40
81

63
3,

26
.6

31
02

,4
.2

04
08

16
};

co
ns

ta
nt

Re
al

[4
]

kC
={

41
7.

95
91

8,
20

8.
97

95
4,

61
3.

55
95

4,
13

6.
48

98
};

di
sc

re
te

Re
al

u;
di

sc
re

te
Bo

ol
ea

n
mo

de
Fi

ne
(s

ta
rt

=
tr

ue
)

"d
is

cr
et

e
st

at
e"

;
di

sc
re

te
Bo

ol
ea

n
mo

de
Ch

an
ge

=
fa

ls
e

"E
xt

er
na

l
ev

en
t"

;
eq

ua
ti

on

mo
du

le
Pe

nd
ul

um
Pl

an
tC

on
tr

ol
le

r(
ev

en
t

re
al

?i
ni

ti
al

An
gl

e,
hy

br
id

re
al

po
si

ti
on

,
hy

br
id

re
al

ve
lo

ci
ty

,
hy

br
id

re
al

an
gl

e,
hy

br
id

re
al

an
gu

la
rV

el
oc

it
y,

hy
br

id
re

al
fo

rc
e,

ev
en

t
mo

de
Ch

an
ge

)
{

an
gl

e
=

in
it

ia
lA

ng
le

;
Fl

at
te

ne
dP

la
nt

Co
nt

ro
ll

er
(p

os
it

io
n,

ve
lo

ci
ty

,
an

gl
e,

an
gu

la
rV

el
oc

it
y,

fo
rc

e,
mo

de
Ch

an
ge

);
} ma

cr
o

KF
=

[0
.1

02
04

08
,

0.
40

81
63

3,
26

.6
31

02
,

4.
20

40
81

6]
;

ma
cr

o
KC

=
[4

17
.9

59
18

,
20

8.
97

95
4,

61
3.

55
95

4,
13

6.
48

98
];

ma
cr

o
ma

ss
Ca

rt
=

2.
0;

ma
cr

o
le

ng
th

Ro
d

=
0.

5;
ma

cr
o

ma
ss

Ro
d

=
0.

1;
mo

du
le

Fl
at

te
ne

dP
la

nt
Co

nt
ro

ll
er

(h
yb

ri
d

re
al

po
si

ti
on

,
hy

br
id

re
al

ve
lo

ci
ty

,
hy

br
id

re
al

an
gl

e,
hy

br
id

re
al

an
gu

la
rV

el
oc

it
y,

hy
br

id
re

al
fo

rc
e,

ev
en

t
?m

od
eC

ha
ng

e)
{

bo
ol

mo
de

Fi
ne

;
hy

br
id

re
al

t;

D
is

cr
et

e
B

eh
av

io
r

C
o

n
ti

n
u

o
u

s
an

d
D

is
cr

et
e

B
eh

av
io

r
D

is
cr

et
e

B
eh

av
io

r

wh
en

sa
mp

le
(0

,
0.

05
)

th
en

if
mo

de
Ch

an
ge

th
en

mo
de

Fi
ne

=
no

t
pr

e(
mo

de
Fi

ne
);

el
se mo
de

Fi
ne

=
pr

e(
mo

de
Fi

ne
);

en
d

if
;

if
mo

de
Fi

ne
th

en
u

=
x

*
kF

[1
]

+
x_

do
t

*
kF

[2
]

+
th

et
a

*
kF

[3
]

+
th

et
a_

do
t

*
kF

[4
];

el
se u
=

x
*

kC
[1

]
+

x_
do

t
*

kC
[2

]
+

th
et

a
*

kC
[3

]
+

th
et

a_
do

t
*

kC
[4

];
en

d
if

;
f

=
u;

en
d

wh
en

;
en

d
Co

nt
ro

ll
er

;
en

d
Pe

nd
ul

um
Fi

na
lP

ac
ka

ge
;

t
=

0.
0;

mo
de

Fi
ne

=
tr

ue
;

wh
il

e(
tr

ue
)

{
ne

xt
(t

)
=

0.
0;

if
(m

od
eC

ha
ng

e)
ne

xt
(m

od
eF

in
e)

=
no

t
mo

de
Fi

ne
;

el
se

ne
xt

(m
od

eF
in

e)
=

mo
de

Fi
ne

;
if

((
mo

de
Ch

an
ge

an
d

no
t

mo
de

Fi
ne

)
or

(n
ot

mo
de

Ch
an

ge
an

d
mo

de
Fi

ne
))

ne
xt

(f
or

ce
)

=
po

si
ti

on
*

KF
[0

]
+

ve
lo

ci
ty

*
KF

[1
]

+
an

gl
e

*
KF

[2
]

+
an

gu
la

rV
el

oc
it

y
*

KF
[3

];
el

se ne
xt

(f
or

ce
)

=
po

si
ti

on
*

KC
[0

]
+

ve
lo

ci
ty

*
KC

[1
]

+
an

gl
e

*
KC

[2
]

+
an

gu
la

rV
el

oc
it

y
*

KC
[3

];
fl

ow
{}

un
ti

l
(t

ru
e)

;
fl

ow
{

dr
v(

t)
<-

1.
0;

dr
v(

fo
rc

e)
<-

0.
0;

dr
v(

po
si

ti
on

)
<-

co
nt

(v
el

oc
it

y)
;

dr
v(

an
gl

e)
<-

co
nt

(a
ng

ul
ar

Ve
lo

ci
ty

);
dr

v(
ve

lo
ci

ty
)

<-
((

co
nt

(f
or

ce
)

-
ma

ss
Ro

d
*

9.
81

*
co

nt
(a

ng
le

))
/

ma
ss

Ca
rt

);
dr

v(
an

gu
la

rV
el

oc
it

y)
<-

((
(m

as
sC

ar
t

+
ma

ss
Ro

d)
*

9.
81

*
co

nt
(a

ng
le

)
-c

on
t(

fo
rc

e)
)/

(m
as

sC
ar

t
*

le
ng

th
Ro

d)
);

}
un

ti
l

(c
on

t(
t)

>=
0.

05
);

}}

//
Co

nt
ro

ll
er

Cl
as

si
fi

er
Be

ha
vi

or
mo

de
Fi

ne
=

tr
ue

;
//

@p
au

sa
bl

e
do

{
ac

ce
pt

(T
ic

k)
;

//
@n

on
bl

oc
ka

bl
e

ac
ce

pt
(c

h:
Mo

de
Ch

an
ge

)
if

(c
h

!=
nu

ll
)

{
mo

de
Fi

ne
=

!
mo

de
Fi

ne
;}

ac
ce

pt
(p

la
nt

St
at

e:
Pl

an
tS

ta
te

Si
gn

al
);

lf
or

ce
=

0;
if

mo
de

Fi
ne

{
lf

or
ce

=
pl

an
tS

ta
te

.p
os

it
io

n
*

0.
10

20
40

8
+

pl
an

tS
ta

te
.v

el
oc

it
y

*
0.

40
81

63
3

+
pl

an
tS

ta
te

.a
ng

le
*

26
.6

31
02

+
an

gu
la

rV
el

oc
it

y
*

4.
20

40
81

6;
}

el
se

{
lf

or
ce

=
pl

an
tS

ta
te

.p
os

it
io

n
*

41
7.

95
91

8
+

pl
an

tS
ta

te
.v

el
oc

it
y

*
20

8.
97

95
4

+
pl

an
tS

ta
te

.a
ng

le
*

61
3.

55
95

4
+

an
gu

la
rV

el
oc

it
y

*
13

6.
48

98
;}

th
is

.p
la

nt
.R

ec
ep

ti
on

Co
nt

ro
l(

ne
w

Co
nt

ro
lS

ig
na

l(
fo

rc
e

=>
lf

or
ce

))
;

}
wh

il
e(

tr
ue

);

123

//PlantClassifierBehavior
//@pausable
do {
//@previous initValue=new ControlSignal(force => 0)
accept(ctl:ControlSignal);
this.force = ctl.force;
//@edge
p = this.position;
//@edge
v = this.velocity;
//@edge
a = this.angle;
//@edge
av = this.angularVelocity;
this.controller.ReceptionPlantState(
new PlantStateSignal(
position => p,
velocity => v,
angle => a,
angularVelocity => av));

} while(true);

//PlantConstructor
massCart = 2;
massRod = 0.1;
lengthRod = 0.5;
position = 0;
velocity = 0;
angle = 0.1;
angularVelocity = 0;

Figure 8.36 - Additional discrete behaviors and clock constraints for InvertedPendulum
modeled using hybrid fUML.

Using the Distributed Package
The InvertedPendulum is available in the project Hybrid Models, specifically, in the folder
PendulumControlled\hybridfUML that contains the model PendulumFinal. Moreover, it contains
the traces for a run of this model as well as equivalent models defined using Hybrid Quartz (GROUP,
2014) and Modelica (ASSOCIATION, 2012).

The evaluation of this model regarding hybrid fUML can be performed as follows.

a) Call the configured run EmbeddingM1_ASM - Pendulum. The transformation generates
the file
Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

b) The generated file must be copied into the directory
Hybrid fUML ASMs\embeddedModel in order to be evaluated.

c) Run the external tool Hybrid fUML;

d) Run the following commands in the console:

Load hybrid fUML

:p hybfUML.p

Call initial rule from hybrid fUML

fire1 rule_fUML_initTimed2

traceFH

124

Call main rule from hybrid fUML for evaluation of three macro2-steps

fire 3 (trace traceFG rule_fUML_mainHyb)

Exit the hybrid fUML

fire1 (trace traceFG skip)

:quit

e) Analyze the generated traces in the directory Hybrid fUML ASMs\hybridfUML\traces
shown in Fig. 8.37;

Figure 8.37 - The trace for the evaluation of 3 macro2-steps from InvertedPendulum.

8.3.5 Timepiece using SysML

A Timepiece is an instrument for measuring time. It is described by one ODE that defines the
derivative of a continuous property t equal to one (1) w.r.t. physical time, i.e., der(t) = 1.

The structure of the model is composed of: (1) a block Timepiece owning a part TimepieceCon-

125

straint and (2) the TimepieceConstraint, a constraint block, composed of two constraints. The
first constraint from TimepieceConstraint is the TimepieceDynamics that is a ModelicaEquation
defining the ODE discussed above. The second constraint states the domain of validity for the
TimepieceDynamics. The behavior of the model is defined by the mandatory activity Main that
creates an instance of Timepiece and starts it. In addition, as a reactive class (see pattern reactive
class 4.4), Timepiece has its classifier behavior which defines a non-instantaneous non-terminating
loop. Fig. 8.38 shows the model for the Timepiece.

Figure 8.38 - A well-formed and well-behaved SysML model for Timepiece regarding hy-
brid fUML.

This SysML model is a well-formed user-defined model for hybrid fUML because its behavior is
completely defined by elements of the abstract syntax of hybrid fUML. As it does not explic-
itly define clock constraints necessary for an enichronous model, it is assumed that the model is
a time-triggered model in which the physical time consumption of a macro2-step is fixed (it is
mandatory to inform the physical time consumption for the operational semantics using the rule
rule_fUML_initSim for a simulation).

Using the Distributed Package
The Timepiece is available in the project Hybrid Models, specifically, in the folder
Timepiece_SYSML\hybridfUML that contains the model timepiece. Moreover, it contains the
traces for a run of this model .

The evaluation of this model regarding hybrid fUML can be performed as follows.

a) Call the configured run EmbeddingM1_ASM - Timepiece. The transformation generates
the file
Hybrid fUML Transformations\transformedFiles\3syntax_userModel_embedded.gs.

b) The generated file must be copied into the directory
Hybrid fUML ASMs\embeddedModel in order to be evaluated.

c) Run the external tool Hybrid fUML;

126

d) Run the following commands in the console:

Load hybrid fUML

:p hybfUML.p

Call initial rule from hybrid fUML

fire1 (rule_fUML_initSim 100 0.01)

traceFH

Call main rule from hybrid fUML for evaluation of two macro2-steps

fire 2 (trace traceFG rule_fUML_mainHyb)

Exit the hybrid fUML

fire1 (trace traceFG skip)

:quit

e) Analyze the generated traces in the directory Hybrid fUML ASMs\hybridfUML\traces
shown in Fig. 8.39;

Figure 8.39 - The trace for the evaluation of 2 macro2-steps from Timepiece.

127

9 CONCLUSIONS

The difficulty in modeling and analyzing hybrid systems comes from the diversity of these systems,
and one promising approach to mitigate this issue is developing expressive and precise model-
ing languages, on which precision enables analysis. However, developing expressive and precise
modeling languages does not necessarily mean the emergence of a new language, on the contrary,
this work likewise other research projects propose precise semantics for subsets of
existent languages. Subsets of existent languages are defined since expressivity and precision
usually conflict, e.g., the size and complexity of a language (related to expressivity) may have
direct consequences on the size and complexity of its semantics (related to precision).

Taking into account the three viewpoints, namely system, hardware/software and control, hybrid
systems should be modeled and analyzed in such a way that the intersection of the views are also
object of analysis, in other words, it is the interaction of the views that determines the systems’
characteristics. Therefore, this work explores a language targeting the description of the system
view of hybrid systems composed of hybrid plants and discrete controllers in a such way that
analysis is possible. The language is a suitable complement for the dominant process-oriented
approach for system engineering, on which models are descriptive and support product lifecycle
management but do not have precise semantics.

The formal definition of the languages (synchronous fUML and hybrid fUML) is subject of peer-
review likewise extension (supported by the current developer’s guide). A large number of simpli-
fications are done through their definition, which are subject of extension, e.g., the restrictions on
token flow semantics, the function that computes whether a signal can be emitted at a macro-step
or not, the flattening process for active classes, numerical solving, etc... Regarding extensions, it is
a relevant topic the complete coverage of bUML in synchronous fUML, in particular, the activities
StructuredActivityNode, ExpansionNode and ExpansionRegion. Furthermore, the formal definition
of synchronous fUML in accordance with the L3 conformance level of fUML. Another basic demand
is the refinement of the ASMs in implementations for simulators.

129

REFERENCES

ALBERT, A. Comparison of event-triggered and time-triggered concepts with regard to
distributed control systems. In: Embedded World 2004, Nurnberg, Germany. [S.l.: s.n.],
2004. p. 235–252. 1, 72, 75

ASSOCIATION, M. Modelica - A Unified Object-Oriented Language for Systems
Modeling: Version: 3.3. 2012. https://www.modelica.org/documents/ModelicaSpec33.pdf.
Access date: 30.Sept.2013. 2, 72, 73, 74, 83, 88, 112, 124

ÅSTRÖM, K.; WITTENMARK, B. Computer-Controlled Systems: Theory and Design,
Third Edition. Dover Publications, 2011. (Dover Books on Electrical Engineering Series). ISBN
9780486486130. Available from: <http://books.google.de/books?id=9Y6D5vviqMgC>. 1, 69,
72, 75

BAUER, K. A New Modelling Language for Cyber-physical Systems. PhD Thesis (PhD)
— Department of Computer Science, University of Kaiserslautern, Germany, January 2012. 2, 70,
73, 84, 90

BEESON, M.; HALCOMB, J.; MAYER, W. Inconsistencies in the process specification language
(psl). In: ATE. [S.l.: s.n.], 2011. p. 9–19. 35

BENVENISTE, A.; BOURKE, T.; CAILLAUD, B.; POUZET, M. A hybrid synchronous
language with hierarchical automata: static typing and translation to synchronous code. In:
EMSOFT. [S.l.: s.n.], 2011. p. 137–148. 70

. Non-standard semantics of hybrid systems modelers. J. Comput. Syst. Sci., v. 78, n. 3,
p. 877–910, 2012. 2, 81

BENVENISTE, A.; BOURKE, T.; CAILLAUD, B.; PAGANO, B.; POUZET, M. A type-based
analysis of causality loops in hybrid modelers. In: 17th International Conference on Hybrid
Systems: Computation and Control (HSCC’14). Berlin, Germany: [s.n.], 2014. p. to
appear. Available from: <http://zelus.di.ens.fr/hscc2014/fullpaper.pdf>. 2, 73

BENVENISTE, A.; CAILLAUD, B.; GUERNIC, P. L. Compositionality in dataflow synchronous
languages: Specification and distributed code generation. Inf. Comput., v. 163, n. 1, p. 125–171,
2000. 40, 71, 82

BENVENISTE, A.; CASPI, P.; EDWARDS, S.; HALBWACHS, N.; GUERNIC, P. L.; SIMONE,
R. de. The synchronous languages 12 years later. Proceedings of the IEEE, v. 91, n. 1, p.
64–83, 2003. ISSN 0018-9219. 2, 25

BENVENISTE, A.; GUERNIC, P. L.; JACQUEMOT, C. Synchronous programming with events
and relations: the {SIGNAL} language and its semantics. Science of Computer
Programming, v. 16, n. 2, p. 103 – 149, 1991. ISSN 0167-6423. Available from:
<http://www.sciencedirect.com/science/article/pii/016764239190001E>. 118

BENYAHIA, A.; CUCCURU, A.; TAHA, S.; TERRIER, F.; BOULANGER, F.; GÉRARD, S.
Extending the standard execution model of UML for real-time systems. In: HINCHEY, M.;
KLEINJOHANN, B.; KLEINJOHANN, L.; LINDSAY, P.; RAMMIG, F.; TIMMIS, J.; WOLF,
M. (Ed.). Distributed and Parallel Embedded Systems (DIPES). Brisbane, Australia:

131

https://www.modelica.org/documents/ModelicaSpec33.pdf
http://books.google.de/books?id=9Y6D5vviqMgC
http://zelus.di.ens.fr/hscc2014/fullpaper.pdf
http://www.sciencedirect.com/science/article/pii/016764239190001E

Springer, 2010. (IFIP Advances in Information and Communication Technology, v. 329), p.
43–54. 25

BERRY, G. The Esterel v5 Language Primer - Version v5_91. 2000. 25, 27, 58, 69

BORDIN, M.; NAKS, T.; PANTEL, M.; TOOM, A. Compiling Heterogeneous Models:
Motivations and Challenges. 2012.
http://www.adacore.com/uploads_gems/Project_P_Hi-MoCo.pdf. Access date:
02.March.2014. 1, 2

BÖRGER, E.; STÄRK, R. F. Abstract State Machines. A Method for High-Level
System Design and Analysis. [S.l.]: Springer, 2003. 26

BOURKE, T.; SOWMYA, A. Delays in esterel. In: In Dagstuhl Seminar Proceedings
09481: SYNCHRON 2009, Dagstuhl, Germany. [S.l.: s.n.], 2009. 70

CARLONI, L.; Di Benedetto, M.; PASSERONE, R.; PINTO, A.;
SANGIOVANNI-VINCENTELLI, A. Modeling Techniques, Programming Languages,
and Design Toolsets for Hybrid Systems. 2004. Report on the Columbus Project,
http://www.columbus.gr. 2

CARTWRIGHT, R.; KELLY, K.; KOUSHANFAR, F.; TAHA, W. Model-centric cyber-physical
computing. 2006. In proceedings NSF Workshop on Cyber-Physical Systems, 2006, Austin,
Texas: USA. 1

ELMQVIST, H.; OTTER, M.; MATTSSON, S. E. Fundamentals of synchronous control in
Modelica. In: 9th Inter. Modelica Conference. [S.l.: s.n.], 2012. 9, 105

FIKES, R.; MCGUINNESS, D. L. An Axiomatic Semantics for RDF, RDF-S, and
DAML+OIL (March 2001). 2001. 22, 34

FORGET, J.; BONIOL, F.; D, D. L.; C, C. P.; POUZET, M. Programming languages for hard
real-time embedded systems. In: Embedded Real Time Software (ERTS’08), Toulouse,
France. [S.l.: s.n.], 2008. 121

FOUNDATION, E. Acceleo - Text generation from models - v 3.3.2.201302130808.
2014. http://www.eclipse.org/acceleo/. Access date: 09.Mar.2014. 5, 49

. Eclipse Modeling Tools - Eclipse Juno Service Release 2- Buildid:
20130225-0426. 2014.
https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr2. Access
date: 09.Mar.2014. 5

. Papyrus - v 0.9.2.v201302131112. 2014. http://eclipse.org/papyrus/. Access
date: 09.Mar.2014. 5

FRITZSON, P. Integrated UML-Modelica model-based product development for embedded
systems in openprod. In: Proceedings of 6th European Conference on Modelling
Foundations and Applications. [S.l.: s.n.], 2010. 2

GARGANTINI, A.; RICCOBENE, E.; SCANDURRA, P. A semantic framework for
metamodel-based languages. Autom. Softw. Eng., v. 16, n. 3-4, p. 415–454, 2009. 15, 16, 17, 26

GOEBEL, R.; SANFELICE, R.; TEEL, A. Hybrid dynamical systems. Control Systems,
IEEE, v. 29, n. 2, p. 28–93, 2009. ISSN 1066-033X. 84, 90

132

http://www.adacore.com/uploads_gems/Project_P_Hi-MoCo.pdf
http://www.eclipse.org/acceleo/
https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr2
http://eclipse.org/papyrus/

GRAVES, H. Integrating reasoning with SysML. In: INCOSE International Symposium.
Rome, Italy: [s.n.], 2012. 2

GROUP, E. S. Averest site for Hybrid Quartz compiler averest-2_2_3_1. 2014.
http://www.averest.org/. Access date: 06.12.2013. 9, 10, 53, 58, 88, 124

HALBWACHS, N.; LAGNIER, F.; RATEL, C. Programming and verifying real-time systems by
means of the synchronous data-flow language lustre. IEEE Trans. Softw. Eng., IEEE Press,
Piscataway, NJ, USA, v. 18, n. 9, p. 785–793, sep. 1992. ISSN 0098-5589. Available from:
<http://dx.doi.org/10.1109/32.159839>. 27, 58, 118

HENZINGER, T. The theory of hybrid automata. In: Logic in Computer Science, 1996.
LICS ’96. Proceedings., Eleventh Annual IEEE Symposium on. [S.l.: s.n.], 1996. p.
278–292. ISSN 1043-6871. 74, 76, 77, 78, 82

KATZ, R.; BORRIELLO, G. Contemporary Logic Design. Pearson Prentice Hall, 2005. ISBN
9780201308570. Available from: <http://books.google.de/books?id=Cv9yQgAACAAJ>. 53

KURZHANSKI, A. B.; VARAIYA, P. Impulsive inputs for feedback control and hybrid system
modeling. In: Advances In Dynamics And Control: Theory Methods And
Applications. [S.l.: s.n.], 2009. 84

LEE, E.; SESHIA, S. Introduction to Embedded Systems – A Cyber-Physical Systems
Approach. [S.l.]: http://leeseshia.org, 2011. ISBN 978-0-557-70857-4. 1

MODELDRIVEN.ORG. Foundational UML Reference Implementation Conformance
Statement for version 1.1.0. 2014. http://lib.modeldriven.org/MDLibrary/trunk/
Applications/fUML-Reference-Implementation/trunk/Conformance-Statement.txt. Access
date: 26.Mar.2014. 49

. Foundational UML Reference Implementation for version 1.1.0. 2014.
http://portal.modeldriven.org/content/fuml-reference-implementation-download.
Access date: 26.Mar.2014. 50

MORRIS, C. Foundations of the theory of signs. University of Chicago Press, 1938.
(International encyclopedia of unified science). Available from:
<http://books.google.de/books?id=QmXvAAAAIAAJ>. 42

MOSSAKOWSKI, T. HETS site for HETS - v0.99, 02 Mai 2013. 2013. http://www.
informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/index_e.htm.
Access date: 22.Jun.2013. 5, 6

MOSSES, P. Action Semantics. Cambridge University Press, 2005. (Cambridge Tracts in
Theoretical Computer Science). ISBN 9780521619332. Available from:
<http://books.google.de/books?id=_xn1bCGl1ysC>. 25

NIPKOW, T.; OHEIMB, D. von; PUSCH, C. Java: Embedding a programming language in a
theorem prover. In: Foundations of Secure Computation, volume 175 of NATO Science
Series F: Computer and Systems Sciences. [S.l.]: IOS Press, 2000. p. 117–144. 15

OBER, I.; DRAGOMIR, I. Unambiguous UML composite structures: The omega2 experience. In:
CERNA, I.; GYIMOTHY, T.; HROMKOVIC, J.; JEFFEREY, K.; KRALOVIC, R.; VUKOLIC,
M.; WOLF, S. (Ed.). SOFSEM 2011: Theory and Practice of Computer Science.

133

http://www.averest.org/
http://dx.doi.org/10.1109/32.159839
http://books.google.de/books?id=Cv9yQgAACAAJ
http://lib.modeldriven.org/MDLibrary/trunk/Applications/fUML-Reference-Implementation/trunk/Conformance-Statement.txt
http://lib.modeldriven.org/MDLibrary/trunk/Applications/fUML-Reference-Implementation/trunk/Conformance-Statement.txt
http://portal.modeldriven.org/content/fuml-reference-implementation-download
http://books.google.de/books?id=QmXvAAAAIAAJ
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/index_e.htm
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/index_e.htm
http://books.google.de/books?id=_xn1bCGl1ysC

Springer Berlin Heidelberg, 2011, (Lecture Notes in Computer Science, v. 6543). p. 418–430.
ISBN 978-3-642-18380-5. Available from:
<http://dx.doi.org/10.1007/978-3-642-18381-2_35>. 30

OBER, I.; OBER, I.; DRAGOMIR, I.; ABOUSSOROR, E. UML/SysML semantic tunings.
Innovations in Systems and Software Engineering, Springer-Verlag, v. 7, n. 4, p. 257–264,
2011. ISSN 1614-5046. Available from: <http://dx.doi.org/10.1007/s11334-011-0163-2>.
30, 63

OGATA, K. Modern Control Engineering. 5th. ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2009. ISBN 0136156738. 1, 3, 69, 75, 121

(OMG), O. M. G. OMG Unified Modeling Language (OMG UML), Superstructure,
V2.4.1. 2011. http://www.omg.org/spec/UML/2.4.1/. Access date: 14.Apr.2013. 2, 37, 63, 74

. UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems: Version: 1.1. 2011. http://www.omg.org/spec/MARTE/1.1/. Access date:
30.Sept.2013. 29, 40, 41, 73, 74

. Semantics of a Foundational Subset for Executable UML Models, V1.1 RTF
Beta. 2012. http://www.omg.org/spec/FUML/. Access date: 24.Apr.2013. 2, 3, 7, 9, 22, 25, 26,
28, 30, 33, 34, 36, 41, 42, 49, 50

. SysML-Modelica Transformation: Version: 1.0. 2012.
http://www.omg.org/spec/SyM/. Access date: 30.Sept.2013. 74, 83

. Systems Modeling Language: Version: 1.3. 2012. http://www.omgsysml.org/.
Access date: 27.Apr.2013. 9

. Concrete Syntax for UML Action Language, V1.0.1 Beta. 2013.
http://www.omg.org/spec/ALF/. Access date: 27.Apr.2013. 10, 27

. Unified Profile For DoDAF And MODAF (UPDM): Version: 2.1 RTF Beta.
2013. http://www.omg.org/spec/UPDM/2.1/. Access date: 25.Apr.2014. 3, 9, 60, 63

(OSMC), O. S. M. C. OpenModelica site for OpenModelica 1.9.0 beta4 (r1530). 2014.
https://www.openmodelica.org/. Access date: 06.12.2013. 91, 105, 111, 113

POTOP-BUTUCARU, D.; SIMONE, R. D.; TALPIN, J. pierre. The synchronous hypothesis and
synchronous languages. In: ZURAWSKI, R. (Ed.). The Embedded Systems Handbook.
[S.l.]: CRC Press, 2005. 2

POUZET, M.; BOURKE, T.; BENVENISTE, A.; CAILLAUD, B. Zélus site for the Zélus
hybrid synchronous language compiler, version 0.6 (Fri Jul 5 15:24:12 CEST 2013),
02 Mai 2013. 2014. http://zelus.di.ens.fr/download.html. Access date: 06.02.2014. 9, 84,
88, 90

REDMAN, D.; WARD, D.; CHILENSKI, J.; POLLARI, G. Virtual integration for improved
system design. 2010. In proceedings The First Analytic Virtual Integration of Cyber-Physical
Systems Workshop. San Diego, California: USA. 1

ROMERO, A. G. Hybrid fUML: a hybrid synchronous language (to appear). PhD
Thesis (PhD) — Space Technoloy and Engineering, National Institute for Space Research, Brazil,
December 2014. 1, 3

134

http://dx.doi.org/10.1007/978-3-642-18381-2_35
http://dx.doi.org/10.1007/s11334-011-0163-2
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/SyM/
http://www.omgsysml.org/
http://www.omg.org/spec/ALF/
http://www.omg.org/spec/UPDM/2.1/
https://www.openmodelica.org/
http://zelus.di.ens.fr/download.html

ROMERO, A. G. Workspace hybrid fUML - v 1.0. São José dos Campos: Space Technoloy
and Engineering, National Institute for Space Research, Brazil, September 2014.
http://mtc-m21b.sid.inpe.br/rep/sid.inpe.br/mtc-m21b/2014/09.21.22.28. Access in: 23
Sep. 2014. 3, 5

ROMERO, A. G.; AMBROSIO, A. M.; SOUZA; E, M. L. de O. Finite state-machine verification
applied to hybrid systems. In: CONGRESSO SAE BRASIL, 21., 2012, São Paulo.
Proceedings... [S.l.]: SAE, 2012. ISBN 2012-36-0429. Access in: 07 feb. 2014. 3, 121

ROMERO, A. G.; FERREIRA, M. G. V. An approach to model-driven architecture applied to
hybrid systems. In: INTERNATIONAL CONFERENCE ON SPACE OPERATIONS,
(SPACEOPS), 12., 11-15 June 2012, Stockholm. Proceedings... 2012. Available from:
<http://urlib.net/sid.inpe.br/mtc-m19/2012/08.01.11.52>. Access in: 07 feb. 2014. 3,
121

ROMERO, A. G.; SCHNEIDER, K.; FERREIRA, M. G. V. Synchronous specialization of Alf for
cyber-physical systems. In: First Open EIT ICT Labs Workshop on Cyber-Physical
Systems Engineering. Trento, Italy: EIT ICT/CEUR, 2013. 28

. Towards the applicability of Alf to model cyber-physical systems. In: International
Workshop on Cyber-Physical Systems (IWCPS). Krakow, Poland: IEEE Computer
Society, 2013. p. 1469–1476. 25, 28

. Integrating UML composite structures and fUML. In: International Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM). Nov
Smokovec, High Tatras, Slovakia: Springer, 2014. (LNCS, v. 8327), p. 269–280. 29, 30, 31, 35

. Semantics in space systems architectures. In: INTERNATIONAL CONFERENCE ON
SPACE OPERATIONS, (SPACEOPS), 13., 5-9 May 2014, Passadena. Proceedings... [S.l.],
2014. 3

. Using the base semantics given by fUML for verification. In: International Conference
on Model-Driven Engineering and Software Development (MODELSWARD). Lisbon,
Portugal: [s.n.], 2014. 26

ROMERO, A. G.; SOUZA, M. L. O. Uma avaliação empírica de duas opções para modelagem de
sistemas físicos. In: CONGRESSO BRASILEIRO DE AUTOMAÇÃO, 19., 2012, Campina
Grande. Anais... [S.l.]: SBA, 2012. Access in: 07 feb. 2014. 3, 121

SCHMID, J. Introduction to AsmGofer. [S.l.], 2001. 16

. AsmGofer site for AsmGofer - v 1.1. 2010.
http://www.tydo.de/doktorarbeit/asmgofer.html. Access date: 09.Mar.2014. 5

SCHNEIDER, K. Verification of Reactive Systems – Formal Methods and Algorithms.
[S.l.]: Springer, 2003. (Texts in Theoretical Computer Science (EATCS Series)). 25

. The Synchronous Programming Language Quartz. Kaiserslautern, Germany,
December 2009. 27, 29

SHAMES, P.; ANDERSON, M. L.; KOWAL, S.; LEVESQUE, M.; SINDIY, O. V.; DONAHUE,
K. M.; BARNES, P. D. Nasa integrated network monitor and control software architecture. In:
Proceedings of 12th International Conference on Space Operations. [S.l.: s.n.], 2012. 63

135

http://mtc-m21b.sid.inpe.br/rep/sid.inpe.br/mtc-m21b/2014/09.21.22.28
http://urlib.net/sid.inpe.br/mtc-m19/2012/08.01.11.52
http://www.tydo.de/doktorarbeit/asmgofer.html

SHIELDS, M.; JONES, S. L. P. Object-oriented style overloading for haskell. Electr. Notes
Theor. Comput. Sci., v. 59, n. 1, p. 89–108, 2001. 17, 19

ZIMMER, D. A new framework for the simulation of equation-based models with variable
structure. SIMULATION, v. 89, n. 8, p. 935–963, 2013. Available from:
<http://sim.sagepub.com/content/89/8/935.abstract>. 2

136

http://sim.sagepub.com/content/89/8/935.abstract

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Aim
	1.3 Outline

	2 INSTALLING THE DISTRIBUTED PACKAGE
	2.1 Software Requirements
	2.2 Installation Procedure
	2.2.1 Microsoft Windows
	2.2.2 Ubuntu

	2.3 The Distributed Package and its Content
	2.4 Using the Distributed Package

	3 THE DESCRIPTION OF THE LANGUAGES
	3.1 Embedding - M2 - ASM
	3.2 Embedding - M1 - ASM
	3.3 Embedding - M1 - CLIF

	4 SYNCHRONOUS fUML - AN INTRODUCTION
	4.1 Language's Decisions and Requirements
	4.2 Syntactics
	4.3 Static Semantics for Composite Structures
	4.4 Dynamic Semantics
	4.5 Concluding Remarks

	5 SYNCHRONOUS fUML's CONFORMANCE STATEMENT
	6 SYNCHONOUS fUML - PRAGMATICS
	6.1 VendingMachine
	6.2 SatelliteTrackingAndControl using UPDM

	7 HYBRID fUML - AN INTRODUCTION
	7.1 Language's Decisions and Requirements
	7.2 Syntactics
	7.3 Dynamic Semantics
	7.4 Concluding Remarks

	8 HYBRID fUML - PRAGMATICS
	8.1 Libraries
	8.1.1 Mass, a reusable continuous component

	8.2 Event-Triggered Systems
	8.2.1 BouncingBall
	8.2.2 BasketBall

	8.3 Time-Triggered Systems
	8.3.1 BasketBall as a time-triggered system
	8.3.2 SpringMassDamper
	8.3.3 A multi-periodic SpringMassDamper
	8.3.4 InvertedPendulum
	8.3.5 Timepiece using SysML

	9 CONCLUSIONS
	REFERENCES

