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ABSTRACT

Land system change has a wide range of impacts on Earth system components.
Tropical forests in particular have been identified as crucial ecosystems for climate
regulation, global biodiversity, and hydrological cycling. The Brazilian Amazon has
experienced a high rate of deforestation in the last decade and it is the main source
of Brazil’s anthropogenic CO2 emissions. The growing global population will further
increase the demand for food and therefore increase the pressure on agricultural
systems. High quality, fine resolution, and near-real time land use and land cover
monitoring systems play a crucial role in generating information to advance our
understanding of human impact on land cover. Earth Observation satellites are the
only source that provides a continuous and consistent set of information about the
Earth’s land. The current large-scale classification systems such as MODIS Land
Cover and GLC 2000 have limitations and their accuracy is not sufficient for land
change modeling. Therefore, new techniques for improving land system products are
urgently needed. The contribution of this thesis to Earth System Science is three-
fold. Firstly, the thesis presents a new method for analysis of remote-sensed image
time series that improves spatio-temporal land cover data sets and has a substantial
potential for contributing to land system change modeling. The developed Time-
Weighted Dynamic Time Warping (TWDTW) method is a time-constraint variation
of the well-known Dynamic Time Warping (DTW) method, which has in the
extensive literature proved to be a robust time series data mining. Secondly, this
thesis contributed to open and reproducible science by making the algorithms
available for larger audience. TWDTW is implemented in an open source R package
called dtwSat available in the Comprehensive R Archive Network (CRAN). Thirdly,
this thesis presents an analysis of land cover changes in the Amazon, focusing on the
Brazilian state of Mato Grosso that has gone through high rate of deforestation and
cropland expansion in the last decade. This study identified and estimated the land
cover change using MODIS image time series, contributing to better understand
the land dynamics in the Brazilian Amazon. In the study area the pasture is the
dominant land use after deforestation, whereas most of the single cropping area
comes from pasture, and the cropping system is undergoing intensification from
single to double cropping. Moreover, the regenerative secondary forest comes mainly
from pasture. The study showed the potential of the TWDTWmethod for large-scale
remote sensing data analysis, which could be extended to other Brazilian biomes to
help understand land change in the whole Brazilian territory.

Keywords: Time series analysis. Dynamic programming. Data mining. Crop
identification. Agricultural intensification. Deforestation. Forest degradation.
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MONITORAMENTO DE MUDANÇAS DE USO E COBERTURA DA
TERRA POR ANÁLISE DE SÉRIES TEMPORAIS DE IMAGENS DE

SENSORIAMENTO REMOTO

RESUMO

Mudanças na superfície da terra têm uma ampla gama de impactos sobre o sistema
terrestre. Florestas tropicais, em particular, são ecossistemas cruciais para regulação
climática, manutenção da biodiversidade, a ciclo hidrológico. Na última década a
Amazônia brasileira tem experimentado uma alta taxa de desmatamento, sendo
a principal fonte de emissões antropogênicas de CO2 no Brasil. O crescimento da
população mundial vai aumentar ainda mais a demanda por alimentos e, portanto,
aumentar a pressão sobre agrícultura e pecuária. Dados com alta qualidade, melhor
resolução espacial e temporal, e o desenvolvimento de sistemas de monitoramento
desempenham um papel crucial na geração de informações para avançar nossa
compreensão sobre os impactos humanos na cobertura da terra. Os satélites de
observação da Terra são a única fonte que fornece um conjunto contínuo e consistente
de informações sobre nosso planeta. Sistemas de classificação em grande escala, como
MODIS Land Cover e GLC 2000 têm limitações e sua acurácia não é suficiente
para a modelagem de mudanças de use da terra. Portanto, são necessárias novas
técnicas para melhoramento dos dados de use e cobertura da terra. Esta tese traz
três contribuições para a Ciência do Sistema Terrestre. Primeiramente, esta tese
apresenta um novo método para análise de séries temporais de imagens satélite
que melhora a classificação de cobertura da terra. O método tem grande potencial
para contribuir para a modelagem de mudanças do sistema terrestre. O método
desenvolvido, Time-Weigted Dynamic Time Warping (TWDTW), é uma adaptação
ponderada por tempo do método clássico Dynamic Time Warping (DTW), que
tem em uma extensa literatura provando ser um método robusto para mineração
de dados em séries temporais. Em segundo lugar, esta tese contribuiu para a
ciência aberta e reprodutível, tornando algoritmos disponíveis para o público.
TWDTW estÃ¡ implementado em um pacote R de código aberto chamado dtwSat
disponível no Comprehensive R Archive Network (CRAN). Em terceiro lugar, esta
tese apresenta uma análise as mudanças do uso e cobertura da terra na Amazônia,
com foco no estado do Mato Grosso, que passou por alta taxa de desmatamento
e expansão agrícola na última década. Este estudo identificou e estimou mudanças
de cobertura da terra com séries temporais de imagens MODIS, contribuindo para
melhor compreender a dinâmica de ocupação da terra na Amazônia brasileira. Na
área de estudo, a pastagem é o uso dominante após o desmatamento, ao passo que
a maior parte da área de cultivo com um ciclo anual provem da área de pasto, com
o sistema de cultivo passando por intensificação, mudando de cultivo simples para
cultivo duplo. Além disso, áreas de regeneração vêm, principalmente, de áreas de
pastagem. O estudo mostrou o potencial do método de TWDTW para análise de
dados de sensoriamento remoto em grande escala, que poderia ser estendido a outros
biomas brasileiros para ajudar a entender as mudanças da terra em todo o território
brasileiro.
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1 INTRODUCTION

Land-use and land-cover change (LUCC) has a wide range of impacts on the
Earth system components. For example, vegetation cover transformation affects
local to global climate through the albedo change and the emission of greenhouse
gases (GHGs) (PIELKE et al., 2002; FOLEY et al., 2005; STOCKER et al., 2013).
The agricultural expansion and intensification accompanying by irrigation and
fertilization impact water availability and quality (SCANLON et al., 2007). According
to Piao et al. (2006) LUCC account for about 50% of the river runoff trend of
the last century. Land use and land cover changes also have large global impact on
biodiversity reduction (SALA et al., 2000; CHAPIN et al., 2000; CHAPLIN-KRAMER et al.,
2015). The LUCC is also causing risks to human well being trough the degradation
of ecosystems (MILLENNIUM ECOSYSTEM ASSESSMENT, 2005). In addition, Steffen
et al. (2015) argue that land system change, especially deforestation, can contribute
to increasing the risk of destabilising the Earth system functioning.

In this context, LUCC is a central issue in the sustainability debate (LAMBIN;

MEYFROIDT, 2011). Global population is expected to exceed 8 billion by mid-
century (UN, 2015), rising crop and livestock demand and production by around
40% (ALEXANDRATOS et al., 2012). This will increase pressures on land, water,
and energy systems (BEDDINGTON, 2009). At the same time we need to mitigate
and adapt to climate change (IPCC, 2014). Therefore, more and more, citizens and
politicians are pressing scientists to provide qualified information that would allow
wise decisions about the future of our planet.

Reliable land-use and land-cover datasets are essential to understand the impact
and extent of global land changes (FRITZ et al., 2013; SEE et al., 2015). Earth
Observation satellites are the only source that provides a continuous and consistent
set of information about the Earth’s land. In many areas, remote sensing images are
the only data available for this purpose. Recent decisions by major space agencies
have made unprecedented amounts of imagery available for research and operations.
This brings a unique opportunity to measure the global and local changes in our
environment and assess the human impacts on Earth. The question is: how can we
make best use of the available satellite data products to improve our knowledge
about LUCC?

Open archives of long-term satellite image time series provide opportunities to better
quantify global change (LAMBIN; GEIST, 2006). This has lead to the development
of automated and semi-automated methods, including multi-image compositing

1



(GRIFFITHS et al., 2013), detecting forest disturbance (KENNEDY et al., 2010; ZHU

et al., 2012; DEVRIES et al., 2015), crop classification (XIAO et al., 2005; WARDLOW

et al., 2007; PETITJEAN et al., 2012), planted forest mapping (MAIRE et al., 2014),
crop expansion and intensification (GALFORD et al., 2008; SAKAMOTO et al., 2009),
detecting trend and seasonal changes (LUNETTA et al., 2006; VERBESSELT et al.,
2010b; VERBESSELT et al., 2010a; VERBESSELT et al., 2012), extracting seasonality
metrics (JöNSSON; EKLUNDH, 2002; JöNSSON; EKLUNDH, 2004), and synthesizing
multi-spectral information from satellite image time series (MELLO et al., 2013).

Satellite image time series will always be contaminated by some degree of residual
atmospheric influence, geolocation error, and directional effects (LAMBIN; GEIST,
2006). To make the best use of available satellite data archives, methods for satellite
image time series analysis need to deal with data sets that are noisy, irregularly
sampled, and in many cases out-of-phase.

In the thesis I address three issues to improve the land-use and land-cover products
and better understand the land use dynamics. The first issue is how to deal
with irregularly sampled satellite image time series for land-use and land-cover
classification. The second issue is to make methods for satellite time series analysis
open and reproducible. The third issue is what can we learn from improved
spatiotemporal land-use and land-cover data sets. Figure 1.1 presents the main
research issues addressed in each chapter of the thesis.

Land use and land cover 
monitoring using satellite 

image time series

How can we make best use of the 
available data sources to improve 
our knowledge about land use and 

 land cover changes?

Theme

Overarching question

Issues addressed in each chapter

How to use satellite image time 
series for land use and land cover 

classification?

Chapter II

What can we learn from improved 
land use and land cover data sets?

Chapter IV

Contribution to make methods for 
satellite time series analysis open 

and reproducible

Chapter III

Figure 1.1 - The main research questions of the thesis.

2



Chapter 2 describes a new method for satellite image time series analysis. This
method is a time-weighted variation of the classical Dynamic Time Warping (DTW)
method (VELICHKO; ZAGORUYKO, 1970; SAKOE; CHIBA, 1971; SAKOE; CHIBA, 1978;
RABINER; JUANG, 1993; BERNDT; CLIFFORD, 1994). Research on time series data
mining shows that methods based on DTW have achieved significant results in many
applications, such as speech recognition (BERNDT; CLIFFORD, 1994; ESLING; AGON,
2012; RAKTHANMANON et al., 2012). DTW works by comparing a temporal signature
of a known event (e.g. a person’s speech) to an unknown time series (e.g. a speech
record of unknown origin). The algorithm compares two time series and finds their
optimal alignment, providing a dissimilarity measure as a result (RABINER; JUANG,
1993). DTW provides a robust distance measure for comparing time series, even
if they are irregularly sampled (PETITJEAN et al., 2012) or are out of phase in the
time axis (KEOGH; RATANAMAHATANA, 2005). The large range of applications of
dynamic time warping for time series analysis motivated the idea of using DTW for
remote sensing applications.

Chapter 3 describes the contribution of the R (R Core Team, 2015) package
dtwSat (MAUS, 2015), making methods for satellite time series analysis available
to a larger audience. Given the open availability of large image data sets,
the research community on Earth Observation would get much benefit from
methods that are openly available, reproducible and comparable. However, few
of the proposed methods for remote sensing time series analysis are available
as open source software, the main exception being the BFAST and BFAST-
monitor algorithms for change detection (VERBESSELT et al., 2010b; VERBESSELT

et al., 2010a). The dtwSat package provides an implementation of Time-Weighted
Dynamic Time Warping (TWDTW) for satellite image time series analysis, and
is available from the Comprehensive R Archive Network at http://CRAN.R-
project.org/package=dtwSat.

Chapter 4 presents a LUCC analysis using MODIS image time series. The area
is located in the Brazilian state of Mato Grosso, which had strong deforestation
and cropland expansion in the last decade. Understanding land-use and land-
cover dynamics in this area is particularly important because agriculture, forestry,
and other land use related sectors have been the main source of Brazil’s GHGs
emission (MCTI, 2014). In addition, increasing human dominance of the forest alters
their health and the provision of important ecosystem functions and services (LEWIS

et al., 2015). The study case focuses on the deforestation, forest degradation, and
agricultural expansion from 2000 to 20014.
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2 A TIME-WEIGHTED DYNAMIC TIME WARPING METHOD FOR
LAND-USE AND LAND-COVER MAPPING1

2.1 Introduction

There is a global increase in food and energy production from agriculture to support
7.3 billion people. To support sustainable practices and find out about unsustainable
uses of natural resources, good quality land-use and land-cover datasets are essential
(FRITZ et al., 2013). Earth Observation satellites are the only source that provides
a continuous and consistent set of information about the Earth’s land and oceans.
Since remote sensing satellites revisit the same place repeatedly, we can calibrate
their images so measures of the same place in different times are comparable. These
observation can be organised, so that each measure from sensor is mapped into a
three dimensional array in space-time.

From a data analysis perspective, researchers then have access to space-time
data sets. This has lead to much recent research on satellite image time series
analysis. Algorithms for analysing image time series include methods for time
series reconstruction (ROERINK et al., 2000), detecting trend and seasonal changes
(LUNETTA et al., 2006; VERBESSELT et al., 2010b; VERBESSELT et al., 2012), extracting
seasonality information (JöNSSON; EKLUNDH, 2002), land cover mapping (GRIFFITHS

et al., 2013), detecting forest disturbance and recovery (KENNEDY et al., 2010; ZHU

et al., 2012; DEVRIES et al., 2015), crop classification (XIAO et al., 2005; WARDLOW et

al., 2007; PETITJEAN et al., 2012), planted forest mapping (MAIRE et al., 2014), and
crop expansion and intensification (GALFORD et al., 2008; SAKAMOTO et al., 2009).

Research on time series data mining shows that methods based on dynamic time
warping (DTW) have achieved significant results in many applications (BERNDT;

CLIFFORD, 1994; ESLING; AGON, 2012; RAKTHANMANON et al., 2012). DTW works
by comparing a temporal signature of a known event (e.g. a person’s speech)
to an unknown time series (e.g. a speech record of unknown origin) (VELICHKO;

ZAGORUYKO, 1970; SAKOE; CHIBA, 1971; SAKOE; CHIBA, 1978; RABINER; JUANG,
1993; BERNDT; CLIFFORD, 1994). The algorithm compares two time series and finds
their optimal alignment, providing a dissimilarity measure as a result (RABINER;

JUANG, 1993). DTW provides a robust distance measure for comparing time series,

1This chapter is based on the paper: MAUS, V.; CAMARA, G.; CARTAXO, R.; SANCHEZ,
A.; RAMOS, F. M.; QUEIROZ, G. R. de. A time-weighted dynamic time warping method for land-
use and land-cover mapping. Selected Topics in Applied Earth Observations and Remote Sensing,
IEEE Journal of, PP, n. 99, p. 1-11, 2016.
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even if they are irregularly sampled (PETITJEAN et al., 2012) or are out of phase in
the time axis (KEOGH; RATANAMAHATANA, 2005). The large range of applications
of digital time warping for time series analysis motivated our idea of using DTW for
remote sensing applications.

The DTW method works well for shape matching, but is not suited per se for remote
sensing time series classification. It disregards the temporal range when finding the
best alignment between two time series (RABINER; JUANG, 1993; JEONG et al., 2011).
The vegetation associated with each land cover class has a distinct phenological
cycle that is relevant for space-time classification (REED et al., 1994; ZHANG et al.,
2003). Therefore, a good time-series land cover classifier needs to balance between
shape matching and temporal alignment. For example, although crops tend to vary
their annual phenological cycles, these variations will not be extreme. Consider a
set of samples of soybean whose cycles range from 90 to 120 days. A time series
with similar shape but with much larger cycle is unlikely to come from a soybean
crop. The standard DTW method warps time to match the two series. To avoid
such mismatches, we introduce a time constraint that helps to distinguish between
different types of land-use and land-cover classes.

Recent papers by Petitjean et al. (2012) and Petitjean and Weber (2014) have used
DTW for satellite image time series classification. The method proposed in these
papers sets a maximum time delay to avoid inconsistent temporal distortions based
on the date of the satellite images. The time series is split in one year segments
to match the agricultural phenological cycle in Europe. However, this temporal
segmentation reduces the power of the DTW classifier. Crops with phenological
cycles longer than one year or taking place in different seasons may not be detected.
The time-weighted extension to the DTW algorithm avoids this problem. Temporal
segments of a remote sensing time series are classified without splitting them into
fixed parts. This method is flexible to account for multiyear crops, single cropping
and double cropping. It is also robust to account for other land cover types such as
forest and pasture and works with a small amount of training samples.

Our main contribution is to show that a data mining method such as DTW, when
used for land-use and land-cover classification of remote sensing time series, benefits
from a temporal constraint. This conjecture has been validated in a case study in
the Brazilian Amazon, where we compared the result of our proposed method with
other time warping classifiers.

6



2.2 Methods

Since remote sensing satellites regularly cycle the Earth, their data are mappable
to three-dimensional arrays in space-time Figure 2.1a. Each pixel location (x, y)
in consecutive times, t1, ..., tm, makes up a satellite image time series, such as the
one in Figure 2.1b. From these time series, we can extract land-use and land-cover
information. In the example, during the first two years the area was covered by
forest. It was deforested in 2002. The area was then used for cattle raising (pasture)
for three years. from 2006 to 2008, it was used for crop production.

(a)

y

x

Time

Satellite images Time Series

3D Array

t2

t1

tm

t0

(b)

Forest
Deforestation

Pasture

Crop

2000 2001 2002 2003 2004
0

1.0

Time

20072005 2006 2008

Figure 2.1 - (a) A 3-dimensional array of satellite images, (b) a vegetation index time
series I at the pixel location (x, y). The arrows indicate data gaps.

Let Vx,y = (v1, v2, ..., vm) be a time series of a pixel location (x, y) in consecutive
times, t1, ..., tm, where vi is the value of the sensor measure at time ti. Combining
all the satellite’s spatial coverage, we get a set of time series S = {V1,V2, ...,Vs}.
We assume there is a temporal continuity for each land cover classes, resulting from
human actions. A forest area does not change to grassland or to soybeans overnight.
Land cover changes take time. Our hypothesis is that it is possible to associate
closed intervals of each time series Vx,y to a specific land-use and land-cover type.
For example, suppose a ten year period where in the first five years the area was
covered by forest. The area was then used for cattle raising (pasture) for two years.
After that, it was used for soybean production for three years. We want to associate
each of these intervals with one of our land cover classes.

Optical remotely sensed data are affected by cloud cover that introduces a large
amount of noise in satellite image time series, as shown in Figure 2.1b. Inter-annual
climate variability also changes the phenological cycles of the vegetation, resulting in
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time series whose periods and intensities do not match on an year to year basis(REED
et al., 1994). To associate intervals of a satellite image time series with land-use and
land-cover classes, we need methods suitable for noisy and out-of-phase time series.
We chose the Dynamic Time Warping (DTW) algorithm because it is suitable for
this problem.

The papers by Petitjean et al. (2012) and Petitjean and Weber (2014) applied
the DTW algorithm to classify intervals of satellite image time series, such as in
Figure 2.2a. In this case, two time series have approximately the same length and
the first and last points in both time series must match. In practice, crop phenological
cycles can vary in an year-to-year basis, depending on climate conditions and land
management. Examples include shifting the greening and dormancy stages of the
vegetation (REED et al., 1994; ZHANG et al., 2003). To avoid possible inconsistent
matching of phenological cycles caused by splitting the time series we use an open
boundary version of DTW, Figure 2.2b. The open boundary method does not require
two time series to be of the same length, and it is suitable to find all possible matches
of one pattern within a long-term time series (MüLLER, 2007).

The open boundary DTW algorithm disregards the time dimension and can cause
inconsistent phase alignments, e.g. a winter crop template can match the shape of
a summer crop. To avoid these temporal inconsistencies, we introduce a temporal
constraint. If there is a large seasonal difference between the sample pattern and
its match in time series, an extra cost is added to the DTW distance measure.
This constraint controls the time warping and makes the time series alignment
dependent on the seasons. This is especially useful for detecting temporary crops
and for distinguishing pasture from agriculture.

Time
(a)

Alignment 1 Alignment 3
Global alignment

T
im

e 
se

ri
es

T
em

p
o
ra

l

p
at

te
rn

(b)

Alignment 2

a1 b1 a2 b2 a3 b3

Figure 2.2 - (a) DTW Alignment between two time series with approximately same length,
(b) DTW alignments between a pattern whose length is much shorter than
the time series. The indexes a and b are starting points and ending points of
each interval in the long-term time series, respectively.
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Classification using open boundary DTW (MüLLER, 2007) requires matching
subsequences of the time series associated with each pixel location to samples
of the expected classes. For each class c, we take a set of time series samples
Qc = {U1,U2, ...,Uq}, where U = (u1, ..., un) is a time series with n � m (i.e.
the pattern length is much shorter than the sensor time series V). q is the number
of patterns for each class. These samples are then used to classify the intervals of
the time series V ∈ S.

The classification is done for each pixel with two steps. First, the DTW algorithm
is applied for each pattern in Q and each time series V ∈ S. This step provides
information on how patterns match intervals of the time series. In the second step,
the best DTW matches are used to build a sequence of land-use and land-cover
maps.

2.2.1 Step 1: DTW Alignment

The DTW alignment starts by computing a n-by-m matrix Ψ, whose elements ψi,j
are the absolute difference between ui ∈ U ∀ i = 1, ..., n and vj ∈ V ∀ j = 1, ...,m.
From Ψ we compute an accumulated cost matrix D by a recursive sum of the minimal
distances, such that

di,j = ψi,j +min{di−1,j, di−1,j−1, di,j−1}, (2.1)

that is subject to the following boundary conditions:

di,j =


ψi,j i = 1, j = 1∑i
k=1 ψk,j 1 < i ≤ n, j = 1∑j
k=1 ψi,k i = 1, 1 < j ≤ m

(2.2)

The Figure 2.3 shows an example of the accumulated cost matrix D. Intuitively, the
DTW alignment runs along the “valleys” of low cost in the accumulated cost matrix
D, that has as many “valleys” as the number of matches between U and V. The kth
low cost path in D produces an alignment between the pattern and a subsequence
V|bk

ak
with associated DTW distance δk, where ak is the starting point and bk the

ending point of the subsequence k (MüLLER, 2007), as shown in Figure 2.3.

Each minimum point in the last line of the accumulated cost matrix, i.e. dn,j ∀ j =
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Figure 2.3 - Accumulated cost matrix D showing three possible alignment of the pattern
U within the long-term time series V. The indexes a are starting points and
b ending points of each DTW alignment in V.

1, ...,m, produces an alignment, with bk and the δk given by,

bk = argmink(dn,j), k = 1, ..., K (2.3)

δk = dn,bk
(2.4)

where K is the number of minimum points in last line of the accumulated cost
matrix.

A reverse algorithm, Equation 2.5, maps the warping path Pk = (p1, ..., pL) along
the kth low cost “valley” in D. The algorithm starts in pl=L = (i = n, j = bk) and
ends when i = 1, i.e. pl=1 = (i = 1, j = ak), where L denotes the last point of the
alignment. The warping path Pk contains the matching points between the time
series. Note that the backward step in the Equation 2.5 implies the monotonicity
condition (SAKOE; CHIBA, 1971; MüLLER, 2007), i.e. the alignment preserves the
order of the time series.

pl−1 =



(i, ak = j) if i = 1
(i− 1, j) if j = 1
argmin( di−1,j,

di−1,j−1,

di,j−1)
otherwise

(2.5)

The original DTW algorithm does not account for the phase difference between two
time series (JEONG et al., 2011). However, land-use and land-cover types have distinct
phenological cycles that are relevant for space-time classification (REED et al., 1994;
ZHANG et al., 2003). We introduce a time-weighted extension of DTW (TWDTW),
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based on the date of each pixel in the satellite image. This time-weighted version
of DTW adds a temporal cost ω to the cost matrix Ψ, whose elements become
ψi,j = |ui − vj|+ ωi,j. To compute the temporal cost we propose both a linear

ωi,j = g(ti, tj) (2.6)

and a logistic model with midpoint β, and steepness α, such that

ωi,j = 1
1 + e−α(g(ti,tj)−β) , (2.7)

where g(ti, tj) is the elapsed time in days between the dates ti in the pattern and
tj in the time series. We ran many tests using different values of β and α. We then
used the best global accuracy performance to set the parameters for the logistic
time-weighted DTW.

2.2.2 Step 2: Map building

The DTW algorithm matches each pattern to the input time series independently
from the others. Thus, each interval of the time series V can fit different patterns.
To associate an interval of the time series V to a land-use and land-cover class, we
choose the best fitting pattern, i.e. the pattern with the lowest DTW distance in
the interval. After finding the best fit, we can produce maps that show a land-use
and land-cover classification for a given period.

To compare our results with other land use/cover products, we produced maps
matching the agricultural calendar from July to June (gray area in Figure 2.4). We
find the pattern that has the lowest DTW distance to a subsequence V|bk

ak
partly

contained in the crop calendar. The Figure 2.4 shows the matching of two patterns,
U1 and U2, that are partially in the same agricultural year from July 2000 to June
2001. In this case we pick the one with the lowest DTW distance, i.e. the most
similar pattern for that period.

2.3 Experiments

In our experiments, we tested the performance of four different DTW methods: i)
the original DTW algorithm without time constraints (i.e. ω = 0), ii) DTW with
maximum time delay as proposed by Petitjean et al. (2012), iii) linear TWDTW,
and iv) logistic TWDTW.

We used time series of Enhanced Vegetation Index (EVI) from July 2000 to June
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Figure 2.4 - Open boundary DTW alignment. Dark and light shades represent the
alignments of the patterns U1 and U2, respectively. The indexes ak and bk
represent the starting and ending points of the kth alignment in V associated
with a DTW distance measure δk.

2013 based on Moderate Resolution Imaging Spectroradiometer (MODIS) product
MOD13Q1 16 days 250 m. MODIS EVI has improved sensitivity in high biomass
regions through a canopy background adjustment and a reduction in the atmosphere
influences (HUETE et al., 1997; HUETE et al., 2002).

The EVI time series is subject to atmospheric effects, such as cloud cover and path
radiance from aerosols (FREITAS et al., 2011). To reduce the spurious oscillation due
to atmospheric effects, we apply a discrete wavelet decomposition (MALLAT, 1998)
and then filter the time series by removing the highest wavelet frequency. The wavelet
filter preserves the essential temporal variation and is more sensitive to vegetation
seasonal changes than filters based on Fourier transform (SAKAMOTO et al., 2005).

An important scientific problem is understanding changes in the Brazilian
Amazonian rain forest, which has an area of 4,100,000 km2. In Amazonia, 720,000
km2 have been deforested since the 1970s (INPE, 2015). In the Copenhagen Climate
Conference in 2009, Brazil pledged to reduce deforestation in Amazonia by 80%
relative to the average of the period 1996-2005. Brazil is making good this pledge.
Forest cuts in Amazonia fell from 27,700 km2 in 2004 to 4,900 km2 in 2012, decreasing
by 83%. Given the impact of land changes in Amazonia on global biodiversity,
emissions, and ecological services, it is important to understand what causes forest
removal (AGUIAR et al., 2006). INPE (Brazil’s National Institute for Space Research)
and EMBRAPA (Brazil’s Agricultural Research Agency) mapped the land use of the
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deforested areas in Amazonia up to 2008 (INPE, 2012). Their results show that 63%
of the forest cuts are now used for cattle raising. Cattle ranches in Amazonia use
extensive practices, with less than 1 head of cattle per hectare. Cash crop agriculture
accounts for only 4% of the deforestation. Moreover, more than 20% of the area
has been abandoned and is now regrowing as secondary vegetation. To achieve
further gains in reducing deforestation and biodiversity loss, we need to understand
the different land use trajectories, including the deforestation dynamics, land use
intensification, and land abandonment pathways.

We ran a case study in an area in Amazonia that had strong deforestation
and cropland expansion in the last decade. We selected the Porto dos Gaúchos
municipality, that covers approximately 7,000 km2 and is located in the state of
Mato Grosso, Brazil, inside of the Amazon Biome. In 2013 its total deforested area
was 3023.6 km2, that is 42.9% of the original forest cover (INPE, 2015). The cropland
area grew from 59.8 km2 in 2000 to 580.8 km2 in 2013 (IBGE, 2014). We chose the
most important classes for that area: forest, secondary vegetation, pasture, single
cropping, and double cropping. These land cover classes are the most relevant ones
for our study on trajectories of change in Amazonia.

Our classification method requires a set of temporal patterns of the chosen land
use/cover classes. We defined the temporal patterns of forest, pasture, single
cropping, and double cropping based on the paper by Arvor et al. (2011), that
presented typical temporal patterns of EVI for different crops types and natural
vegetation for the same region of our case study. Arvor et al. (2011) used several
ground truth data collections identified through field studies to derive their averaged
EVI signal according to the agricultural calendar from July to June. Here we joined
some of the temporal patterns from Arvor et al. (2011), such that “soybean” and
“cotton” are used as “single cropping”, and “soybean-cotton” and “soybean-maize”
are “double cropping”. We kept the classes “forest” and “pasture”. Therefore, each
class has one or two patterns shown in Figure 2.5.

2.4 Results

To assess our algorithm, we used 40 random selected spatial locations from that
we could classify 489 samples out of 560 in the period from 2001 to 2014. Most of
the unclassified samples had cloud contamination during the growing cycles of single
and double cropping because the raining season in Mato Grosso state is usually from
November to March (AGUIAR et al., 2006). The samples were classified by visual
interpretation of Landsat images using the Google Earth Engine (Google, 2014).
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Figure 2.5 - Temporal patterns of EVI MODIS 16 days. These patterns are the average
based on several ground truth samples of each class.
Source: Adapted from Arvor et al. (2011).

To separate our classes we used a set of images corresponding to the agricultural
year from July to June. For each year we used at least 4 images showing different
phenological stages of the vegetation that allow us to distinguish: forest, pasture,
single cropping, and double cropping.

The logistic TWDTW had the best performance for α = 0.1 and β = 100 days
(global accuracy 87.32%), meaning a low penalty for time warps smaller then 60 days
and significant costs for bigger time warps, Figure 2.6. In the algorithm proposed by
Petitjean et al. (2012) we tested maximum time delays ranging from 30 to 130 days,
and found the best performance when the delay was set to 100 days with global
accuracy 84.66%. The linear TWDTW had global accuracy 81.6% and the DTW
without time restrictions 70.14%.

Part of the good performance of TWDTW comes from good quality sample patterns.
Given a good set of samples, TWDTW uses the length of each pattern as a temporal
constraint in its distance measure. The standard version of DTW reduces or enlarges
the pattern without temporal restrictions to find the best fit. Unrestricted warping
works well for highly variable signals such as speech, but has problems dealing with
structured patterns such as land cover signals. To compare DTW without time
constraints and TWDTW, see Figure 2.7. In this figure, we show how the best
matches for samples patterns of four classes (forest, pasture, single cropping, and
double cropping) for the two versions of DTW (with and without time constraints).
The DTW without time constraints, Figure 2.7a, overfits the patterns of forest,
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Figure 2.6 - Linear and logistic time-weight. The logistic weight has midpoint β = 100 days
and steepness α = 0.1.

pasture and single cropping. The forest and pasture signals are strongly shortened
and the single cropping signal is mapped to the first cycle of a double cropping
event. By contrast, TWDTW keeps the temporal consistency for all land classes, as
shown in Figure 2.7b.
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Figure 2.7 - Best matches of forest, pasture, single cropping, and double cropping to an
sample time series using DTW without time restriction in (a), and and the
time-weighted DTW in (b).
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The Table 2.1 shows the accuracy assessment of the four DTW approaches based
on 489 reference samples classified from the Landsat images. In general, the logistic
TWDTW had higher accuracy than the other approaches. Although the logistic
TWDTW had lower user accuracy than the linear TWDTW for double cropping
and forest, its producer accuracy was higher than the linear TWDTW for these
classes (cf. Table 2.1). This means that the logistic TWDTW classified more ground
truth pixels as such, but with a slightly lower confidence than the linear TWDTW
for pixels classified as double cropping and forest. The logistic TWDTW had the
same value of sensitivity for double cropping as the maximum delay DTW (i.e.
producer accuracy 90.43%), but with larger confidence for this class, user accuracy
92.04% in comparison to 88.89%.
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Table 2.1 - Accuracy assessment for each class based on 489 reference samples classified from the Landsat images.

Method Double cropping (%) Forest (%) Pasture (%) Single cropping (%)
User Producer User Producer User Producer User Producer

DTW without time restrictions 74.65 46.09 88.51 72.64 79.53 80.47 50.00 77.78
DTW with maximum delay of 100 days 88.89 90.43 93.00 87.74 88.20 84.02 72.82 75.76
Linear TWDTW 96.70 76.52 96.81 85.85 83.54 78.11 60.27 88.89
Logistic TWDTW α = 0.1 and β = 100 days 92.04 90.43 94.00 88.68 88.41 85.80 75.00 84.85
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The confusion matrices of the four DTW approaches are shown in Table 2.2. We see
that DTW without time restriction had the worst results, particularly, for double
cropping that had 57 pixels classified as single cropping. The linear TWDTW
classified 24 pixels of double cropping and 34 pixels of pasture as single cropping, and
therefore, its confidence for single cropping was 60.27% (cf. Table 2.1). The logistic
TWDW classified 10 pixels of double cropping and 18 pixels of pasture as single
cropping, which means a higher confidence than the linear TWDTW classification
for single cropping, 75.00%. These results of the logistic TWDW were similar to the
results obtained using the maximum time delay DTW, which classified 9 pixels of
double cropping and 18 pixels of pasture as single cropping. However, the logistic
TWDTW had higher sensitivity than the maximum time delay DTW (84.85% in
comparison to 75.76% cf. Table 2.1), that classified 11 pixels as double cropping, 6
as pasture and unclassified other 7 pixels out of 99 pixels of single cropping.

We also compared the accuracy of our classification and the MODIS land cover
collection 5, Plant Functional Type (PFT) 500 m (FRIEDL et al., 2010) using the
validation points. Mapping from MODIS classes to our classes is shown in Table 2.3.
Originally, the study area was covered by forest. Therefore, the other land cover
types that appear later result from human activities. We aggregated the MODIS
categories of trees to a class called forest. We also assume that MODIS shrubland
and grassland classes are used as pastureland for cattle raising, and the categories
of cereal crops and broad-leaf crops are aggregated to a class called cropland. Other
MODIS classes are less than 0.008% of the pixels in this area, and thus they were
not considered in this paper.

The accuracy assessment comparing logistic TWDTW results and MODIS land
cover is shown in Table 2.4. The TWDTW algorithm had global accuracy of 91.21%,
better than the global accuracy of MODIS (79.36%). TWDTW had higher user’s
and producer’s accuracies than the MODIS classification for all classes. Although,
MODIS had high user’s accuracy for forest (87.2%) and cropland (89.33%), its
producer accuracy for these classes was low, 77.37% and 75.28%, respectively.

We compared our forest area with estimations by the Amazon Monitoring Program
PRODES (INPE, 2015). To be able to compare results with the pristine forest
area that comes from PRODES, we need to split our “forest” class into “pristine
forest” and “secondary vegetation”. This requires a land cover transition rule. Areas
matching a forest pattern were classified as forest only if they had also been classified
as forest in previous years. Otherwise, we classified them as secondary vegetation. For
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Table 2.2 - Confusion matrices based on 489 reference samples classified from the Landsat
images.

Reference
Predicted Double cropping Forest Pasture Single cropping
DTW without time restrictions
Double cropping 53 2 4 12
Forest 0 77 7 3
Pasture 5 25 136 5
Single cropping 57 1 19 77
Unclassified 0 1 3 2
DTW with maximum delay of 100 days
Double cropping 104 1 1 11
Forest 0 93 7 0
Pasture 2 11 142 6
Single cropping 9 1 18 75
Unclassified 0 0 1 7
Linear TWDTW
Double cropping 88 0 0 3
Forest 0 91 3 0
Pasture 3 15 132 8
Single cropping 24 0 34 88
Unclassified 0 0 0 0
Logistic TWDTW for α = 0.1 and β = 100 days
Double cropping 104 0 0 9
Forest 0 94 6 0
Pasture 1 12 145 6
Single cropping 10 0 18 84
Unclassified 0 0 0 0

Table 2.3 - Equivalent classes for comparison between the TWDTW classification and
MODIS land cover collection 5, Plant Functional Type (PFT).

Aggregated MODIS PFT TWDTW

Forest
Evergreen Needleleaf trees, Forest, and
Evergreen Broadleaf trees, Secondary Vegetation
and Deciduous Broadleaf trees

Pastureland Shrub Pasture
and Grass

Cropland Cereal crops, Single cropping
and Broad-leaf crops and Double cropping
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Table 2.4 - Assessment of MODIS collection 5 Plant Functional Type (PFT) and logistic
TWDTW based on 489 reference samples classified from the Landsat images.
The classes forest, pastureland, and cropland were aggregated according to
Table 2.3.

User (%) Producer (%)
Class MODIS TWDTW MODIS TWDTW
Forest 87.23 94.00 77.36 88.68
Pastureland 67.71 88.41 85.53 85.80
Cropland 89.33 92.00 75.28 96.73

the first year of the time series, the areas matching a forest pattern are classified as
forest. There is no secondary vegetation in the first year of our classification. Using
this rule, we got a class of “pristine forest” that is comparable to the PRODES
dataset.

Since it is difficult to distinguish secondary vegetation from primary forest using
visual interpretation of Landsat images, we joined these two classes to forest in the
accuracy assessment. The total forest (pristine forest) and the secondary vegetation
areas are presented in Figure 2.8. The forest area estimated using the logistic
TWDTW is in line with the area estimated by PRODES (INPE, 2015). Most of
the deforestation occurred before 2005, which was followed by an increase of the
secondary vegetation area in 2007.
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Figure 2.8 - Forest area estimated by the Amazon Monitoring Program PRODES (INPE,
2015) and using the logistic TWDTW based classification for Porto dos
Gaúchos.
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We also compared our estimated cropland area with the yearly Municipal
Agricultural Production survey (PAM) from 2001 to 2013 done by the Brazilian
Census Bureau (IBGE) (IBGE, 2014). The PAM survey provides the information
on planted area, harvested area, amount produced, average yield and production
value of permanent and temporary crops by municipality. Since PAM is a sampling
survey and not a comprehensive census, some municipalities, especially those in the
Brazilian Amazon, can have significant inter-annual variations. We use the PAM
because it is the only survey that is available yearly for the period 2000 to 2013.
Figure 2.9 shows the area of single cropping and double cropping estimated by using
the logistic TWDTW algorithm and the Brazilian national cropland survey (IBGE,
2014) for Porto dos Gaúchos. There is a general agreement between our results and
the crop surveys, except in the years 2009 and 2010.
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Figure 2.9 - Total area of double cropping and single cropping in Porto dos Gaúchos
estimated by TWDTW and the Brazilian national cropland survey (IBGE,
2014).

The total agricultural areas (pasture, single cropping, and double cropping) are
shown in Figure 2.10. In the time series, the pasture and single cropping areas were
increasing until 2006, while the double cropping area has a growing trend during the
whole period. In the last two years of the time series, the double cropping exceeded
the single cropping area.
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Figure 2.10 - Total area of pasture, single cropping, and double cropping from 2001 to
2013 estimated using logistic TWDTW for Porto dos Gaúchos.

The Figure 2.11 shows the spatial distribution of land-use and land-cover in Porto
dos Gaúchos for each second agricultural year from 2001 to 2013. In the last decade,
a cropland intensification has happened in the Eastern part of Porto dos Gaúchos
while pasture expansion has taken place in the Western part.

2.5 Discussion

Our results show that it pays to have a flexible approach to temporal restrictions
when using DTW for land-use and land-cover classification. The original DTW
method disregards the temporal range when finding the best alignment between
two time series. This precludes an accurate land-use and land-cover classification.
The time constraints included in the TWDTW similarity measure should be flexible
to handle with the small phase changes related to natural phenological variability.

The maximum time delay, proposed by Petitjean et al. (2012), is flexible for small
time warps. However it forces the dynamic algorithm, Equation 2.5, to map the
warping path inside of a limiting time window that can preclude the classification
of some areas (cf. unclassified samples in Table 2.2).

A large cost for small time warps, as the linear TWDTW method does, harms the
classification and reduces its sensitivity. The linear TWDTW had low producer’s
accuracy respectively 78.11%, 76.52%, when classifying pasture and double cropping
(cf. Table 2.1).
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Figure 2.11 - Land use/cover maps produced by using the logistic TWDTW classification.
Each map shows the classification for an agricultural year (from July to
June) in Porto dos Gaúchos.

The DTW without time restriction had the worst results. More than half of the areas
of double cropping were classified as single cropping. These errors come from the
over warping of single cropping to fit the first growing season of the double cropping
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occurrences, cf. Figure 2.7a.

The logistic TWDTW had better results for these land use classes, because of its
low penalty for small time warps and its significant costs for large time warps. Its
better accuracy derives from its flexibility to find the best match between a pattern
and an interval within a long-term time series.

When comparing our cropland estimated area with data from the yearly Municipal
Agricultural survey (IBGE, 2014), our results generally match, except for 2009 and
2010 (Figure 2.9). In the PAM, the large variations between 2008 and 2009 and
between 2010 and 2011 are difficult to explain. Since this is a region of large-scale
crop production, one would not expect such a large variation. This fact indicates
that remote sensing time series analysis can complement and add value to cropland
surveys such as PAM.

The forest area estimated using the logistic TWDTW was similar to the forest area
from the INPE’s Amazon Monitoring system (PRODES) (Figure 2.8). However, our
algorithm had higher estimates for the forest area until 2006 and lower estimates
for subsequent years. The higher forest area estimated by the logistic TWDTW
compared to PRODES in the first years of the time series is likely related to
their different scale of analysis. While we used MODIS images with 250 m spatial
resolution the PRODES project uses 30 m Landsat images. Therefore PRODES is
capable of detecting deforestation in small areas that may not be detected at the
MODIS resolution.

In the second part of the graphic in Figure 2.8, the lower forest area estimated by
our method was caused by the transition rule used in our algorithm to separate
the secondary vegetation from the forest. Applying this rule an area that changes
from forest to any other land class cannot become forest again. For example, after a
degradation event (e.g. by fire) the area is classified as secondary vegetation in our
algorithm, cf. Figure 2.12. Therefore, our estimation reduces from the forest area
both deforested and degraded areas, whereas PRODES reduces from the forest area
only the deforestation by clear-cutting, i.e. it reduces the forest area only when most
or all the trees are fully removed.

One current challenge for large-scale application of TWDTW algorithm is its
computational time. The implementation of the TWDTW algorithm was developed
in R (IHAKA; GENTLEMAN, 1996; R Core Team, 2015) using the package dtw
(GIORGINO, 2009). Our case study in Porto dos Gaúchos has 130, 500 time series,
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Figure 2.12 - An example of a classification using the transition rules. This is a sample
time series inside of a burned area. This area was degraded in 2011 according
to the Detection of Forest Degradation Program (DEGRAD) (INPE, 2014).

each with 300 points. The computation time was around 50 minutes for all DTW
variations on a server using 40 cores with 2.6 GHz clock and 256 GB memory. We
expect that recent developments on specialized software such as array databases
(STONEBRAKER et al., 2013), coupled with hardware advances and better indexing
strategies will improve performance considerably.

2.6 Conclusion

This paper presents a version of the Dynamic Time Warping (DTW) algorithm
suitable for land-use and land-cover classification of remote sensing time series.
Refinements to standard DTW include a temporal restriction that allows for phase-
shifts due to seasonal changes of natural and cultivated vegetation types. In a tropical
forest area, the method has a high accuracy for mapping classes of single cropping,
double cropping, forest, and pasture.

Accuracy assessments show the method compares favourably to other DTW
variations for land classification. The logistic TWDTW had better results than
the other tested alternatives with a global accuracy of 87.32%. Our classification
using the logistic TWDTW has higher accuracy and spatial resolution than the
MODIS land cover product. Forest and cropland areas are in line with the Amazon
Monitoring Program PRODES and with the Brazilian national cropland surveys,
respectively. These results highlight the potential of the TWDTW to improve land-
use and land-cover products and contribute to agricultural statistics.

We expect that the TWDTW algorithm will be successful for large-scale land cover
classification of remote sensing time series, if some conditions are met. If the spatial
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and temporal resolutions of the data are adequate to capture the properties of the
landscape, and the samples express the temporal variations of the land cover types,
TWDTW has many advantages. Its flexibility for warping a temporal signature is
useful to account for natural and cultivated vegetation types even with inter-annual
climatic and seasonal variability.

The proposed method is pixel-based. We envisage future versions that include local
neighborhoods to reduce border effects and improve classification homogeneity.
Given that the DTW algorithm produces a distance measure between each interval
of a long-term time series and all the temporal patterns, these measures could be
used as a prior probability estimation for a Bayesian post-classification produce that
borrows information from the neighbours.

Post-processing rules can improve TDWTW results. In the paper, we show how
to use rules to distinguish pristine forest from forest regrowth. Using appropriate
rules, it is also possible to apply the method for forest degradation, real-time change
detection, and crop condition assessments.

The results on this paper have been obtained using only the EVI time series signal.
We expect further improvements using multi-band time series, including the original
spectral bands and transformed ones such as NDVI, EVI, and spectral unmixed
endmembers.

The TWDTW algorithm is suitable for applications of remote sensing time series
where the temporal variation is more important than the spatial variation for
classifying remote sensing data sets. These cases include areas of large farms, such as
those found in Brazil. For urban areas with less seasonal change or areas with small
farms, it is likely that time warping methods need to be combined with object-based
image analysis for accurate classification of the landscape.
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3 dtwSat: TIME-WEIGHTED DYNAMIC TIME WARPING FOR
SATELLITE IMAGE TIME SERIES ANALYSIS IN R2

3.1 Introduction

Remote sensing images are the most widely used data source for measuring land-use
and land-cover change (LUCC). In many areas, remote sensing images are the only
data available for this purpose (LAMBIN; GEIST, 2006; FRITZ et al., 2013). Recently,
the opening of large archives of satellite data such as LANDSAT, MODIS and the
SENTINELs has given researchers unprecedented access to data, allowing them to
better quantify and understand local and global land change. The need to analyse
such large data sets has lead to the development of automated and semi-automated
methods for satellite image time series analysis. These methods include multi-image
compositing (GRIFFITHS et al., 2013), detecting forest disturbance and recovery
(KENNEDY et al., 2010; ZHU et al., 2012; DEVRIES et al., 2015), crop classification (XIAO

et al., 2005; WARDLOW et al., 2007; PETITJEAN et al., 2012; MAUS et al., 2016), planted
forest mapping (MAIRE et al., 2014), crop expansion and intensification (GALFORD et

al., 2008; SAKAMOTO et al., 2009), detecting trend and seasonal changes (LUNETTA

et al., 2006; VERBESSELT et al., 2010b; VERBESSELT et al., 2010a; VERBESSELT et

al., 2012), and extracting seasonality metrics from satellite time series (JöNSSON;

EKLUNDH, 2002; JöNSSON; EKLUNDH, 2004). Given the open availability of large
image data sets, the research community on Earth Observation would get much
benefit from methods that are openly available, reproducible and comparable.
However, few of the proposed methods for remote sensing time series analysis are
available as open source software, the main exception being the BFAST and BFAST-
monitor algorithms for change detection (VERBESSELT et al., 2010b; VERBESSELT et

al., 2010a). This paper is a contribution to making methods for satellite time series
analysis available to a larger audience.

In this paper we describe the dtwSat package, written in R (R Core Team, 2015) and
Fortran programming languages, and available from the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=dtwSat. The package provides
an implementation of Time-Weighted Dynamic Time Warping (TWDTW) (MAUS

et al., 2016) for satellite image time series analysis.

The TWDTW method is an adaptation of the well-known dynamic time warping

2This chapter is based on the paper: MAUS, V.; CAMARA, G.; APPEL, M.; PEBESMA,
E. dtwSat: Time-Weighted Dynamic Time Warping for satellite image time series analysis in R.
Submitted to the Journal of Statistical Software.

27

http://CRAN.R-project.org/package=dtwSat


(DTW) method for time series analysis (VELICHKO; ZAGORUYKO, 1970; SAKOE;

CHIBA, 1971; SAKOE; CHIBA, 1978; RABINER; JUANG, 1993; BERNDT; CLIFFORD,
1994; KEOGH; RATANAMAHATANA, 2005; MüLLER, 2007) for land-use and land-cover
classification. The standard DTW compares a temporal signature of a known event
(e.g. a person’s speech) with an unknown time series. It finds all possible alignments
between two time series and provides a dissimilarity measure (RABINER; JUANG,
1993). In contrast to standard DTW, the TWDTW method is sensitive to seasonal
changes of natural and cultivated vegetation types. It also considers inter-annual
climatic and seasonal variability. In a tropical forest area, the method has achieved
a high accuracy for mapping classes of single cropping, double cropping, forest, and
pasture (MAUS et al., 2016).

We chose R because it is an open source software that offers a large number of
reliable packages. The dtwSat package builds upon on a number of graphical and
statistical tools in R: dtw (GIORGINO, 2009), proxy (MEYER; BUCHTA, 2015), zoo
(ZEILEIS; GROTHENDIECK, 2005), mgcv (WOOD, 2000; WOOD, 2003; WOOD, 2004;
WOOD, 2006; WOOD, 2011), sp (PEBESMA; BIVAND, 2005; BIVAND et al., 2013), raster
(HIJMANS, 2015), caret (KUHN et al., 2016), and ggplot2 (WICKHAM, 2009). Other R
packages that are related and useful for remote sensing and land use analysis include
landsat (GOSLEE, 2011), rgdal (BIVAND; LEWIN-KOH, 2015), spacetime (PEBESMA,
2012; BIVAND et al., 2013), bfast (VERBESSELT et al., 2010b; VERBESSELT et al.,
2010a), bfastmonitor (VERBESSELT et al., 2011), bfastSpatial (DUTRIEUX; DEVRIES,
2014), MODISTools (TUCK et al., 2014), maptools (BIVAND; LEWIN-KOH, 2015),
and lucc (MOULDS et al., 2015). Using existing packages as building blocks, software
developers in R save a lot of time and can concentrate on their intended goals.

There is already a R package that implements the standard DTW method for time
series analysis: the dtw package (GIORGINO, 2009). In the dtwSat package, we focus
on the specific case of satellite image time series analysis. The analysis method
implemented in dtwSat package extends that of the dtw package; it adjusts the
standard DTW method to account for the seasonality of different types of land
cover. Our aim is to support the full cycle of land-use and land-cover classification,
from selecting sample patterns to visualising and evaluating the final result.

This paper focuses on the motivation and guidance for using the TWDTW method
for remote sensing applications. The full description of the method is available in a
paper published by the lead author (MAUS et al., 2016). In what follows, section 3.3
gives an overview of the dtwSat package. The section 3.2 describes the application
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of TWDTW (MAUS et al., 2016) for satellite time series analysis. Then, section 3.4
focuses on the analysis of a single time series and shows some visualisation methods.
We then present an example of a complete land use and land cover change analysis
for a study area in the Mato Grosso, Brazil in section 3.5.

3.2 The Time-Weighted Dynamic Time Warping method

In this section, we describe the Time-Weighted Dynamic Time Warping (TWDTW)
algorithm in general terms. For a detailed technical explanation, refer to Maus et
al. (2016). TWDTW is time-constrained version of the Dynamic Time Warping
(DTW) algorithm. Although the standard DTW method is good for shape matching
(KEOGH; RATANAMAHATANA, 2005), it is not suited per se for satellite image time
series analysis, since it disregards the temporal range when finding the best matches
between two time series (MAUS et al., 2016). When using image time series for land
cover classification, one needs to balance between shape matching and temporal
alignment, since each land cover class has a distinct phenological cycle associated
with the vegetation (ZHANG et al., 2003; REED et al., 1994). For example, soybeans
and maize cycles range from 90 to 120 days, whereas sugar-cane has a 360 to 720
days cycle. A time series with cycle larger than 180 days is unlikely to come from
soybeans or maize. For this reason, Maus et al. (2016) include a time constraint in
DTW to account for seasonality. The resulting method is capable of distinguishing
different land-use and land-cover classes.

The inputs to TWDTW are: (a) a set of time series of known temporal patterns
(e.g. phenological cycles of land cover classes); (b) an unclassified long-term
satellite image time series. For each temporal pattern, the algorithm finds all
matching subintervals in the long-term time series, providing a dissimilarity measure
(cf. Figure 3.1). The result of the algorithm is a set of subintervals, each associated
with a pattern and with a dissimilarity measure. We then break the unclassified
time series in periods according to our needs (e.g., yearly, seasonality, monthly). For
each period, we consider all matching subintervals that intersect with it, and classify
them based on the land cover class of the best matching subinterval. In this way,
the long-term satellite time series is divided in periods, and each period is assigned
a land cover class.

To use TWDTW for land-use and land-cover classification, we need the following
data sets:

• A set of remote sensing time series for the study area. For example, a tile
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Figure 3.1 - Matches of the known temporal pattern to subintervals of the long-term time
series. The solid black line is the long-term time series, the colored lines are
the different matches of the same pattern ordered by TWDTW dissimilarity
measure, and the gray dashed lines are the matching points.

of a MODIS MOD13Q1 image consists of 4800 x 4800 pixels, covering an
area of 10 degrees x 10 degrees at the Equator (FRIEDL et al., 2010). A
15-year (2000-2015) MODIS MOD13Q1 set time series has 23 images per
year, with a total of 23 million time series, each with 346 samples.

• A set of time series with land cover information, called temporal patterns.
Typically, each time series is short and covers one phenological cycle of
one land cover type. Examples would be a time series of a soybean crop, or
one that describes a mature tropical forest. These temporal patterns can
be extracted from the remote sensing image data, if the user knows their
spatial and temporal location.

• A set of ground truth points, with spatial and temporal information and
land cover classification. These ground truth points are used for validation
and accuracy assessment.

Based on the information provided by the user about the images to be analysed, our
method maps them to a three-dimensional (3-D) array in space-time (Figure 3.2).
This array can have multiple attributes, such as the satellite bands (e.g. “RED”,
“NIR”, and “BLUE”), and derived indices (e.g. “NDVI”, “EVI”, and “EVI2”). This
way, each pixel location is associated to a sequence of measurements, building a
satellite image time series. Figure 3.2 shows an example of “EVI” time series for a
location in the Brazilian Amazon from 2000 to 2008. In the first two years, the area
was covered by forest that was cut in 2002. The area was then used for cattle raising
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(pasture) for three years, and then for crop production from 2006 to 2008. Satellite
image time series are thus useful to describe the dynamics of the landscape and the
land use trajectories.
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Figure 3.2 - A 3-dimensional array of satellite images (left), an enhanced vegetation index
(EVI) time series at the pixel location (x, y) (right). The arrows indicate gaps
in the time series. Adapted from Maus et al. (2016).

3.3 dtwSat package overview

dtwSat provides a set of functions for land cover change analysis using satellite
image time series. This includes functions to build temporal patterns for land cover
types, apply the TWDTW analysis using different weighting functions, visualise the
results in a graphical interface, produce land cover maps, and create spatiotemporal
plots for land changes. Therefore, dtwSat gives an end-to-end solution for satellite
time series analysis, which users can make a complete land change analysis.

For the dtwSat package, the user should provide the following inputs:

• A set of time ordered satellite images, all with the same spatial extent. The
user should also inform the date of each image. In R the images should use
the RasterBrick or RasterStack class of the raster package.

• A list of temporal patterns, each associated to a time series in zoo format.

• A list of known ground truth points, each with spatial and temporal
information, in a format readable in R, such as CSV or shapefile.

The dtwSat package organizes the data in three S4 classes: twdtwTimeSeries,
twdtwMatches, and twdtwRaster. To store time series we use the class
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twdtwTimeSeries. The objects of class twdtwTimeSeries have two slots; the slot
called timeseries has a list of zoo objects; and the slot called labels stores the
labels of the time series. The class twdtwMatches has 3 slots to store inputs and
results of the TWDTW analysis. The slots called timeseries and patterns are
objects of the class twdtwTimeSeries with the unclassified long-term time series and
the temporal patterns, respectively. A third slot called alignments has a list with
detailed information about the matches between the patterns and the unclassified
long-term time series. The classes twdtwTimeSeries and twdtwMatches are used to
analyse lists of time series.

The class twdtwRaster is used for satellite image time series. This class can store
either unclassified raster time series with the satellite raw data, the results of the
TWDTW analyis, or a classified raster time series. In both cases, the objects of class
twdtwRaster have five slots. The slot called timeseries is a list of RasterBrick or
RasterStack objects with time ordered satellite images (all with the same temporal
and spatial extents); the slot called timeline is a vector of class Date with dates
of the satellite images; the slot called layers has the names of satellite bands; the
slot called levels has levels for the raster values; and the slot called labels has
labels for the raster values. This class builds upon the R package raster to build
a multi-attribute 3-D raster in space-time, allowing for multi-band satellite image
time series analysis.

3.4 Classifying a time series

This section describes how to classify one time series, using examples that come
with the dtwSat package. We will show how to match three temporal patterns
(“soybean”, “cotton”, and “maize”) to subintervals of a long-term satellite image
time series. These time series have been extracted from a set of MODIS MOD13Q1
(FRIEDL et al., 2010) images and include the vegetation indices “ndvi”, “evi”, and
the original bands “nir”, “red”, “blue”, and “mir”. In this example, the classification
of crop types for the long-term time series is known.

3.4.1 Input data

The inputs for the next examples are time series in zoo format. The first is an
object of class zoo with a long-term time series, referred to as example_ts, and the
second is a list of time series of class zoo with the temporal patterns of “soybean”,
“cotton”, and “maize”, referred to as patterns.list.

32



From zoo objects we construct time series of class twdtwTimeSeries, for which
we have a set of visualization and analysis methods implemented in the dtwSat
package. The code below builds two objects of class twdtwTimeSeries. The first
has the long-term time series and second has the temporal patterns. We use the plot
method types timeseries and patterns to shown the objects ts in Figure 3.3 and
patterns_ts in Figure 3.4, respectively. This plot method uses ggplot syntax.

# Create twdtwTimeSeries

ts = twdtwTimeSeries(example_ts, labels="Time series")

patterns_ts = twdtwTimeSeries(patterns.list)

# Sequence of phenological cycle in ts

example_ts_labels

label from to
1 Soybean 2009-09-01 2010-03-01
2 Cotton 2010-03-01 2010-09-01
3 Soybean 2010-09-01 2011-03-01
4 Cotton 2011-03-01 2011-09-01
5 Soybean 2011-09-01 2012-03-01
6 Maize 2012-03-01 2012-09-01
7 Soybean 2012-09-01 2013-03-01
8 Maize 2013-03-01 2013-09-01

library(dtwSat)

# List of temporal patterns

names(patterns.list)

[1] "Soybean" "Cotton" "Maize"

# Example of time series

head(example_ts, n = 2)

ndvi evi red nir blue mir
2009-08-05 0.3169 0.1687 0.1167 0.2250 0.0427 0.2193
2009-08-28 0.2609 0.1385 0.1168 0.1993 0.0548 0.2657

# Plot objects of class twdtwTimeSeries

plot(ts, type = "timeseries") +
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annotate(geom = "text", x = example_ts_labels$from+90,

y = 0.98, label = example_ts_labels$label, size = 2)

Soybean Cotton Soybean Cotton Soybean Maize Soybean Maize

Time series

0.00

0.25

0.50

0.75

1.00

2010 2011 2012 2013

Time

va
lu

e

variable
ndvi

evi

red

nir

blue

mir

Figure 3.3 - Example of time series based on MODIS product MOD13Q1 (FRIEDL et al.,
2010). The labels of the phenological cycle are shown in the plot.

# Plot objects of class twdtwTimeSeries

plot(patterns_ts, type = "patterns")
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Figure 3.4 - Temporal patterns of soybean, cotton, and maize based on MODIS product
MOD13Q1 (FRIEDL et al., 2010)

TWDTW uses both amplitude and phase information to classify the phenological
cycles in the long-term time series. The EVI peak of the “soybean” time series has
a similar amplitude as that of “cotton”. However, the “soybean” series peaks in
late December while the “cotton” series peaks in early April. The EVI peak of the
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“maize” time series is at the same period as the peak of “cotton”. However, the
“maize” time series has smaller amplitude than the “cotton” one. Therefore, we can
improve the time series classification by combining shape and time information.

3.4.2 Detection of time series patterns with TWDTW

Each subinterval of the long-term time series in ts has a known phenological cycle.
We will now compare the known information with the result of the TWDTW
algorithm. We use the function twdtwApply that returns an R object of class
twdtwMatches with all matches of each temporal pattern in the time series.

log_weight = logisticWeight(alpha = -0.1, beta = 100)

matches = twdtwApply(x = ts, y = patterns_ts,

weight.fun = log_weight, keep=TRUE)

slotNames(matches)

[1] "timeseries" "patterns" "alignments"

show(matches)

An object of class "twdtwMatches"
Number of time series: 1
Number of Alignments: 16
Patterns labels: Soybean Cotton Maize

To retrieve the complete information of the matches we set keep=TRUE. We need
this information for the plot methods of the class twdtwMatches. The argument
weight.fun defines the time-weight to the dynamic time warping analysis (MAUS

et al., 2016). By default the time-weight is zero, meaning that the function will run
a standard dynamic time warping analysis. The arguments x and y are objects of
class twdtwTimeSeries with the unclassified long-term time series and the temporal
patterns, respectively. For details and other arguments see ?twdtwApply.

In our example we use a logistic weight function for the temporal constraint of
the TWDTW algorithm. This function is defined by logisticWeight. The dtwSat
package provides two in-built functions: linearWeight and logisticWeight. The
linearWeight function with slope a and intercept b is given by

ω = a · g(t1, t2) + b,
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and the logisticWeight with midpoint beta, and steepness alpha, given by

ω = 1
1 + eα(g(t1,t2)−β) .

The function g is the absolute difference in days between two dates, t1 and t2. The
linear function creates a strong time constraint even for small time differences. The
logistic function has a low weight for small time warps and significant costs for
bigger time warps, cf. Figure 3.5. In our previous studies (MAUS et al., 2016) the
logistic-weight had better results than the linear-weight for land cover classification.
Users can define different weight functions as temporal constraints in the argument
weight.fun of the twdtwApply method.
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Figure 3.5 - Logistic time-weight function logisticWeight with steepness alpha=-0.1
and midpoint beta=100. The x axis shows the absolute difference between
two dates in days and the y axis shows the time-weight (MAUS et al., 2016).

3.4.3 Visualising the result of the TWDTW algorithm

dtwSat provides five ways to visualise objects of class twdtwMatches through the
plot types: matches, alignments, classification, path, and cost. The plot type
matches shows the matching points of the patterns in the long-term time series;
the plot type alignments shows the alignments and dissimilarity measures; the plot
type path shows the low cost paths in the TWDTW cost matrix; and the plot
type cost allows the visualisation of the cost matrices (local cost, accumulated cost,
and time cost); and the plot type classification shows the classification of the
long-term time series based on the TWDTW analysis. The plot methods for class
twdtwMatches return a ggplot object, so that users can further manipulate the
result using the ggplot2 package. For more details on visualisation functions, please
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refer to the dtwSat documentation in the CRAN (MAUS, 2015).

We now describe the plot types matches and alignments. The code bellow shows
how to visualise the matching points of the four best matches of “soybean” pattern
in the long-term time series, cf. Figure 3.6.

plot(matches, type="matches", patterns.labels="Soybean", k=4)
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Figure 3.6 - The four best matches of the "soybean" pattern in the time series using a
logistic time-weight. The solid black line is the long-term time series; the
coloured lines are the temporal patterns; and the grey dashed lines are the
respective matching points.

The next example (Figure 3.7) uses the plot type alignments to show the alignments
of the temporal patterns. We set the threshold for the dissimilarity measure to be
lower than 3.0. This is useful to display the different subintervals of the long-term
time series that have at least one alignment whose dissimilarity is less than the
specified threshold.

plot(matches, type="alignments", attr = "evi", threshold = 3.0)

3.4.4 Classifying the long-term time series

Using the matches and their associated dissimilarity measures, we can classify the
subintervals of the long-term time series using twdtwClassify. To do this, we need
to define a period for classification and the minimum overlap between the period
and the alignments that intersect with it. We use the plot type classification
to show the classification of the subintervals of the long-term time series based on
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Figure 3.7 - Alignments and dissimilarity measures of the patterns "soybean", "cotton",
and "maize" to the subintervals of the long-term time series using a logistic
time-weight. The solid black line is the EVI time series, and the coloured lines
are the alignments of the patterns that have dissimilarity measure lower than
three.

the TWDTW analysis. For this example, we set classification periods of 6 months
from September 2009 to September 2013, and a minimum overlap of 50% between
the alignment and the classification period. This means that at least 50% of the
alignment has to be contained inside of the classification period.

ts_classification = twdtwClassify(x = matches,

from = as.Date("2009-09-01"), to = as.Date("2013-09-01"),

by = "6 month", overlap = 0.5)

plot(ts_classification, type="classification")

Comparing the results of the classified time series in Figure 3.8 with the crop
cycles in Figure 3.3 we see that the algorithm has classified correctly all the
eight subintervals from 2009 to 2013, which are, respectively: “Soybean”, “Cotton”,
“Soybean”, “Cotton”, “Soybean”, “Maize”, “Soybean”, “Maize”.

3.5 Producing a land cover map

In this section we present an application of TWDTW for land use and land cover
change analysis using satellite image time series. Our input is a set of images, each
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Figure 3.8 - Classification of each 6 months periods of the time series using results of the
TWDTW analysis with logistic time-weight. The solid lines are the attributes
of the time series, the background colours indicate the classification of the
periods.

covering the same geographical area at different times. Each pixel location is then
associated to an unclassified satellite image time series. We assume to have done
field work in the area; for some pixel locations and time periods, we know what is
the land cover. We then will show how to obtain a set of template patterns, based
on the field samples and how to apply these patterns to land cover classification
of the set of images. In the end of this section we show how to perform land cover
change analysis and how to do accuracy assessment. The satellite images and the
field samples used in the examples come with dtwSat package.

Our method is not restricted to cases where the temporal patterns are obtained from
the set of images. The patterns for the TWDTW analysis can be any time series
with same bands or indices as the unclassified images, such as in the examples of
Section 3.4 above.

3.5.1 Input data

The inputs are: a) the satellite images for a given geographical area, organised as a
set of georeferenced raster files in GeoTIFF format, each containing all time steps of
a spectral band or index; and b) a set of ground truth samples. The satellite images
are extracted from the MODIS product MOD13Q1 collection 5 (FRIEDL et al., 2010)
and include vegetation indexes “ndvi”, “evi”, and original bands “nir”, “red”, “blue”,
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and “mir”. This product has 250 x 250 m spatial and 16 day temporal resolution.

The region is a tropical forest area in Mato Grosso, Brazil of approximately 5300
km2 with images from 2007 to 2013 (Figure 3.9). This is a sequence of 160 images
with 999 pixels each for 6 years. We also have a set of 603 ground truth samples of
the following classes: “forest”, “cotton-fallow”, “soybean-cotton”, “soybean-maize”,
and “soybean-millet”.

Figure 3.9 - Study area in Mato Grosso, Brazil, shown in a © Google Earth image. The area
was originally covered by tropical forest that has been removed for agricultural
use.

The data files for the examples that follow are in the dtwSat installation folder
lucc_MT/data/. The tif files include the time series of “blue”, “red”, “nir”, “mir”,
“evi”, “ndvi”, and “doy” (day of the year); the text file timeline has the dates
of the satellite images; the CSV file samples.csv has the longitude, latitude,
from, to, and label for each field sample; and the text file samples_projection
contains information about the cartographic projection of the samples, in the format
of coordinate reference system used by sp::CRS.

data_folder = system.file("lucc_MT/data", package = "dtwSat")

dir(data_folder)

[1] "blue.tif" "doy.tif" "evi.tif"
[4] "mir.tif" "ndvi.tif" "nir.tif"
[7] "red.tif" "samples_projection" "samples.csv"

[10] "timeline"
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In this example, we have stored all the time series for each band in one single file.
In this way, we can use the function raster::brick to read the satellite images.
The algorithm also works when the time steps for each band are split in many files.
In this case, the user should call the function raster::stack with the appropriate
parameters. Because of processing performance, we suggest that interested users
group their images in bricks and follow the procedures given below.

blue = brick(paste(data_folder,"blue.tif", sep = "/"))

red = brick(paste(data_folder,"red.tif", sep = "/"))

nir = brick(paste(data_folder,"nir.tif", sep = "/"))

mir = brick(paste(data_folder,"mir.tif", sep = "/"))

evi = brick(paste(data_folder,"evi.tif", sep = "/"))

ndvi = brick(paste(data_folder,"ndvi.tif", sep = "/"))

day_of_year = brick(paste(data_folder,"doy.tif", sep = "/"))

dates = scan(paste(data_folder,"timeline", sep = "/"),

what = "dates")

The set of ground truth samples in the CSV file samples.csv has a total of 603
samples divided in five classes: 68 “cotton-fallow”, 138 “forest”, 79 “soybean-cotton”,
134 “soybean-maize”, and 184 “soybean-millet”. Reading this CSV file, we get a
data.frame object, with the spatial location (latitude and longitude), starting
and ending dates (from and to), and the label for each sample.

field_samples = read.csv(paste(data_folder,"samples.csv", sep = "/"))

head(field_samples, 2)

longitude latitude from to label
1 -55.98819 -12.03646 2011-09-01 2012-09-01 Cotton-fallow
2 -55.99118 -12.04062 2011-09-01 2012-09-01 Cotton-fallow

table(field_samples[["label"]])

Cotton-fallow Forest Soybean-cotton Soybean-maize Soybean-millet
68 138 79 134 184

proj_str = scan(paste(data_folder,"samples_projection", sep = "/"),

what = "character")

proj_str
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[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

3.5.2 Creating the time series and the temporal patterns

After reading our data, we need to create the time series for analysis. For this
purpose, dtwSat provides the constructor twdtwRaster that builds a multi-band
satellite image time series. The inputs of this function are RasterBrick objects with
the same temporal and spatial extents, and a vector (timeline) with the acquisition
dates of the images in the format "YYYY-MM-DD". The argument doy is optional. If
doy is not declared, the function builds a RasterBrick object using the dates given
by timeline. This function produces an object of class twdtwRaster with the time
series of multiple satellite bands.

raster_timeseries = twdtwRaster(blue, red, nir, mir, evi, ndvi,

timeline = dates, doy = day_of_year)

We now need to identify the temporal patterns. Usually, this can be done using the
collected field samples. In the next example we use the function getTimeSeries to
get the time series of each field sample from our raster time series. The arguments of
the function are a set of raster time series, a data.frame with spatial and temporal
information about the fields samples (as in the object field_samples given above),
and a proj4string with the projection information. The projection should follow
the sp::CRS format. The result is an object of class twdtwTimeSeries with one time
series for each field sample.

field_samples_ts = getTimeSeries(raster_timeseries,

y = field_samples, proj4string = proj_str)

field_samples_ts

An object of class "twdtwTimeSeries"
Slot "timeseries" length: 603
Slot "labels": [1] Cotton-fallow Cotton-fallow Cotton-fallow
5 Levels: Cotton-fallow Forest Soybean-cotton ... Soybean-millet

After obtaining the time series associated to the field samples, we need to create
the template patterns for each class. For this purpose, dtwSat provides the function
createPatterns. This function fits a Generalized Additive Model (GAM) (HASTIE;
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TIBSHIRANI, 1986; WOOD, 2011) to the field samples and retrieves a smoothed
temporal pattern for each band (e.g. “blue”, “red”, “nir”, “mir”, “evi”, and “ndvi”).
We use the GAM because of its flexibility for non-parametric fits, with less rigorous
assumptions on the relationship between response and predictor. This potentially
provides better fit to satellite data than purely parametric models, due to the data’s
inter- and intra-annual variability.

To produce the set of template patterns using the function createPatterns, we
need to set the temporal frequency of the resulting patterns and the smoothing
function for the GAM model. In the example below, we set freq=8 to get temporal
patterns with a frequency of 8 days. We also set the GAM smoothing formula to be
formula = y s(x), where function s sets up a spline model, with x the time and
y a satellite band (for details see ?mgcv::gam and ?mgcv::s).

temporal_patterns =

createPatterns(field_samples_ts, freq = 8, formula = y ~ s(x))

We use the plot method type="patterns" to show the results of the
createPatterns in Figure 3.10.

plot(temporal_patterns, type="patterns") +

theme(legend.position = c(.8,.25))

After obtaining the template patterns for each land cover class, it is useful to perform
a pre-classification analysis to assess their quality and their informational content.
Ideally, one would need template patterns that, when applied to the set of unknown
time series, produce consistent results. For this reason, it is advisable that the user
performs a pre-classification step, along the lines of the individual analysis described
in Section 3.4. In this way, the users would assess how good their patterns are before
classifying a large data set.

3.5.3 Classifying the image time series

After obtaining a consistent set of temporal patterns, we use the function
twdtwApply to run the TWDTW analysis for each pixel location in the raster time
series. The input raster time series in the object twdtwRaster should be longer or
have approximatly the same length as the temporal patterns. This function retrieves
an object of class twdtwRaster with the TWDTW dissimilarity measure of the
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Figure 3.10 - Temporal patterns of forest, cotton-fallow, soybean-cotton, soybean-maize,
and soybean-millet based on the ground truth samples.

temporal patterns for each time period. The arguments overwrite and format
are passed to raster::writeRaster. The arguments weight.fun and overlap are
described in section 3.4. In the next example, we classify the raster time series
using the temporal patterns in temporal_patterns obtained as described above.
The result is a twdtwRaster with five layers; each layer contains the TWDTW
dissimilarity measure for one temporal pattern over time. We use the plot type
distance to illustrate the TWDTW dissimilarity for each temporal pattern in 2013,
cf. Figure 3.11 .

log_fun = logisticWeight(alpha=-0.1, beta=50)

twdtw_dist =

twdtwApply(x = raster_timeseries, y = temporal_patterns,

overlap = 0.5, weight.fun = log_fun, overwrite=TRUE,

format="GTiff")

plot(x = twdtw_dist, type="distance", time.levels = 6)

The results of the example above can be used to create categorical land cover maps.
The function twdtwClassify selects the most similar pattern for each time period
and retrieves a twdtwRaster object with the time series of land use maps. The
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Figure 3.11 - Illustration of the TWDTW dissimilarity from each temporal pattern in
2013. The blue areas are more similar to the pattern and the red areas are
less similar to the pattern.

resulting object includes two layers, the first has the classified categorical maps and
the second has the TWDTW dissimilarity measure.

land_use_maps = twdtwClassify(twdtw_dist,

format="GTiff", overwrite=TRUE)

3.5.4 Looking at the classification results

The classification results can be visualised using the plot methods of the class
twdtwRaster, which supports four plot types: “maps”, “area”, “changes”, and
“distance”. The type="maps" shows the land cover classification maps for each
period, cf. Figure 3.12.

plot(x = land_use_maps, type = "maps")

The next example shows the accumulated area for each class over time, using
type="area", cf. Figure 3.13.
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Figure 3.12 - Land use maps for each year from 2008 to 2013.

plot(x = land_use_maps, type = "area")
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Figure 3.13 - Percentage of area for each land use class from 2008 to 2013.

Users can also view the land cover transition for each time period, by setting
type="changes". For each land cover class and each period, the plot shows gains
and losses in area from the other classes. This is the visual equivalent of a land
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transition matrix, cf. Figure 3.14.

plot(x = land_use_maps, type = "changes")
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Figure 3.14 - Gains and losses in area from the other classes. The y axis shows the actual
class; the positive direction of x axis shows the gains and the negative
direction of x axis shows the losses of the classes indicated in y. The colors
indicate from/to which classes the gains/losses belong.

We can also look at the dissimilarity of each classified pixel setting
type="distance". This plot can give a measure of the uncertainty of the
classification of each pixel for each time period, cf. Figure 3.15.

plot(x = land_use_maps, type="distance")

3.5.5 Assessing the classification accuracy

In this section we show how to assess the accuracy of the TWDTW method
for land cover classification. To do this, we split the ground truth samples into
training and validation sets, using the function splitDataset from the package
dtwSat. This function splits set of time series in the object twdtwTimeSeries for
training and validation. The argument p defines the percentage used for training
and the argument times gives the number of different partitions to create. This
is a a stratified sampling with a simple random sampling within each stratum, see
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Figure 3.15 - TWDTW dissimilarity measure for each pixel over each classified period.
The blue areas have high confidence and the red areas have low confidence
in the classification.

?createDataPartition for details. In the next example we create 100 different
partitions of the data. Each partition uses 10% of the data for training and 90%
for validation. The output is a list with 100 different data partitions; each partition
has the temporal patterns based on the training samples and a set of time series for
validation.

set.seed(1)

partitions = splitDataset(field_samples_ts, p=0.1, times=100,

freq = 8, formula = y ~ s(x, bs="cc"))

For each data partition we run the TWDTW analysis to classify the set of validation
time series using the trained temporal patterns. The result is a list of twdtwMatches
objects with the classified set of time series for each data partition. To compute the
User’s Accuracy (UA) and Producer’s Accuracy (PA) of the classified time series
we use the function dtwSat::twdtwAssess that retrieves a data.frame with the
accuracy assessment for all data partitions.
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log_fun = logisticWeight(alpha=-0.1, beta=50)

twdtw_res = lapply(partitions, function(x){

res = twdtwApply(x = x$ts, y = x$patterns,

weight.fun = log_fun, n=1)

twdtwClassify(x = res)

})

assessment = twdtwAssess(twdtw_res)

head(assessment, 5)

resample label UA PA
1 1 Cotton-fallow 1.0000000 0.953125
2 1 Forest 1.0000000 1.000000
3 1 Soybean-cotton 0.8732394 1.000000
4 1 Soybean-maize 1.0000000 0.952381
5 1 Soybean-millet 1.0000000 1.000000

Figure 3.16 shows the average µ and standard deviation σ of user’s and producer’s
accuracy based on a bootstrap simulation of 100 different data partitions using
resampling-with-replacement. The user’s accuracy gives the confidence and the
producer’s accuracy gives the sensitivity of the method for each class. In our analysis
all classes had high user’s and producer’s accuracy, meaning that TWDTW has
high confidence and sensitivity for the classes included in the analysis. The average,
standard deviation, and the 99% confidence interval is also shown in Table 3.1.
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Figure 3.16 - User’s Accuracy (UA) and Producer’s Accuracy (PA) of the TWDTW
method for land cover classification. The plot shows the averages and their
confidence interval for 99%.
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Table 3.1 - User’s and Producer’s Accuracy of the land use classification based on
TWDTW analysis. µ is the average accuracy, σ the standard deviation, and
CI is the confidence interval of 99% using 100 resampling-with-replacement.

Class User’s Accuracy (UA) % Producer’s Accuracy (PA)%
µ σ CI µ σ CI

Cotton-fallow 99.93 (0.46) [99.80-100.00] 95.78 (1.29) [95.42-96.07]
Forest 100.00 (0.00) [100.00-100.00] 100.00 (0.00) [100.00-100.00]

Soybean-cotton 88.92 (1.81) [88.45-89.35] 98.58 (5.37) [96.90-99.70]
Soybean-maize 99.58 (0.95) [99.33-99.78] 93.51 (4.79) [92.10-94.58]
Soybean-millet 97.12 (6.09) [95.33-98.50] 99.67 (0.70) [99.47-99.82]

3.6 Conclusions and Discussion

Nowadays, there are large open archives of Earth Observation data, but few open
source methods for analysing them. With this motivation, this paper provides
guidance on how to use the Time-Weighed Dynamic Time Warping (TWDTW)
method for remote sensing applications. As we have discussed in a companion paper
(MAUS et al., 2016), the TWDTWmethod is well suited for land cover change analysis
of satellite image time series.

The main goal of dtwSat package is to make TWDTW accessible for researchers.
The package supports the full cycle of land cover classification using image time
series, ranging from selecting temporal patterns to visualising and evaluating the
results. The current version of the dtwSat package provides a pixel-based time series
classification method. We envisage that future versions of the package could include
local neighborhoods to reduce border effects and improve classification homogeneity.

To aim for maximum usage by the scientific community, the dtwSat package
described in this paper works with well-known R data classes such as provided
by packages zoo and raster. We are planning improvements, so that dtwSat can
be combined with array databases, such as SciDB (STONEBRAKER et al., 2013). We
believe that combining array databases with image time series analysis software such
as presented here is one way forward to scaling the process of information extracting
to very large Earth Observation data.
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4 LAND-USE AND LAND-COVER TRAJECTORIES IN MATO
GROSSO BRAZIL3

4.1 Introduction

Brazil intends to reduce its greenhouse gas (GHG) emissions by 37% in 2025 and
by 43% in 2030 below 2005 levels (BRAZIL, 2015). Agriculture, forestry, and other
land use related sectors have been the main source of Brazil’s GHG emissions.
These sectors together contributed to 78% of Brazil’s emissions in 2005 and 52%
in 2012 (MCTI, 2014). The decreasing rate of deforestation was the main sector
responsible for this reduction, dropping its contribution to GHG emissions from
58% to 20% in the same period. The cuts in the Brazilian Amazon rain forest, for
example, decreased by 79% from 27,772 km2 in 2004 to 5,831 km2 in 2015 (INPE,
2015). Meanwhile, the agricultural sector has become a more important driver
Brazil’s GHG emissions, increasing its contribution to GHG emissions from 15%
to 37% (MCTI, 2014). Therefore, the land use related sectors are crucial for near-
term GHG mitigation in Brazil.

The Amazon rain forest has a crucial role on biodiversity, climate stability, and other
ecological services (LEWIS et al., 2015). Therefore, it is important to understand the
land use dynamics and the causes of the forest removal (LAMBIN et al., 2003; AGUIAR

et al., 2006). For this reason, the Brazilian National Institute for Space Research
(INPE) and the Brazilian Agricultural Research Corporation (EMBRAPA) have
mapped the land use after the deforestation in the Brazilian Amazon for every
two years since 2008 (INPE, 2012). Their results show that in 2012 60% of the
cut forest areas were used for cattle raising whereas regeneration areas (secondary
vegetation) accounted for 23%. Cattle ranches in Amazon use extensive practices,
with less than one head of cattle per hectare. Cash crop agriculture accounted for
only 6% of the deforestation. To achieve further gains in reducing deforestation and
biodiversity loss, we need to understand the different land use trajectories, including
deforestation dynamics, land use intensification, and land abandonment pathways.

In this paper we explore the potential of spatio temporal mapping to study
land cover trajectories. For that, we used the Time-Weighted Dynamic Time
Warping (TWDTW) method (MAUS et al., 2016) to classify the Amazon biome at
Mato Grosso, Brazil, from 2001 to 2014. This region has been largely deforested,
accounting for 139,824 km2 since 1988 (INPE, 2015). The deforestation rate in Mato

3This is an initial version of the paper to be submitted to the journal Remote Sensing of
Environment.
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Grosso has been reduced during the last years, from 11,814 km2 in 2004 to 1,508 km2

in 2015, decreasing by 87% (INPE, 2015). Meanwhile, land use intensification process
is taking place through multiple cropping systems (GALFORD et al., 2008; RUFIN et

al., 2015). Therefore, some interesting questions about the land cover trajectories
in this region are: Which are the main land use after deforestation? Which are
the trajectories of agricultural intensification? What are the policy impacts on
deforestation? Answering these questions we can contribute to better understand
the land-use and land-cover change (LUCC) in the Brazilian Amazon and inform
policy-makers.

4.2 Classifying satellite image time series

We use the TWDTWmethod (MAUS et al., 2016) to create a sequence of annual maps
from 2001 to 2014. The inputs to TWDTW are: (a) a set of time series of known
temporal patterns, e.g., the phenological cycle of the vegetation associated with a
land cover class, (b) an unclassified long-term satellite image time series. For each
temporal pattern, the algorithm finds all matching subintervals in the long-term
time series, providing a dissimilarity measure. The result of the algorithm is a set
of subintervals, each associated with a pattern and with a dissimilarity measure. In
a second step the algorithm breaks the unclassified time series in periods according
to our needs (e.g., yearly, seasonality, monthly) and classifies them based on the
best matching land cover class in each subinterval. This way, the long-term satellite
time series is divided into periods where each period is assigned a land cover class.
In what follows we describe the inputs and outputs of the TWDTW algorithm and
how the results are combined with transition rules to classify the satellite image
time series.

4.2.1 Creating the temporal patterns

The first step before applying the TWDTW analysis is to define the temporal
patterns for each land cover class in the study area. We used a Generalized Additive
Model (GAM) (HASTIE; TIBSHIRANI, 1986) to create a smoothed temporal pattern
for each class and each band of the satellite image, e.g. “BLUE”, “RED”, “NIR”,
“MIR”, “EVI”, and “NDVI”. The GAM is flexible for irregularly sampled time series
and non-parametric fits, which mean less rigorous assumptions on the relationship
between response and predictor. This potentially provides a better fit to satellite data
than purely parametric models, due to the data’s inter- and intra-annual variability.
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4.2.2 Applying the TWDTW analysis

The TWDTW method is an adaptation of the well-known Dynamic Time Warping
(DTW) method used for time series analysis (VELICHKO; ZAGORUYKO, 1970;
SAKOE; CHIBA, 1971; SAKOE; CHIBA, 1978; RABINER; JUANG, 1993; BERNDT;

CLIFFORD, 1994; KEOGH; RATANAMAHATANA, 2005; MüLLER, 2007). TWDTW is
a robust algorithm that can handle with auto-of-phase and irregularly sampled
satellite image time series (MAUS et al., 2016). This algorithm compares a well known
temporal pattern to an unclassified long-term satellite image time series and finds
their best matches by taking into account both amplitude and phase, Figure 4.1. In
a tropical forest area, the method has achieved a high accuracy for mapping classes
of single cropping, double cropping, forest, and pasture (MAUS et al., 2016).

0.2
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0.6

0.8

1

2002 2004 2006 2008 2010

Time
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Forest Pasture Single cropping Double cropping

Figure 4.1 - Matches of the temporal patterns of different land cover classes to a long-term
EVI time series using the Time-Weighted Dynamic Time Warping (TWDTW)
algorithm.
Source: Adapted from Maus et al. (2016).

The TWDTW algorithm compares the temporal patterns with the satellite image
time series for each pixel location in the study area and find which subintervals are
associated with one of the pre-defined patterns. This set of subintervals associated
with a pattern and a dissimilarity measure are used to create categorical land cover
maps as we describe below.

4.2.3 Creating annual land cover maps

As a third step, the algorithm breaks the unclassified time series into 12-month
periods according to the Brazilian agricultural calendar, from July to next July.
For each period, we consider all the TWDTW matches that have more than 50%
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overlap with the period, meaning that at least 50% of the match has to be inside of
the classification period. We then classify each period based on the best matching,
i.e. the lowest time warping cost, among the land cover classes in the interval. This
way, the long-term satellite image time series is divided into yearly periods, and a
land cover class is assigned to each period.

In our classification we also split degraded forests and regrowing vegetation from
primary forest. The temporal patterns of primary forests and secondary forests are
similar over the year, therefore, they are not easily distinguished in the MODIS
spatial resolution of 250 m. For this reason, we used land cover transition rules based
on the underlying causes that create conditions for the appearance of secondary
forest Figure 4.2. The typology adopted here was adapted from Chokkalingam and
Jong (2001) and distinguish: primary forest, degraded forest, and secondary forest
regrowth.

The “degraded forest” follows a disturbance event that can be natural and/or
human-initiated. Both causes are included because they can have significant
contribution in the formation of secondary forests. Chokkalingam and Jong
(2001) argues that, often natural disturbances are initiated or fuelled by human
activities, and it is difficult to split the source of the event. Therefore, “degraded
forest” includes regenerating forests after catastrophic natural and/or anthropogenic
activities, such as post-fire and post-extraction secondary forests. The sequence
below shows the “degraded forest” formation

forest =⇒ disturbance =⇒ degraded forest

We also assume that several disturbance events can occur over the same area, i.e.
the disturbance event can be recurrent. Therefore, a second possible pathway to
“degraded forest” is

degraded forest =⇒ disturbance =⇒ degraded forest

In our analysis we also estimate “secondary forest regrowth”, which is a regeneration
after an agricultural use. This secondary forest exists only if the land has been
used for agricultural activities at any time from the begin of the time series
until the present moment. It includes regrowth due to land abandonment and/or
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rehabilitation efforts on degraded lands, but it does not distinguish natural from
planted regenerating forests. The sequence below shows the “secondary forest
regrowth” formation

Agriculture =⇒ abandonment =⇒ secondary forest regrowth

To split “primary forest”, “degraded forest”, and “secondary forest regrowth” we use
the transition rules in Figure 4.2. Areas matching a forest pattern are classified as
“primary forest” only if they have been classified as “primary forest” in the previous
year. Otherwise, we classified them as secondary forest. For the first year of the time
series, the areas matching a forest pattern are classified as “primary forest”. The two
main implications of these rules are: a) there is no secondary forest in the first year
of the classification, and b) the primary forest area decreases asymptotically.

Natural vegetation:

Forest cover degradation:

Agricultural activity:

Secondary Vegetation

Class of lowest 
TWDTW distance 

(agricultural)

No

Yes

Deforestation/
Forest disturbance

Is it Forest?

Was it 
forest 

before?

Has it 
always been 

forest?

Was there 
any agriculture

before?

No

Yes

No

Yes

No

Yes

Degraded forest

Secondary forest 
regrowth

Primary Forest

Class of lowest 
TWDTW distance

Figure 4.2 - Land cover transitions rules to classify the time intervals. These rules are used
to split: primary forest, degraded forest, and secondary forest regrowth.
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4.3 Datasets and validation

Our study area is the Amazon biome at Mato Grosso, Brazil, which covers an area
of 489,700 km2 Figure 4.3. To create the land maps we used multiple-bands time
series extracted from the MODIS product MOD13Q1 collection 5. Bisides the real
date of each pixel in the image, we used the vegetation indices “NDVI”, “EVI”, and
the original bands “NIR”, “RED”, “BLUE”, and “MIR”. This product has 250 x
250 m spatial and 16 day temporal resolution using Maximum Value Composition
(MVC) (FRIEDL et al., 2010). Not that we used the real day of each pixel, therefore,
our time series are not regularly sampled.

0 500 1000 km

Study area
Brazil
Grid MOD13Q1 

Figure 4.3 - Study area covering the Amazon biome at Mato Grosso, Brazil.

We used 6 MODIS tiles to cover the whole study area, including all images from 2000
to 2014. This means 2070 MODIS images where each image has 23,040,000 pixels. To
handle this big data set, we used the array database system SciDB (STONEBRAKER et

al., 2013), which can store satellite images in a 3-dimensional (3-D) array, Figure 4.4.
This storage system allows designing spacetime data analytic methods in a generic
and sensor independent way.

In addition to the satellite data, we also used a set of 2593 ground truth
samples divided into six land cover classes: “forest”, “pasture”, “soybean”, “cotton”,
“soybean-cotton”, “soybean-maize”, Table 4.1. These samples were collected by the
Brazilian Agricultural Research Corporation (EMBRAPA), for details see Arvor et

56



y

x

Time

Satellite images

3-D array

t2

t1

t0

tm

I(x,y,t)

Figure 4.4 - A 3-dimensional (3-D) array of satellite images. Each pixel has a set of
attributes (e.g. “EVI”, “RED”, etc) associated with a pixel location over time.
Source: Adapted from Maus et al. (2016).

al. (2011). We used these data set to create the temporal patterns of the phenological
cycle associated with each land cover class. This data was also used to assess
the accuracy of the classification. Using a bootstrap algorithm we simulated 1000
resampling-with-replacement to estimate the averaged (µ) at the confidence interval
of 99% (CI) of the User’s and Producer’s accuracy. Each simulation used 10% of the
ground truth samples for training and 90% for validation.

Table 4.1 - Ground truth samples used to create the temporal patterns and to
perform the accuracy assessment of the land cover classification. These
samples were collected by the Brazilian Agricultural Research Corporation
(EMBRAPA) (ARVOR et al., 2011).

Class Aggregated class Number of sample
1 Forest Forest 493
2 Pasture Pasture 421
3 Soybean Single cropping 653
4 Cotton Single cropping 198
5 Soybean-Maize Double cropping 561
6 Soybean-Cotton Double cropping 267

4.4 Results

4.4.1 Accuracy assessment

Figure 4.5 shows the average of the user’s and producer’s accuracy based on a
bootstrap simulation with 1000 data partitions. The figure also shows the confidence
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interval at the level of 99%. In our analysis all classes had high user’s and producer’s
accuracy, meaning a high confidence and sensitivity for the samples data set. The
average (µ), standard deviation (σ), and the confidence interval (CI) are also shown
in Table 4.2.

User's Accuracy Producer's Accuracy

Cotton

Forest

Pasture

Soybean−Cotton

Soybean

Soybean−Maize

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Accuracy

Figure 4.5 - User’s and Producer’s Accuracy of the classification based on the TWDTW
analysis. The graphic shows the average at confidence interval of 99%
computed with a bootstrap simulation of 1000 resampling-with-replacement.
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Table 4.2 - User’s and Producer’s Accuracy of the land use classification based on
TWDTW analysis. µ is the averaged accuracy and σ the standard deviation.

Class User’s Accuracy (UA) % Producer’s Accuracy (PA) %
µ σ CI* µ σ CI*

Cotton-Fallow 95.79 (2.98) [95.54-96.02] 91.49 (1.27) [91.39-91.59]
Forest 99.78 (0.10) [99.77-99.78] 99.88 (0.11) [99.87-99.89]
Pasture 99.86 (0.29) [99.84-99.89] 96.67 (0.75) [96.61-96.74]
Soybean-Cotton 82.46 (1.89) [82.30-82.61] 99.34 (0.70) [99.28-99.40]
Soybean-Fallow 97.06 (0.86) [96.99-97.13] 98.93 (0.87) [98.86-99.00]
Soybean-Maize 99.75 (0.20) [99.73-99.76] 93.90 (1.17) [93.80-93.99]
* Confidence interval at the level of 99% computed with a bootstrap simulation
of 1000 resampling-with-replacement.

4.4.2 Land cover change

Using our field samples we built the set of temporal patterns in Figure 4.6.
These patterns show the phenological cycle of the most important land cover
classes in the study area. Their amplitude and phase information can be used to
distinguish between each other. For example, the single cropping systems with cotton
and soybean have only one peak but with different phase. The double cropping
systems with soybean-maize and soybean-cotton have phenological events happening
approximately at the same time but with different shape and amplitude. These
temporal patterns were used as input for the TWDTW algorithm to classify the
study area.

Using the TWDTW method for land cover classification, we built a map for each
agricultural year from 2000 to 2014. In Figure 4.7 we present the result for 2001 and
2014, showing a great expansion of the human activities over the whole area. This
trend can be also visualized in Figure 4.8 that shows the percentage of total area.
The complete time series of land cover maps is available in appendix A.

Figure 4.9 shows the time series of cash crop area in the study area. There is a
growing trend in area of double cropping systems (soybean-maize and soybean-
cotton), whereas the area of single cropping systems (soybean and cotton) has
reduced in the last years.

Pasture is the most dominating human activity in the study area, Figure 4.8. The
last two years of the time series show a reduction of pasture area, as we can see
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Figure 4.6 - Set of temporal patterns associated with phenological cycle of forest,
pasture/grassland, single cropping systems (cotton and soybean), and double
cropping system (soybean-maize and soybean-cotton).

in Figure 4.10. This figure also shows the area of degraded forest, secondary forest
regrowth, and deforestation/forest degradation.

Figure 4.11 shows an example of degradation next to human activities in the
municipality of Porto dos Gaúchos, Brazil. In the center of this area there are two
events of degradation over time, the first in 2008 and the second in 2011.

Figure 4.12 shows the annual changes among the different land cover classes, i.e.
the gains and losses in area of each land cover class. In Figure 4.14 we can see the
accumulated change from each land cover class to all the other classes form 2001 to
2014.

Figure 4.14 shows the land cover transitions related to pasture and soybean. The
transitions from forest to soybean (blue bars) show a growing trend until 2005 that
is reduced to almost zero after 2006. The changes from pasture to soybean from
areas deforested after 2006 (purple bars) are low compared to the changes from
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Figure 4.7 - Land cover classification in 2001 and 2014 in the Amazon biome at Mato
Grosso, Brazil. The complete time series of land cover maps is available in
appendix A.
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Figure 4.8 - Percentage of area from 2001 to 2014 in the Amazon biome at Mato Grosso,
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Figure 4.9 - Total area of cash crop agriculture over time in the Amazon biome at Mato
Grosso, Brazil.
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Figure 4.10 - Total area of pasture, degraded forest, secondary forest regrowth, and
deforestation/forest degradation over time in the Amazon biome at Mato
Grosso, Brazil.

areas deforested before 2006 (green bars). The red bars show the pasture area that
came from deforestation over the time. This kind of transition shows some peaks in
2003, 2006, 2009, and 2012.

4.5 Discussion and Conclusions

The expansion of the human activities over our study area Figure 4.7 is mostly
dominated by pasture, cf. Figure 4.8. This result is in line with the results of the
TerraClass project (INPE, 2012). The pasture has been the main direct land use
after deforestation, 16.03% of the accumulated land use change over the 14 years,
Figure 4.14. Other studies have reported the creation of pasture for cattle raising
as the main driver of deforestation (GEIST; LAMBIN, 2002). In our results we also
observed that pasture has given space to cash crop activities, 7.42% to single and
1.46% to double cropping over all changes. However, the main changes from pasture
are to secondary forest regrowth, 12.73%. This shows that many areas of pasture
have been abandoned, corroborating other studies (SPERA et al., 2014).

In our study the accumulated change from single cropping to double cropping
reached 4.95% during the 14 years, Figure 4.14. Other studies have also found that
single cropping is giving space to double cropping (GALFORD et al., 2008; RUFIN et

al., 2015; SPERA et al., 2014). In our study we also identified that the most common
crop system in areas of intensification is soybean-maize (double cropping), which
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Figure 4.11 - Example of forest degradation in Porto dos Gaúchos, Brazil, at the latitude
-11°54’ and longitude -56°40’.
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Figure 4.12 - Gains and losses in area from the other classes in the study area. The y axis
shows the actual class; the positive direction of x axis shows the gains and
the negative direction of x axis shows the losses of the classes indicated in
y. The colors indicate from/to which classes the gains/losses belong.
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Figure 4.13 - Matrix of changes in the Amazon Biome within Mato Grosso, Brazil. The
values are the percentage of area for each class related to the total changes
accumulated from 2001 to 2014.
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Figure 4.14 - Land cover transitions from 2003 to 2014 in the Amazon biome at Mato
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from forest to pasture (red).

increased by 94%, from 890 km2 in 2001 to 1, 725 km2 in 2014, cf. Figure 4.9.
The crop system with soybean-maize also overcame the single cropping systems
of soybean in the last three years of the time series.

The secondary forest regrowth comes mainly from pasture, 12.73%, considering all
the changes from 2001 to 2014, Figure 4.10. Meanwhile, the accumulated change
from degraded forest to deforestation/forest degradation reached 5.74%, which
point towards recurrence of degradation events in areas previously degraded, cf.
Figure 4.14.

Our results can also help to better understand the land cover change and its
drivers. The reduction on the soybean expansion over the forest areas after 2006
(cf. Figure 4.14) is an effect of soy moratorium. Another impact of the soybean
moratorium is that areas of pasture deforested after 2006 have not been converted
to soybean. However, areas of pasture deforested before 2006 have been converted
to soybean. Meanwhile, the deforestation is still happening in order to open new
pasture for cattle raising. This can be an effect of the soybean taken place over the
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pasture, which is then taking the forest area.

Our classification showed a systematic overestimation of the pasture coming from
deforestation in 2003, 2006, 2009, and 2012, cf. Figure 4.14. This problem is related
to the transition rules that were not adequate to separate natural inter-annual
osculations from degradation/deforestation events. The transitions rules still need
to be improved in order to better separate degradation/deforestation from natural
oscillations. Areas of flood plain, for example, have a great inter-annual variability
and were misclassified as degradation and consequently as degraded forest. In some
cases these areas were also misclassified as pasture.

In this study we identified and estimated the land change in the Amazon region
using MODIS image time series. The results contribute to better understanding of
land cover dynamics in the Brazilian Amazon. Our method has the advantage of
being an automated classification process that can be used to produce annual maps
for large areas. We believe that the method can be extended to other Brazilian
biomes to help understand land change in the whole Brazilian territory.
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5 SYNTHESIS

This thesis shows that making a contribution to advance Earth System Science
sometimes requires a substantial background effort before producing actual results
that advance our scientific understanding. The motivation for this work is the need
to improve on the land-use and land-cover classification of big Earth observation
data sets. I now revise the main contributions of this thesis and then discuss further
research topics.

5.1 How to deal with irregularly sampled satellite image time series for
land-use and land-cover classification?

Open archives of long-term satellite image time series provide opportunities to better
quantify global change, which has lead to the development of automated and semi-
automated methods for satellite image time series analysis. The challenge is that
satellite image time series will always be contaminated by some degree of residual
atmospheric influence, geolocation error, and directional effects. Therefore, to make
the best use of available satellite data archives, methods for satellite image time
series analysis need to deal with data sets that are noisy, irregularly sampled, and
in many cases out-of-phase.

To tackle the challenge, this thesis proposed a solution based on the Dynamic Time
Warping method. Methods based on DTW have achieved significant results in time-
series data mining. The large range of applications of dynamic time warping for time
series analysis motivated the idea of using DTW for remote sensing applications.
The original DTW method works well for shape matching, but is not suited for
remote sensing time-series classification. This is because it disregards the temporal
range when finding the best alignment between two time series. Since the vegetation
associated to each land cover class has a specific phenological cycle, a good time-
series land cover classifier needs to balance between shape matching and temporal
alignment.

In this thesis, I adjusted the original DTW method to include a temporal weight
that accounts for seasonality of the vegetation associated to land cover types. The
algorithm compares two time series and finds their optimal alignment, providing
a dissimilarity measure as a result. DTW provides a robust distance measure for
comparing time series, even if they are irregularly sampled or are out of phase in
the time axis.
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In a tropical forest area, the method showed a high accuracy for mapping classes
of single cropping, double cropping, forest, and pasture. Accuracy assessments
showed that the method compares favourably to other DTW variations for land
classification. The logistic TWDTW had better results than the other tested
alternatives with a global accuracy of 87.32%. Our classification using the logistic
TWDTW has higher accuracy and spatial resolution than the MODIS land cover
product. Forest and cropland areas are in line with the Amazon Monitoring Program
PRODES and with the Brazilian national cropland surveys, respectively. These
results highlight the potential of the TWDTW to improve land-use and land-cover
products and contribute to agricultural statistics.

5.2 Contribution to make methods for satellite time series analysis open
and reproducible

Given the open availability of large image data sets, such as LANDSAT, MODIS, and
SENTINELs, the research community on Earth Observation would get much benefit
from methods that are openly available, reproducible and comparable. However, few
of the proposed methods for remote sensing time series analysis are available as
open source software, the main exception being the BFAST and BFAST-monitor
algorithms for change detection.

This thesis contributed to open and reproducible science by developing an R package
called dtwSat that provides an implementation of the Time-Weighed Dynamic Time
Warping (TWDTW) method (see chapter 3) for satellite image time series analysis.
The package is freely available from the Comprehensive R Archive Network. In
addition, end-to-end (step-to-step) guidance of how to implement the TWDTW
method by using the dtwSat package is currently submitted to the Journal of
Statistical Software (JSS).

The dtwSat package allows researchers to use the TWDTW method for full cycle
of land cover classification using image time series, including 1) selecting temporal
patters, 2) visualizing the results, and 3) evaluating the result. To aim for maximum
usage by the scientific community, the dtwSat package works with well-known R
data classes such as provided by packages zoo and raster.
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5.3 What can we learn from improved land-use and land-cover data
sets?

I used the TWDTW method and MODIS image time series to analyse LUCC in the
Amazon biome, focusing on the Brazilian state of Mato Grosso. This area has gone
through high rate of deforestation and cropland expansion in the last decade. This
study showed that pasture is the dominant land use after deforestation, whereas
most of the single cropping area comes from pasture, and the cropping system is
undergoing intensification from single to double cropping. Moreover, the regenerative
secondary forest comes mainly from pasture. In the case study most of the land
use intensification through double cropping system comes from the soybean-maize
cultivation.

The results contribute to better understanding of land-use and land-cover dynamics
in the Brazilian Amazon. The method used in this study has the advantage of being
an automated classification process that can be used to produce annual maps. This
study shows the potential of the TWDTW method for large-scale remote sensing
data analysis. I believe that the method can be extended to other Brazilian biomes
to help understand land change in the whole Brazilian territory.

5.4 Future work

Based on my experience and the results of this thesis, I now describe some specific
points for future work:

• The proposed method is pixel-based. Future versions including local
neighborhoods can reduce border effects and improve classification
homogeneity. Given that the DTW algorithm produces a distance measure
between each interval of a long-term time series and all the temporal
patterns, these measures could be used as a prior probability estimation
for a Bayesian post-classification produce that borrows information from
the neighbours.

• Post-processing rules can improve TDWTW results. This thesis showed
how to use rules to distinguish pristine forest from forest regrowth. Using
appropriate rules, it is also possible to apply the method for forest
degradation, real-time change detection, and crop condition assessments.

• The results have been obtained using only the MODIS product MOD13Q1.
Further improvements are expected by using data sets from multi-band
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sensors with higher spatial resolution, such as the new SENTINELs.

• The TWDTW algorithm is suitable for applications of remote sensing time
series where the temporal variation is more important than the spatial
variation for classifying remote sensing data sets. These cases include areas
of large farms, such as those found in Brazil. For urban areas with less
seasonal change or areas with small farms, it is likely that time warping
methods need to be combined with object-based image analysis for accurate
classification of the landscape.

• I expect that the TWDTW algorithm will be successful for large-scale
land cover classification of remote sensing time series, if some conditions
are met. If the spatial and temporal resolutions of the data are adequate
to capture the properties of the landscape, and the samples express
the temporal variations of the land cover types, TWDTW has many
advantages. Its flexibility for warping a temporal signature is useful to
account for natural and cultivated vegetation types even with inter-annual
climatic and seasonal variability.

• The current version of the dtwSat package provides a pixel-based time
series classification method. Future versions of the package could include
local neighborhoods to reduce border effects and improve classification
homogeneity.

• Combining array databases with image time series analysis software such
as presented here is one way forward to scaling the process of information
extracting to very large Earth Observation data.

5.5 Conclusion

The methods developed in this these have a substantial potential for contribution on
LUCC modelling. Extensive results in the literature point out that the DTWmethod
is a robust way to do time series data mining. The time constraint introduced in
DTW improves the algorithm’s potential for use with remote sensing data. As it
is the case of all data mining methods, the actual performance of TWDTW will
depend on the quality of the input samples and how these samples can manage to
distinguish between the different land classes. In general, good samples will support
a good classification.

The next steps will be to develop an infrastructure for large-scale remote sensing data
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analysis and to apply TWDTW to the classification of land change in all Brazilian
biomes. Some adjustments will be required, but the resulting data sets can provide
important new information.
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APPENDIX A - LAND COVER MAPS

This appendix shows the land cover maps from 2001 to 2014 for the Amazon biome at
Mato Grosso, Brazil. The methodology of the classification is described in chapter 4.
Figure A.1 presents the legend of the land cover maps in Figures A.2-A.8.

Figure A.1 - Legend of the land cover maps.
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2001

2002

Figure A.2 - Land cover classification in 2001 and 2002 in the Amazon biome at Mato
Grosso, Brazil.
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2003

2004

Figure A.3 - Land cover classification in 2003 and 2004 in the Amazon biome at Mato
Grosso, Brazil.
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2005

2006

Figure A.4 - Land cover classification in 2005 and 2006 in the Amazon biome at Mato
Grosso, Brazil.
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2007

2008

Figure A.5 - Land cover classification in 2007 and 2008 in the Amazon biome at Mato
Grosso, Brazil.

91



2009

2010

Figure A.6 - Land cover classification in 2009 and 2010 in the Amazon biome at Mato
Grosso, Brazil.
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2011

2012

Figure A.7 - Land cover classification in 2011 and 2012 in the Amazon biome at Mato
Grosso, Brazil.
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2013

2014

Figure A.8 - Land cover classification in 2013 and 2014 in the Amazon biome at Mato
Grosso, Brazil.
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