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ABSTRACT

Amazon floodplain lakes play a substantial role in global and regional biogeochemical
Amazonian processes. Due to their size, sampling strategies usually applied in limno-
logical studies are not suitable and therefore, Remote Sensing (RS) techniques figure
as an alternative due to the high temporal and synoptic characteristics. However,
the use of RS demands precise lake bio-optical characterization in order to provide
reliable estimates of optical active components (OAC).This work focused on the
study of Curuai Lake which is a suitable example of a Brazilian Amazon floodplain
lake. Curuai lake was sampled in four field campaigns (September/2012, February
and August/2013 and April/2014) where Apparent Optical Properties-AOP (Rrs

and K-functions), in situ Inherent Optical Properties-IOP (Attenuation, Absorp-
tion, Backscattering profiles and Particle Size Distribution (PSD)) as well as labo-
ratory analysis (AOC concentration and absorption) were measured. A data qual-
ity assessment was performed to test the suitability of commercial instrumentation
(ACS and Hydroscat) for turbid environments as well as commonly used AOP/IOP
measurement methodologies. The optical characterization compared datasets from
each fieldcampaign for surface and profile measurements. Also three semi-analytical
inverse models (Nechad Algorithm (NECHAD et al., 2010), Quasi-Analytical Algo-
rithm (QAA) (LEE et al., 2002) and Generalized ocean color inversion model (GIOP)
(WERDELL et al., 2013)) were tested using measured AOP and IOPs. Data quality
assessment show that sun/skyglint effects have the highest impact on above water
remote sensing measurements Rrs (RAb

rs ). Highest errors were found for In-water de-
rived AOPs (RIw

rs and K-functions), but despite the the different tested approaches
their differences are commonly in the 10 to 15 % interval. For in situ IOPs, the Hy-
drolight IOP/AOP closure experiments resulted in mismatches from 50 % to 100%
depending on the field campaign. Among the corrections tested for ACS/Hydroscat
errors, the Doxaran (DOXARAN et al., 2013) and Rottgers (RöTTGERS et al., 2013)
methods were the most suitable. For Laboratory absorption measurements, differ-
ences range from 10% to 80% but were below 15 % for biogeochemical variables
concentration measurements. Curuai Lake Bio-optical characterization show that
K-functions go from 1 to 12 m−1 in 676 nm depending on the season but can go
as high as ≈ 20 m−1 in the blue range. For IOPs, total attenuation, absorption
and scattering coefficients were higher for February/2013 (≈ 25, 4 and 21 m−1 re-
spectively for 550 nm) and similar for August/2013 and April/2014 (≈ 12, 2.5 and
10 m−1 respectively for 550 nm). Backscattering coefficients also were higher for
February/2013 (≈ 0.6 m−1 in 700 nm) and similar for August/2013 and April/2014
(≈ 0.3 m−1 in 700 nm). However, the backscattering to scattering ratio (bbp/bp) was
similar for February/2013, August/2013 and April/2014 (Median of 0.04), indicat-
ing low particle type variability. However, differences were found for the exponent
of scattering coefficient (γb) (Median = 1.3 to 1.5) and for specific scattering b∗p
(0.42 to 0.67 m2g−1) showing a possible dominance of smaller inorganic particles for
February/2013. Specific absorption coefficients for particulate (ap), non-algal par-
ticles (anap) and phytoplankton (aφ) were within literature values but particularly
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high for anap ( up to ≈ 6 m−1 in the blue range). Particle Size Distribution shows
a bimodal behavior with most of particles in the 10-15 µm range. Results for In-
verse Models were not satisfactory for most of retrieved IOPs and biogeochemical
variables (Chla and TSM). Best results for GIOP presented errors of at least 20
% while for QAA errors can reach more than 100 %. The Nechad algorithm shows
errors that reaches 30 % for TSM estimates which may be considered reasonable.
The main source of errors for semi-analytical inverse models rely on uncertainties of
input parameters but further investigation is needed to understand the main source
of error in the current dataset as well as help guiding future data acquisition.

Keywords: Amazon floodplain lakes. Hydrological Optics. Lakes Biooptical Proper-
ties. Semi-Analytical modeling.
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CARACTERIZAÇÃO BIO-OPTICA DE LAGOS DA PLANÍCIE
INUNDÁVEL AMAZÔNICA E AVALIAÇÃO DA RECUPERAÇÃO
DE CONSTITUINTES OPTICAMENTE ATIVOS UTILIZANDO

SENSORIAMENTO REMOTO

RESUMO

Lagos de várzea amazônico desempenha um papel importante nos processos biogeo-
químicos globais e regionais da Amazonia. Devido ao seu tamanho, estratégias de
amostragem normalmente aplicados em estudos limnológicos não são adequadas e,
portanto, técnicas de sensoriamento remoto (SR) se apresentam como uma alterna-
tiva devido às sua alta resolução temporal e visão sinóptica. No entanto, o uso de SR
exige uma caracterização bio-óptica precisa, a fim de fornecer estimativas confiáveis
de componentes ativos ópticos (COA). Este trabalho teve como foco de estudo o
Lago Curuai que é um exemplo representativo de lagos de planície de inundação da
Amazônia brasileira. O Lago Curuai foi amostrado em quatro campanhas de campo
(setembro/2012, fevereiro e agosto/2013 e abril/2014) em que Propriedades Ópticas
Aparentes - POA (Rrs e K-functions), Propriedades Ópticas Inerentes POI in situ
(coeficientes de atenuação, absorção, retroespalhamento e além de distribuição de
tamanho de partículas (DTP)), bem como análises de laboratório (concentração e
absorção de COA) foram medidos. Uma avaliação da qualidade dos dados foi real-
izada para testar a capacidade de instrumentação comercial (ACS e Hydroscat) para
a extração de informações em ambientes túrbidos, bem como os métodos de medição
POA / POI comumente usados. A caracterização bio-optica comparou conjuntos de
dados de cada campanha de campo, para medições de superfície e do perfil. Além
disto, três modelos inversos semi-analíticos (Algoritmo de Nechad (NECHAD et al.,
2010), Quasi-Analytical Algorithm (QAA) (LEE et al., 2002) e Generalized ocean
color inversion model (GIOP) (WERDELL et al., 2013)) foram testados utilizando
as POA e POI medidas . A avaliação da qualidade demonstrou que os efeitos do
sol/skyglint têm o maior impacto sobre as medições de sensoriamento remoto acima
da água rrs (RAb

rs ). Erros mais altos foram encontrados para as POA derivados den-
tro da água (In-Water) (RIw

rs e K-funções), mas, apesar das diferentes abordagens
testadas, suas diferenças estão comumente no intervalo de 10 a 15%. Para as in situ
POI, os experimentos de fechamento (Closure) utilizando o Hydrolight entre POA e
POI resultaram em erros de 50 % a 100 %, dependendo da campanha de campo. En-
tre as correções testadas para erros dos equipamentos ACS/Hydroscat, as correções
de Doxaran (DOXARAN et al., 2013) e Rottgers (RöTTGERS et al., 2013) foram as mais
adequados. Para medidas de absorção em laboratório, as diferenças variam de 10 %
a 80 %, mas ficaram abaixo de 15 % para variáveis biogeoquímicos. A caracterização
Bio-óptica do Lago Curuai mostrou que a K-functions vão de 1 a 12 m−1 em 676
nm, dependendo da época, mas pode chegar até ≈ 20 m−1 na faixa azul. Para as
POI, coeficientes de atenuação total, absorção e espalhamento, seus valores foram
mais altos em fevereiro / 2013 (≈ 25, 4 e 21 m−1, respectivamente, para 550 nm)
e semelhantes para agosto/2013 e abril / 2014 ( ≈ 12, 2,5 e 10 m−1, respectiva-
mente, para 550 nm). O coeficiente de retroespalhamento também foi maior para
fevereiro/2013 (≈ 0,6 m−1 em 700 nm) e semelhantes para agosto / 2013 e abril /
2014 (≈ 0,3 m−1 em 700 nm). No entanto, a razão retroespalhamento/espalhamento
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(bbp/bp) foi semelhante para fevereiro / 2013, agosto / 2013 e abril / 2014 (média
de 0,04), indicando baixa variabilidade no tipo de partícula. No entanto, foram en-
contradas diferenças para o expoente do coeficiente de espalhamento (γb) (Média
= 1,3 a 1,5) e para o coeficiente de espalhamento especifico b∗p (0,42-0,67 m2g−1)
mostrando uma possível dominância de partículas inorgânicas de menor raio para
fevereiro / 2013. O coeficiente de absorção específica para o material particulado
particulado (ap), partículas não-algais (anap) e fitoplâncton (aφ) se apresentaram
altos dentro dos valores da literatura, mas particularmente elevados para anap (até
≈ 6 m−1 na faixa azul). A distribuição de tamanho de partículas apresentou um
comportamento bimodal, com a maioria das partículas em 10-15 µm . Os resultados
para os modelos inversos não foram satisfatórios para a maioria de POI e variáveis
biogeoquímicas (chla e TSM) recuperadas. Os melhores resultados para o algoritmo
GIOP apresentaram erros de pelo menos 20 %, enquanto para o algoritmo QAA os
erros podem chegar a mais de 100 %. O algoritmo de Nechad mostram erros que
chegam a 30 % para as estimativas do TSM, o que podem ser considerados razoáveis.
Os resultados demonstraram que a principal fonte de erros para os modelos inversos
semi-analíticos foram as incertezas nos parâmetros de entrada, entretanto, mais es-
tudos são necessários para entender a principal fonte de erros no conjunto de dados
atual, bem como para guiar futuras aquisição de dados.

Keywords: Lagos de Varzea Amazonica. Optica Hidrológica. Propriedades Bio-
Ópticas de Lagos. Modelagem Semi-Analítica.
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1 INTRODUCTION

Historically, the use of Remote Sensing techniques to retrieve optical properties from
water bodies has mainly been developed for oceanic waters. However, the need for
information to support the rational use of fresh water has led to an increased de-
mand for Remote Sensing studies applied to inland waters (Rivers and Lakes).Inland
waters are mainly characterized as Case 2 Waters, in which the correlation among
Optically Active Components (OACs) is weak, different from deep ocean waters,
where Chlorophyll-a (Chla) dominates OAC composition and co-vary with the re-
maining components (BUKATA et al., 1995; KIRK, 2010). Particularly, Amazon basin
waters are a singular case of inland waters, due to their high concentration of Or-
ganic/Inorganic Suspended, dissolved organic material and diversity of phytoplank-
ton species (SIOLI, 1984; RICHEY et al., 1986; MEADE, 1994). Such characteristics
demand studies to increase the OAC retrieval accuracy via remote sensing.

Amazon floodplain lakes have been the focus of relevant national and interna-
tional multidisciplinary scientific projects (Thematic Network for Amazon Research
and Environmental Modeling GEOMA, and Large-Scale Biosphere-Atmosphere
Experiment-Hydrology of the Amazonian Basin LBA-HIBAM ) in the recent
decades. This interest stems from the role they play in global and regional processes,
given the size of the Amazon region (approximately 6.5 million km2), biodiversity
and natural resources (JUNK et al., 2011). Their biogeochemistry is mainly driven
by the hydrology of the Amazon River, characterized by a seasonal flood pulse
(JUNK et al., 1989), which causes water level changes throughout the hydrological
year as well as sediment exchanges between the river and floodplain lakes, influenc-
ing processes and composition of OACs pools (RUDORFF et al., 2014a). Particularly,
light availability, required for photosynthesis and other photo-chemical processes,
depends directly on the distribution of particulate and dissolved materials in the
water column. Those components are comprised mainly by dissolved and suspended
organic forest by-products as well as Andean suspended minerals (RICHEY et al.,
1986; MEADE, 1994; LEITE et al., 2011; COSTA et al., 2012). In that sense, the study
of Amazon floodplain lakes OACs contributes not only for providing additional in-
formation on biogeochemical processes but, crucially, to the development of satellite
Remote Sensing algorithms. These algorithms tuned to Amazon optical environment
would help to build a synoptic multi-temporal database to improve the understat-
ing of this peculiar ecosystem (LEE et al., 2002; WANG et al., 2005; IOCCG, 2006;
WERDELL et al., 2013; MISHRA et al., 2014).
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The first classification of Amazonian waters was based on the connection between
optical (color) and chemical properties by Sioli (1984). According to this classifica-
tion, Amazonian waters can be grouped into three major types: black waters with
a high concentration of humic substances; white water with high concentration of
suspended inorganic particles; and clear water with relatively low concentration of
inorganic particulate matter and dissolved humic substances. However, this classifi-
cation is too general to support OACs estimates via remote sensing methods. Such
estimates require the description of the ambient light field structure in terms of In-
herent Optical Properties (IOPs) and Apparent Optical Properties (AOPs) of the
studied aquatic system (MOUW et al., 2015).

Measuring IOPs and AOPs, however, is not trivial. Although these properties are
routinely measured in ocean waters, they are scarce in very turbid inland waters
because their measurement represents a significant endeavor. Efforts have been made
to expand inland waters IOP/AOPs database (GLOBALLAKESWEBSITE, 2015) using
standard measurement methods, but definitive protocols have not yet been achieved
(MOUW et al., 2015). Due to the lack of a reliable protocol to measure Laboratory
and in situ IOPs/AOPs, NASA Protocols for ocean waters (MUELLER et al., 2003)
are currently being used (WANG et al., 2009; SHI et al., 2014). However, some methods
are not suitable for turbid inland waters resulting in notable errors.

As an example of such errors, IOPs laboratory absorption measurements (particulate
total absorption (ap), phytoplankton (aφ), non-algal particles (anap) and Colored Dis-
solved Organic Matter (CDOM) absorption (acdom)), are mainly performed through
bench-top spectrophotometer techniques, which are subject to several sources of un-
certainties (STRAMSKI et al., 2015). Filter-pad technique uncertainties, for instance
include, among others, pathlength amplification due to light scattering within the
sample+filter ensemble and effects related to particle distribution and particle load.
Those uncertainties are enhanced by the high particulate concentrations in Case 2
waters. Additional sources of uncertainty, also highlighted by Stramski et al. (2015),
are filtration, freezing, and storage procedures. In addition, for acdom, cuvette lengths
could constrain absorption measurements, especially in Ultraviolet (UV) and Visible
(VIS) blue range (NELSON; COBLE., 2009).

Regarding in situ IOP measurements, equipment designed for ocean waters optical
characterization is generally not suitable for highly turbid waters (MCKEE et al.,
2009; BOSS et al., 2009). Commonly used in situ Absorption and Attenuation meters
(ACS) are subject to scattering errors (acceptance angle effects and absorption tube
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scattering errors) which increase directly with OAC concentrations. Also in situ
Backscattering meters are affected by both, pathlength loss of signal and saturation.
Despite the efforts made to correct those effects, they are still a significant source of
error in in situ measurements (MCKEE; CUNNINGHAM, 2006; LEYMARIE et al., 2010;
Sander de Carvalho et al., 2015).

Uncertainties are also caused by in situ radiometric measurement approach. The
two most common ones, above-water and in-water are both influenced by particu-
lar sources of uncertainties which are typical of turbid waters. For instance, for the
above-water approach, AOPs are influenced by the strong signal in the Near-Infrared
which limits sky/sunglint correction (LEE et al., 2011; GLEASON et al., 2012). Regard-
ing in-water approach, Mueller et al. (2003) methodology does not hold because of
the high turbidity causing light extinction in the first meter depth, which demands
measurements to be taken carefully at very low sink/depth rates. Unfortunately,
measurements in the first meter depth are also susceptible to wave interference as
well as shadowing effects. Therefore, the reduction of one source of uncertainty (light
extinction) implies an increase with regard to other uncertainties (shadow and wave
focusing) (LEE et al., 2013). Also, for shallow lakes, free fall strategies commonly
used in the ocean are limited, since sink/depth rate are hardly controlled.

Despite those constraints, there are reports of measurements of IOPs and AOPs
around the world, using the current methodology (SUN et al., 2009; MA et al., 2009;
CAMPBELL et al., 2011; CHERUKURU et al., 2014; DOGLIOTTI et al., 2015). Bio-optical
properties of Amazon floodplain lakes, however, are not comparable to most of
those water bodies, due the particular combination of fine inorganic particles and a
wide variety of dissolved and suspended organic matter. Nevertheless, Chinese and
Australian Lakes properties are amongst the most similar to those of the Amazon
floodplain lakes. Particularly, Chinese lakes (Poyang and Taihu) have concentrations
of inorganic suspended matter comparable to those within Brazilian Floodplain
lakes. Some of the reported data comes from environments which present even more
extreme Chlorophyll-a concentrations (AUGUSTO-SILVA et al., 2014; CAMPBELL et

al., 2011; WU et al., 2011; MATTHEWS; BERNARD, 2013), or dissolved organic matter
(KUTSER et al., 2005; KUTSER, 2012) but not the combination of both OACs coupled
with high concentration of suspended sediments as in the case of Amazon waters.

In this research a Brazilian Amazon floodplain lake, named Curuai Lake is under
study. Curuai Lake is a suitable example of floodplain Amazon lakes because it
presents high variability of Total Suspended Organic and Inorganic Matter (TSOM
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and TSIM) (≈ 5 to ≥ 1000 mgL−1), Dissolved Organic and Inorganic Matter (DOC
and DIC) (≥ 5 ppm) and Chlorophyll-a (0.8 to ≥ 300 mgL−1) in four distinct
phases of the hydrological year (BARBOSA et al., 2009). Several studies have already
described the hydrology of the lake (RUDORFF et al., 2014a; RUDORFF et al., 2014b),
AOPs and Remotely Sensed radiometric measurements (NOVO et al., 2004; RUDORFF

et al., 2009; Lobo et al., 2012; FERREIRA et al., 2012; LOBO et al., 2014). However, the
lake has not yet been optically characterized. Also, no Remote Sensing study has
focused on testing the suitability of semi-analytical algorithms, which have, allegedly,
higher accuracy when compared to empirical algorithms.

Semi-analytical algorithms have been currently applied to Case 2 inland wa-
ters(ODERMATT et al., 2012; ZHU et al., 2014; PALMER et al., 2015). Some authors
claim that semi-analytical algorithms are more stable then empirical algorithms
and, if well parametrized, could be applied in a wide range of OAC types and con-
centrations (MOUW et al., 2015). In that sense, numerous algorithms developed for
Case 1 waters have been re-parametrized for the retrieval of OAC concentrations
for Case 2 waters. Particularly, three algorithms widely used for ocean waters, have
been the focus of studies on Case 2 waters: the Nechad Algorithm (NECHAD et al.,
2010), Quasi-Analytical Algorithm (QAA) (LEE et al., 2002) and the recently de-
veloped Generalized ocean color inversion model (GIOP) (WERDELL et al., 2013).
Nechad has been applied and used as a standard form to retrieve Total Suspended
Matter (TSM) in very turbid waters (DOGLIOTTI et al., 2015; KNAEPS et al., 2015),
whilst QAA has been focused on Chlorophyll-a concentration and CDOM absorption
(MISHRA et al., 2013; MISHRA et al., 2014). GIOP approach, which has been included
in free NASA/ESA platforms(WERDELL et al., 2013), focuses on bio-optical inputs
which can be chosen from a list of standard IOPs but also allows local measured
inputs acquired from in situ measurements.

This research reports the measurements of both, IOPs and AOPs at Curuai Lake in
four different phases of the hydrological year (September/2012, February and Au-
gust/2013 and April/2014). Apparent Optical Properties (Rrs and K-functions), in
situ Inherent Optical Properties (Attenuation, Absorption, Backscattering profiles
and Particle Size Distribution (PSD)) as well as laboratory analysis (AOC con-
centration and absorption) were measured using different strategies in each field
campaign. A comprehensive data quality analysis was carried out in order to as-
sess the quality of protocols for both, acquisition and correction of optical prop-
erties as well as to investigate the suitability of commercial instrumentation (ACS
and Hydroscat) for an inland turbid environments. Also, an optical characteriza-
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tion comparing datasets from each field campaign, for surface and profiles mea-
surements, investigating IOP/AOPs differences among seasons was performed. At
last, three semi-analytical inverse models (Nechad Algorithm (NECHAD et al., 2010),
Quasi-Analytical Algorithm (QAA) (LEE et al., 2002) and Generalized ocean color
inversion model (GIOP) (WERDELL et al., 2013)) were tested, aiming the develop-
ment of reliable remote sensing techniques to monitor Amazon basin turbid lakes.
The document is divided as follow: Chapter 2 presents the Objectives of this work;
Chapter 3 presents a brief Theoretical Background; Chapter 4 presents the Material
and Methods; Results and discussion are presented in three Chapters, Data Qual-
ity Assessment (Chapter 5), Curuai Lake Bio-Optical Variability (Chapter 6) and
Inverse Models (Chapter 7).
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2 HYPOTHESIS AND OBJECTIVES

2.0.1 Hypothesis of the Work

The existing protocols of data collection, processing and correction, as well as semi-
analytical bio-optical algorithms, are suitable for application in very turbid and
particular Amazon water bodies.

2.0.2 Main Objective

Optically characterize the Curuai Lake and identify the best fitted semi-analytical
model to retrieve reliable OACs from Remote Sensing Reflectance

2.0.3 Specific Objectives

a) Analyze the uncertainties in insitu radiometric measurements, identifying
the main sources of errors in derived AOPs and test different correction
schemes. Identify the most acceptable approach for radiometric measure-
ments in Curuai Lake.

b) Analyze the measured IOPs correction schemes and identify which is the
most acceptable. Compare IOPs insitu, laboratory measurements as well
as derived quantities from IOPs measurements aiming at an uncertainties
analysis. Indicate the limitations in the used approaches.

c) Describe and analyze Curuai Lake bioptical properties and identify the
variability of measured IOPs.

d) Test and parametrize three semi-analytical algorithms, using measured in-
situ data. Identify the most suitable set of parameters as well the most
reliable algorithm to retrieve TSM, Chlorophyll-a and CDOM optical prop-
erties and concentrations.

7





3 THEORETICAL BACKGROUND

In this chapter a brief review of hydrological optics theory is presented. Fundamental
definitions of Radiometric Quantities, Inherent and Apparent Optical Properties
(IOPs and AOPs) and well as surface effects are discussed. Optical properties of
dominant water bodies components (Pure Water, dissolved and particulate material)
are also discussed. At last, Radiative Transfer Models (Foward and Inverse Models)
are discussed and the three Inverse Models tested in this research are presented.

3.1 Fundamental Definitions

3.1.1 Radiometric Quantities

Figure 3.1 presents the directions and solid angles used in this research. The unity
vector (ξ̂) represents the direction and θ and φ are the zenith and azimuth angles
respectively. Ω(ξ̂) is the solid angle in the ξ̂ direction (dΩ(ξ̂) = sin(θ)dθdφ).

Figure 3.1 - Coordinates System

The fundamental radiometric quantities, Radiance and Plane Irradiance are defined
as (equations (3.1) and (3.2)):
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L(ξ̂, λ) ≡ ∆Q
∆A∆Ω∆λ (Wm−2sr−1nm−1) (3.1)

E(λ) ≡ ∆Q
∆A∆λ (Wm−2nm−1) (3.2)

where (∆A) is the instrument detector area, (∆Q) is the radiant power, Ω is the
solid angle and (∆λ) is the wavelength interval. Radiance and Plane Irradiance are
related as :

Ed(λ) ≡
∫ 2π

φ=0

∫ π
2

θ=0
L(θ, φ, λ) |cos θ| sin θdθdφ (3.3)

Eu(λ) ≡
∫ 2π

φ=0

∫ π

θ=π
2

L(θ, φ, λ) |cos θ| sin θdθdφ (3.4)

where Ed and Eu are referred to as the downwelling and upwelling irradiances. The
downwelling and upwelling radiances (Ld and Lu) are defined as measured in any
direction within π

2 ≤ θ ≤ π for Lu(θ, φ) and within 0 ≤ θ ≤ π
2 for Ld(θ, φ) in the

0 ≤ φ ≤ 2π interval. Those quantities can also be defined just above water surface
(0+) or just below the water surface (subsurface) (0−).

Another key radiometric quantity is the Radiant Intensity which is denoted by:

I(ξ̂, λ) ≡ ∆Q
∆Ω∆λ (Wsr−1nm−1) (3.5)

The Solar Zenith Angle, which is a key variable for radiometric measurements is
defined as θsza.

3.1.2 Inherent Optical Properties - IOP

The Inherent Optical Properties (IOPs) are those which depend only on the aquatic
environment and are not affected by the ambient light field within the medium
(PREISENDORFER, 1976; MOBLEY, 1994). Considering an incident irradiance parallel
beam E(λ); if ∆E(λ) is the irradiance that leaves the beam (by absorption or
scattering), after crossing the ∆l length, the Beam Attenuation Coefficient is defined
by :
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c(λ) ≡ ∆Ei(λ)
Ei(λ)∆l

(
m−1

)
(3.6)

The Volume Scattering Function (β) is defined by :

β(ψ, λ) ≡ ∆I(ψ, λ)
Ei(λ)∆V

(
m−1sr−1

)
(3.7)

where ∆V is an arbitrary volume, ∆I is the intensity and ψ is an scattering angle
from the beam propagation direction. From the β, the Scattering coefficient (b) is
defined by:

b(λ) ≡ 2π
∫ π

0
β(ψ, λ) sinψdψ

(
m−1

)
(3.8)

The scattering coefficient can be split in two fractions, Foward Scattering Coefficient
(bf ) and the Backward Scattering (Backscaterring) Coefficient (bb)

bf (λ) ≡ 2π
∫ π

2

0
β(ψ, λ) sin(ψ)dψ

(
m−1

)
(3.9)

bb(λ) ≡ 2π
∫ π

π
2

β(ψ, λ) sin(ψ)dψ
(
m−1

)
(3.10)

The Scattering Phase Function (β̃) is defined as :

β̃(ψ, λ) ≡ β(ψ, λ)
b(λ)

(
sr−1

)
(3.11)

From the attenuation and scattering coefficient definition, the Absorption Coefficient
(a), is defined as :

a(λ) = c(λ)− b(λ) (3.12)

Two derived IOPs worth mentioning are the Single Scattering Albedo
(
ω0 = b(λ)

c(λ)

)
,

which is the percentage of Attenuation (c) that is attributed to Scattering (b) and the
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backscattering to scattering ratio
(
bb(λ)
b(λ)

)
, which states the backscattering probability

in the aquatic medium. Both are dimensionless and closely related to properties of
each component of the aquatic medium.

All the above defined optical properties depend on particle shape and inhomogeneity,
composition, particle size distribution (PSD), and on the particle number concen-
tration (N). Therefore, Attenuation, Absorption and Scattering coefficients can be
calculated as:

Coefx =
∫ DMax

DMin

σx(D) ·Qx(D,m, λ) ·N(D, ξpsd)dD (3.13)

where σx is the particle geometrical cross-sectional area perpendicular to the light
beam, Qx is the efficiency factor for each coefficient (Coefx with x = c, a, b and also
bb) and N(D, ξpsd) is the concentration number (see below) and D is the diameter of
each particle (CLAVANO et al., 2007; KOSTADINOV et al., 2009). The product inside the
integral directly depends on the particle’s complex index of refraction (m = n+ i ·k;
where n is the real and k the imaginary part) relative to the medium in which the
particle is immersed, the size of the particle with respect to the wavelength of the
incident light and the shape of the particle.

The refraction index is related to the physical-chemical properties of the material
and its real part is proportional to the ratio of the speed of light within a ref-
erence medium to that within the particle, whilst the imaginary part represents
the absorption of light as it propagates through the particle (MOBLEY, 1994). In
aquatic media, mineral particles generally show higher values for the real part of
the refraction index as opposed to living organisms due to their lower water con-
tent. Regarding the imaginary parts, pigments and high absorbing organic particles
present the highest values(TWARDOWSKI et al., 2001). Regarding particle shape, the
number of phytoplankton groups (Taxonomic groups) is associated to a variety of
shapes (KARP-BOSS et al., 2007) while for non-living particles, the variability of di-
verse crystalline structures (Clay, Sand or Silt) and the possibility of aggregation,
increases the range of shape possibilities (SLADE et al., 2011; HILL et al., 2011). In
relation to particle size, the group of particles that are relevant to optics in marine
and freshwater range from sub-micron (colloids and viruses) to aggregates and zoo-
plankton that can reach up to centimeters (CLAVANO et al., 2007). A way of defining
the particle size distribution (PSD)as the number of particles within a given size
class of width ∆D for a unit volume of suspension (m−3) is:
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N(D) = N ′(D) ·∆D (3.14)

where N(D) is the number of particles per unit volume in the size interval D ±
0.5 ·∆D. In this formulation, D represents the midpoint diameter of each size class.
N ′(D) represents the differential distribution per unit size, also referred to as the
density function of the PSD (REYNOLDS et al., 2010). The size distribution can
sometimes be approximated by the Junge distribution (MOBLEY, 1994), although
several other distributions have been already reported. The Junge distribution is
given by:

N ′(D) = k ·
(
D

Do

)−ξpsd
(3.15)

where Do is a reference diameter, k is the differential number concentration at Do,
and ξpsd is the slope of the distribution.

3.1.3 Apparent Optical Properties - AOP

According to Mobley (1994) the Apparent optical properties (AOPs) are those prop-
erties that depend both on the medium (the IOPs) and on the geometric (directional)
structure of the ambient light field, and that display enough regular features and
stability to be useful descriptors of the water body optical characteristics.

The main AOPs for Remote Sensing applications are the Diffuse Attenuation Co-
efficient (K − functions), the Irradiance Reflectance (R) and the Remote Sensing
Reflectance (Rrs).

The Diffuse Attenuation Coefficients is defined as :

Kx ≡ −
1

RQx(z, λ)
dRQx(z, λ)

dz
(3.16)

where the Kx stands for any K − functions (Ku, Kd, Klu), z stands for the depth
and the radiometric quantities (radiances and irradiances) decrease approximately
exponentially with depth :

RQx(z, λ) ≡ RQx(0, λ) exp
[
−
∫ z

0
Kx(z, λ)dz

]
(3.17)
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where RQx(z, λ) stands for the upwelling (u) and downwelling (d) radiometric quan-
tities (Eu, Ed, Lu, etc).

Irradiance Reflectance (R) and the Remote Sensing Reflectance (Rrs) are defined
as:

R(z, λ) ≡ Eu(z, λ)
Ed(z, λ) (3.18)

Rrs(z, θ, φ, λ) ≡ L(z, θ, φ, λ)
Ed(z, λ) (3.19)

with 0 ≤ θ ≤ π
2 and 0 ≤ φ ≤ 2π i.e. Lu. The R(z, λ), Rrs(z, θ, φ, λ) can be also be

measured below z = 0− and above z = 0+ the water surface.

3.1.4 Surface Effects

In order to relate measurements done at different position relative to the air-water in-
terface, two main surface effects should be considered in this work, the Sun/sky spec-
ular reflection and the air-water/water-air interface effects. For the air-water/water-
air effect, the approximations of Morel and Gentili (1996), also described in Mueller
et al. (2003), were currently used. To derive Ed(0+, λ) from Ed(0−, λ) the following
approach was used:

Ed(0+, λ) = Ed(0−, λ) · 1− r̄ ·R(0−, λ)
1− ρ̄ (3.20)

where r̄ is the mean water-air Fresnel reflectance factor for the diffuse upward flux
(Eu(0−, λ)), and ρ̄ is the bulk air-water Fresnel reflectance factor for the downward
irradiance of sun and sky reflected on the surface.

Similarly, to derive Lu(0+, λ) from Lu(0−, λ) or Ld(0+, λ) from Ld(0−, λ) the follow-
ing approaches were used:

Lu(0+, θ, λ) = Lu(0−, λ) · (1− ρ(θ, θSZA))
n2
w

(3.21)

Ld(0+, θ, λ) = Ld(0−, λ)
(1− ρ(θ, θSZA)) · n2

w

(3.22)
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where ρ is the Fresnel reflectance factor of the water for the upward radiance and
n2
w is the water refractive index.

From equations 3.20 and 3.21 the Rrs(0+) is related to Rrs(0−) by:

Rrs(0+) = R ·Rrs(0−) (3.23)

where the R is equal to :

R =
(

(1− ρ̄) · (1− ρ(θ, θSZA))
(1− r̄ ·R(0−, λ)) · n2

w

)
(3.24)

Following Morel and Gentili (1996), (1 − ρ̄) is equal to 0.957; (1− r̄ ·R(0−, λ)) is
equal to 0.985 where r̄ ≈ 0.48 and R(0−, λ) ≈ 0.03. The index of refraction of the
water is assumed 1.33 and therefore n−2

w = 0.556. (1-ρ(θ, θSZA) varies from 0.979
to 0.939 depending on the viewing angle and the SZA (0◦ ≤ θ ≤ 60◦; θSZA = 60◦).
Therefore, for a nadir view, a R ≈ 0.529 is currently assumed.

For the Sun/sky specular reflection, following Mobley (1999) and Mobley (2015) the
total radiance signal that leaves the water body is defined as:

LT (θ, φ, λ) = Lr + Lu(0+, θ, φ, λ) (3.25)

where Lr is the surface-reflected part of the incident sun/sky radiance. To minimize
the effects of Lr, simulations by Mobley (1999) and Mobley (2015) shows that the
geometry of acquisition of θ ≈ 40◦ and φ ≈ 137◦ from the Sun will minimize the
effects of Sun glint and nonuniform sky radiance while avoiding instrument shading.
For the remaining sky radiance Mobley (1999) suggests the measurement of Lsky,
which is the radiance measured by a detector pointed to the sky, at the same plane
(same φ) but rotated 90◦ from LT (θ, φ, λ). That would result in:

Lr(λ) = ρsky · LSky(λ) (3.26)

ρsky is the proportionality factor which depends on the several factors θ, φ, θSZA, Ω0,
wind speed, sky radiance distribution). From simulations from Mobley (1999), for
the viewing direction described above (θ ≈ 40◦ and φ ≈ 137◦), a value of ρsky ≈ 0.028
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is acceptable for wind speeds smaller than 5 ms−1. However ρsky also depends on
polarization (MOBLEY, 2015) with improved table values available for each viewing
directions.

3.2 Optically Active Constituents - OACs

3.2.1 Pure Water

Absorption by pure water (aw) is weak in the blue/green spectral region, preceded
by a very high absorption in the untraviolet (UV below 400 nm) and followed by
a high absorption in the red/NIR region (POPE; FRY, 1997). The measurement of
pure water absorption is difficult due to the limits posed by purifying techniques in
the set up for measuring the absorption. Pure water absorption has been currently
measured in different wavelength intervals: (200 to 400 nm) (QUICKENDEN; IRVIN,
1980); 366 nm, (BOIVIN et al., 1986); 730 to 800 nm, (SMITH; BAKER, 1981) with
the 380 to 700 nm interval (POPE; FRY, 1997), being the most important for Inland
Remote Sensing studies. Pure water absorption also varies in shape and magnitude
with temperature, especially in the red and Near-InfraRed (NIR). Also, the addition
ions affect the fundamental and harmonics from water molecular vibrations (PEGAU

et al., 1997; SULLIVAN et al., 2006).

Pure water scattering properties (bw) follow the Einstein-Smoluchowski theory,
which states a scattering behavior similar to the Rayleigh Scattering for an ideal gas
(MOBLEY, 1994). The pure water volume scattering function (VSF) is symmetric in
90 ◦ resulting in equivalent forward and back scattering (bfw = bbw). Table values are
generally used to parametrize bio-optical models. It is also important to state that,
different from oceanic waters which are strongly affected by dissolved salts, inland
waters are less affected and its behavior is closer to that of laboratory measurements

3.2.2 Colored Dissolved Organic Matter - CDOM

The Colored Dissolved Organic Matter (CDOM), composed by humic substances,
has a polymeric shape with long chains of aromatic rings that vary from soluble
molecules with low molecular weight to insoluble macro-molecules with high molec-
ular weight (KIRK, 2010). Different from open ocean waters, where most of the
CDOM comes from degradation and respiration processes of marine organisms, at
inland waters, CDOM comes mainly from soil leaching processes, mainly from veg-
etation decomposition. Leaching process drags surface soil content to the lotic and
lentic systems (rivers and lakes) which leads to a mixture of organic matter decom-
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position stages increasing the complexity of the environment (JUNK et al., 2011).

The CDOM IOP that mostly affects the optical response of natural water bodies is
its absorption coefficient (aCDOM) (KIRK, 2010). The key characteristic of aCDOM is
its high absorption in the “blue” wavelengths, which decreases exponentially towards
large wavelengths according Equation 3.27.

acdom = acdom(λ0)e(−Scdom(λ−λ0)) (3.27)

where SCDOM is the exponential wavelength constant and λ0 is a reference wave-
length. The shape of the absorption model can be explained by the superposition of
the different π bonds of the long CDOM molecules chains. The simple bonds, which
are more frequent in humic compounds, absorb in the shorter wavelengths whereas
the less frequent π bonds absorb in longer wavelengths(KIRK, 2010). In the visible
part of the spectrum, the Scdom are typically between 0, 007 to 0, 026.

Elastic CDOM scattering in natural waters is still not well understood. Routinely,
one assumes that CDOM does not scatter (bcdom = 0) (DALL’OLMO; WESTBERRY,
2009). Some authors suggest CDOM scattering in the visible (400 to 750 nm) for
ocean waters (STRAMSKI; WOZNIAK, 2005), which would suggest CDOM scattering
in inland waters. However, no study provides empirical evidences until the present
moment. An Inelastic scattering (or CDOM Fluorescence) has otherwise an excita-
tion peak in the near-UV (355 or 370 nm), with an emission broad peak in the blue
region (COBLE, 2007; KIRK, 2010).

3.2.3 The Particulate Material

The particulate material or the Total Suspended Matter (TSM) can be defined as
the material retained in a pore-sized filter, which can vary between 1.2 or 0.7 µm of
nominal size (Mueller et al 2003). Besides Absorption (ap) and Scattering properties
(bp or bbp) TSM can be divided in its Organic and Inorganic counterparts but for
IOPs purposes, the particulate material is divided into the Photosynthetically Active
Biota (particles containing no soluble pigments) and the Non-Algal Particles.

3.2.3.1 Photosynthetically Active Biota Phytoplankton/Chlorophyll-a

The Photosynthetically Active Biota from rivers and lakes is mainly composed by
Phytoplankton which are primary producers and is the base of the food chain of
aquatic environments. Phytoplankton is a diverse group, including more than 10
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thousands species with a size varying from 0.2 a 1000 µm, in a large diversity of
shapes and physiological processes that directly influences its optical response (KIRK,
2010).

The main optical component is the Chlorophyll-a (Chla), although several other
pigments influence the optical response, as Chlorophyll-b and c, carotenoids and
biliproteins whose occurrence depends on the group that the each organism is part
of. The absorption of Chla has a characteristic shape with two peaks, the first at ≈
440 nm and the second at ≈ 676 nm. The absorption peak, however, is impacted by
both: (1) other pigments that make the absorption band broader, but especially (2)
the “packaging effect”, which constrains absorption by Chla, making it not linear
with Chla concentration ([Chla]) (BRICAUD; STRAMSKI, 1990; BRICAUD et al., 1995;
CIOTTI et al., 2002; BABIN et al., 2003).

Although Phytoplankton absorption (aφ) is not defined just by Chla absorption
(aChla), the Specific Phytoplankton Absorption (a∗φ) is defined as the ratio a∗φ = aφ

[Chla]

(BRICAUD et al., 1995) which describes the effective area per milligram of Chla that
absorbs light. Several efforts have been made to devise global a∗φ models, which
could be used particularly for estimating Chla from remote sensing data. However,
the development of a∗φ models is affected by the variability in phytoplankton groups,
photoadaptation strategies (LOISEL et al., 2010) and phytoplankton physiological
state (MOREL; BRICAUD, 1981). Therefore, measuring a∗φ is still necessary, for reliable
Remote Sensing estimates (CIOTTI; BRICAUD, 2006; GIARDINO et al., 2007; WERDELL

et al., 2013).

Regarding scattering and backscattering properties, the understanding of phyto-
plankton scattering characteristics remains limited mainly due to the technical
constraints of both laboratory and in situ measurements. Historically, scattering
properties of phytoplankton cells were investigated using theoretical models due to
the lack of instrumentation required to measure scattering. Most of those models
used Mie theory based on a spherical shape and internal homogeneity, which led
to underestimation of the scattering and backscattering coefficients (STRAMSKI et

al., 2001). The majority of those studies concluded that phytoplankton scattering
and backscattering coefficients are weak compared to other nonliving organic and
inorganic particles.

The backscattering is directly related to phytoplankton size, shape, morphology
and Chla content although Chla concentration is not a universal predictor of the
magnitude of backscattering (BRICAUD; MOREL, 1986; VOLTEN et al., 1998; WHIT-
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MIRE et al., 2010). The relationship between bbp and Chla has been shown to be
linear for Case 1 waters, although bbp

[Chla] can exhibit high variability (DALL’OLMO;

WESTBERRY, 2009). Whitmire et al. (2010) shows differences in the backscattering
properties of cultures, and relate them to differences in cellular structure and com-
position. Results showed that phytoplankton cell size does not affect the spectral
shape of bbp but it is related to both, the backscattering to scattering ratio (bb/b) and
backscattering coefficient cross-section.

3.2.3.2 Non-Algal Particles - NAP

Non-Algal Particles (NAP) include mainly non-living organic and inorganic parti-
cles. NAP generally derives from dead Phytoplankton cells but also from vegetation
byproducts, rock weathering in the catchment or wind resuspension (in shallow
waters) which are processes that include organic and inorganic particles in NAP
(KIRK, 2010). Human activities which include agricultural and industrial practices
also contribute to NAP .

Absorption and Scattering properties from NAP depend on two main properties:
the composition and particle size/shape (STRAMSKI et al., 2007). From the ratio of
Organic/Inorganic particles and Iron content which control NAP refractive index to
the range of PSDs, all that, directly affect NAP IOPs. NAP absorption is estimated
by an exponential model (equation 3.28) (BOWERS; BINDING, 2006):

anap = anap(λ0)e(−Snap(λ−λ0)) (3.28)

where anap is the specific absorption by NAP and Snap is the exponent for absorption
model for 300 < λ < 900 and λ0 is a reference wavelength.

Stramski et al. (2007) however, highlighted that the model fails to describe both,
the shoulders and the slope in the NAP absorption spectra. Therefore equation 3.28
might be inadequate to describe the specific absorption (a∗nap) of mineral particles.
In that sense, Iron content is a key factor, because its presence within the mineral
structure can increase absorption (BABIN et al., 2003; ESTAPA et al., 2012). However it
is important to remember that the internal structure of mineral particles is complex
regarding the location and distribution of iron. Iron occurrence in NAP assumes
different configuration such as surface coating, elements within mineral structure or
even as crystal oxides (STRAMSKI et al., 2007). Each of these configurations impact
NAP absorption in different ways.
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NAP scattering properties are, however, the main properties when dealing with
Remote Sensing Measurements. Similar to particulate absorption, particulate scat-
tering is influenced by particle composition and PSD (as already presented in sec-
tion 3.1.2). The currently applied model for scattering and and backscattering (and
therefore for specific b and bb) is presented in equation 3.29:

x = x(λ0) ·
(
λref
λ

)γx
(3.29)

where (x = b or bb for both, coefficient and specific coefficient); λ is the wavelength
and λ0 is a the reference wavelengths. The power law exponents (γb and γbb) were
found to correlate with median particle size (SLADE; BOSS, 2015), and by associa-
tion with the spectral slope of particulate beam attenuation,(e.g. (BOSS et al., 2013)
(SLADE; BOSS, 2015)). The smaller the γb and γbb , the larger the mean particle size.

The specific scattering and backscattering is directly influenced by organic an inor-
ganic contents as already shown in section 3.1.2, by the particle efficiency factor .
Babin et al. (2003) shows that high b∗(555) values in case 1 waters are mainly due
to the low apparent density, which results from the organic nature of particles and
their elevated water content. However Wozniak et al. (2010) and Stavn and Richter
(2008) shows cases in which organic dominated waters presents lower values of b∗

than mineral dominated waters, showing that the organic influence is still under
investigation.

3.2.3.3 Total and Specific IOPs

As a consequence of the separate parts of each component, the Total Absorption
coefficient (aT (λ)) and the Total Scattering/Backscattering Coefficients (bT (λ)) and
bbT (λ)) are:

aT (λ) = aw(λ) +
Nφ∑
i=1

Aφi · a∗φ +
Nnap∑
i=1

Anapi · a∗napi +
Ncdom∑
i=1

Acdomi · a∗cdom (3.30)

bT (λ) = bw(λ) +
Np∑
i=1

Bpi · b∗pi (3.31)
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bbT (λ) = bbw(λ) +
Nbp∑
i=1

Bbpi · b∗bpi (3.32)

where A and B are the concentration or amplitude of each component and a∗s

and b∗bs are their specific absorption and backscattering coefficients. The product
a = A · a∗s and bb = B · b∗bs for each component gives the absorption and scatter-
ing/backscattering coefficients.

The difficulty in separating NAP and CDOM, mostly due to the similarity of its
absorption spectral shape (Scdom and Snap), leads to the the combination of both
components, and therefore equation 3.30 becomes:

aT (λ) = aw(λ) +
Nφ∑
i=1

Aφi · a∗φ +
Nnap/cdom∑

i=1
Anap/cdomi · a∗nap/cdomi (3.33)

In that case, the same exponential model of equations 3.27 plus 3.28 is used:

anap+cdom = anap+cdom(λ0)e(−Snap+cdom(λ−λ0)) (3.34)

3.3 Radiative Transfer in Waters Bodies

The Radiative Transfer Equation (RTE), which is a complete Foward Model, gov-
erns the behavior of radiance within natural water bodies linking IOPs to Radiance
Distributions (MOBLEY, 1994). The solution of the RTE is a complex mathematical
problem, with no explicit analytical solutions. RTE solutions are generally solved
by mathematical/numerical techniques (Monte Carlo, Invariant Imbedding (Hydro-
light), Neural Network)(OOWB, 2015), or simplified analytical approximations (Ger-
shun’s law (MOBLEY, 1994)). However, the most popular simplifications for Remote
Sensing techniques are the ones based on the Single and Quasi-single Scattering
Approximations (OOWB, 2015), which lead to a variety of approximations to the
forward models which are currently used for Remote Sensing Inverse Models. Four
of those models will be briefly discussed.

3.3.1 Forward Model Approximations

Primarily studied by Gordon and Brown (1973) , the model shown in equation 3.35
has since been improved. Equation 3.36 shows a variation of equation 3.35 proposed
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by Gordon et al. (1975) and Morel and Prieur (1977) for open ocean waters. Those
models are widely used in Remote Sensing studies.

Rrs(λ, 0−) = f ′

Q
·
(

bb(λ)
a(λ) + bb(λ)

)
(3.35)

Rrs(λ, 0−) = f

Q

(
bb(λ)
a(λ)

)
; (3.36)

where f factor is defined as R(0−) = f · bb(λ)
a

and f’ factor by R(0−) = f ′ · bb(λ)
a+bb(λ) .

Q is the proportionality factor which relates Lu(0−, λ) and Eu(0−, λ) according to
equation: Eu(0−, λ) = Q · Lu(0−, λ). Several studies have focused on the variability
of those factors but Morel and Gentili (1996) and Morel et al. (2002), particularly,
reported for ocean waters f ranges from 0.3 to 0.5 and Q from 3 to 6. For turbid
coastal waters, Loisel and Morel (2001) reported values very different from Open
Ocean Case I waters (f ′

Q
= 0.13).

Another widely used model is the second order polynomial, developed by Gordon et
al. (1988) (equation 3.37):

Rrs(λ, 0−) = g0 ·
(

bb(λ)
a(λ) + bb(λ)

)
+ g1 ·

(
bb(λ)

a(λ) + bb(λ)

)2

(3.37)

the g0 and g1 are proportionality factors, which vary with viewing angle, SZA and
water bodies IOPs. Currently used values are around g0 ≈ 0.09 and g1 ≈ 0.10
((GORDON et al., 1988; MOREL; GENTILI, 1993; LEE et al., 1999; LEE et al., 2002; LEE
et al., 2010; LEE et al., 2011).

A slightly more complex model proposed by Park and Ruddick (2005), focus both on
Case I and turbid mineral rich Case II waters and includes bidirectional effects. The
inclusion of the third and fourth order polynomial terms would account for multiple-
scattering effects as well as the variation of particle scattering phase functions in
different turbid media.
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Rrs(λ, 0−) =
g∗0 ·

(
bb

a+ bb

)
+ g∗1 ·

(
bb

a+ bb

)2

+ g∗2 ·
(

bb
a+ bb

)3

+ g∗3 ·
(

bb
a+ bb

)4


(3.38)

The four coefficients, which were tested by Hydrolight simulations and experimen-
tal cases are available for a variety of IOPs, SZA and viewing directions (PARK;

RUDDICK, 2005; RUDDICK et al., 2006; NECHAD et al., 2010).

3.3.2 Inverse Models

In Hydrological Optics, an inverse problem initiates with the use of Radiometric
Measurements as inputs to retrieve first IOPs and then the respective OAC concen-
trations (MOBLEY, 1994). Although inverse problems have conceptual and practical
limits (Existence, Uniqueness and Stability of solutions), they have been extensively
used in remote sensing applications (GORDON, 2002; IOCCG, 2006; ODERMATT et

al., 2012; MOUW et al., 2015). According to Gordon (2002), the variety of algorithms
could be divided on those based on explicit solutions, where IOPs are an explicit
function of AOPs (which are mostly based on Foward Models from section 3.3.1)
and those based on implicit solutions, where the solution is based on recurrent so-
lutions of Foward Models. Explicit solutions include the so called Semi-Analytic
Algorithms (SAAs) which are not only based on Foward Models from section 3.3.1
but also on empirical assumptions to estimate IOPs.

According to Werdell et al. (2013), SAAs fall into three classes, named as spectral
optimization, spectral deconvolution, and bulk inversion. SAAs included in
the spectral optimization class (SOC) uses predefined specific IOPs and, solu-
tions, are obtained via linear (matrix) or nonlinear (least squares) optimization
(ROESLER; PERRY, 1995; HOGE; LYON, 1996; MARITORENA et al., 2002; WANG et

al., 2005). The spectral deconvolution (SDC) operates in a step-wise fashion to
determine the spectral backscattering and absorption coefficients (LEE et al., 2002;
SMYTH et al., 2006). In the bulk inversion class (BIC) there is no predefined spec-
tral shapes for the absorption or scattering coefficients (LOISEL; STRAMSKI, 2000).

For the implicit approach, Neural Networks (NN) have been used extensively and
specially for the MERIS algorithms (MERIS Neural Network Algorithm (DOERF-

FER; SCHILLER, 2007)). Although most of the Neural Network was performed using
synthetic data (derived Hydrolight (HYDROLIGHT TECHDOC, 2013) simulations). It
is important to point out that there has been an effort to include insitu data on
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NN training as a result of the effort to implement global databases for improving
Remote Sensing methods (SeaBass).

In this research three Semi-Analytical Algorithms named, Quasi-Analytical Algo-
rithm (QAA) (LEE et al., 2002), Nechad Algorithm (NECHAD et al., 2010), and the
Generalized ocean color inversion model (GIOP) (WERDELL et al., 2013) (named
here after QAA, GIOP and Nechad) were tested. These three algorithms have been
widely used for both ocean and inland waters (MOUW et al., 2015) and were chosen
because: (1) GIOP and Nechad are spectral optimization algorithms which allows
the input of both, measured and modeled IOPs in which the measured dataset could
be used and tested; (2) QAA, which is a spectral deconvolution algorithm, has been
developed for Case 1 and 2 waters with versions that could be suitable for turbid
environments. Details of each algorithm are discussed on the following.

3.3.2.1 Quasi-Analitical Model (QAA)

The Quasi-Analytical Algorithm (QAA), proposed by (LEE et al., 2002; LEE et al.,
2007), aims the retrieval of, first, the total absorption and backscattering coefficients
and, second, phytoplankton and CDM (CDOM + NAP) absorption. The algorithm
follows a step-by-step structure. The 5th version of QAA, which is applicable for
both Case 1 and Case 2 waters, displays the following structure:

a) aT for λ0 = 550, 555 and 560 is derived using an empirical model adjusted
with synthetic simulated data (IOCCG, 2006). :

aT (λ0) = aw(λ0) + 10(−1.146−1.366·χ−0.469·(χ2)) (3.39)

where:

χ = log
 Rrs(0−, 443)−Rrs(0−, 490)
Rrs(0−, λ0) + 5 · Rrs(0−,667)

Rrs(0−,490) ·Rrs(0−, 667)

 (3.40)

b) To obtain Rrs(0−λ) QAA uses:

Rrs(0−, λ) = Rrs(0+, λ)
0.52 + 1.7 ·Rrs(0+, λ) (3.41)

which is slightly different from equation 3.23 and 3.24. Subsurface remote-
sensing reflectances are related to IOPs by the second order polynomial
described in equation 3.37, and coefficients g0 = 0.089 and g1 = 0.125:
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u′(λ) ≡ bb(λ)
a(λ) + bb(λ) ≡

−0.0895 +
√

0.08 + 0.499Rsr(0−, λ)
0.249 (3.42)

c) Total Backscattering bbT (λ) is given by:

bbT (λ) = bbw(λ) + bbp(λ0)
(
λ0

λ

)Y
(3.43)

where bbp(λ0) =
(
u′(λ0)·a(λ0)

1−u′(λ0) − bbw(λ0)
)
and bbw(λ) is taken from (POPE;

FRY, 1997). The exponent Y is computed by:

Y = 2.0 ·
{

1− 1.2 · exp
[
−0.9

(
Rsr(0−, 443)
Rsr(0−, λ0)

)]}
(3.44)

d) Once all above values are calculated, aT (λ) is calculated by:

aT (λ) = (1− u′(λ))bb(λ)
u′(λ) (3.45)

The second part of QAA algorithm aims to obtain aφ(λ) and anap+cdom(λ). For that,
a system of semi-analytical equations is used:

anap+cdom(λ) = [aT (411)− ζQAA · aT (443)]
ξQAA − ζQAA

− [aw(411)− ζQAA · aw(443)]
ξQAA − ζQAA

(3.46)

where:

ζQAA = aφ(411)
aφ(443) = 0.74 + 0.2

0.8+Rrs(0−,443)
Rrs(0−,λ0)

(3.47)

and

ξQAA = aφ(411)
aφ(443) = eS·(λ−443) (3.48)

where:
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S = 0.015 + 0.002
0.6 + Rrs(0−,443)

Rrs(0−,λ0)

(3.49)

Finally aφ(λ) is calculated by:

aφ(443) = aT (λ)− anap+cdom(λ)− aw(λ) (3.50)

The applicability of QAA for turbid and high productive waters is controversial for
very high Chla and TSM. To overcome this limitation, Lee et al. (2002) suggests
the shift of λ0 to 640 nm when aT (440) > 0.3. Other studies suggest shifting λ0 to
708 nm (DORON et al., 2007; LE et al., 2009b) and particularly Mishra et al. (2014)
proposes a parametrization of equation 3.40 for χ and aT (708) that would account
for turbid lake IOP characteristics.

Mishra et al. (2014) also proposed an alternative method for estimating anap+cdom(λ)
based on empirical modeling: anap+cdom(λ) with λ = 381, 443, and 510 nm and
Snap+cdom are empirically modeled against Rrs(0−,490)

Rrs(0−,510) . This method, however, is only
applicable when Rrs(0−,490)

Rrs(0−,510) < 0.54 and Rrs(0−,413)
Rrs(0−,443) > 0.89.

3.3.2.2 The Nechad Algorithm

The Nechad Algorithm (NECHAD et al., 2010) was developed for TSM concentration
retrieval. The method shows that a single band provides a robust and TSM-sensitive
algorithm, if a suitable selection of band is made. The algorithm assumes the model
described in equation 3.36 and divide backscattering and absorption into two parts:
backscattering and absorption from particles (both non-algal and algal) and all other
non-particle optically-active substances (equation 3.51):

u = bbp + bbnp
ap + anp

(3.51)

where u = bb(λ)
a

and the subscripts p and np denote the particle and non-particle
contributions. To develop the algorithm, some assumptions and approximations re-
garding IOPs are made in order to relate [TSM] and u. Those assumptions are:

a) Particulate backscattering is proportional to TSM concentration via the
constant TSM-specific particulate backscattering coefficient, b∗bp:
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bbp = b∗bp · [TSM ] (3.52)

b) Space and time variability of non-particulate absorption, anp are to be
negligible.

c) Particulate absorption is proportional to TSM concentration via the con-
stant TSM-specific particulate absorption coefficient, a∗p:

ap = a∗p · [TSM ] (3.53)

d) Non-particulate backscattering is negligible, bbnp = 0.

From those four assumptions equation 3.51 can be rewritten as:

[TSM ] = A · u

1− u
C

(g ·m−3) (3.54)

where the calibration coefficients A and C are given by:

A = anp
b∗bp

(3.55)

C =
b∗bp
a∗p

(3.56)

Assuming: the First Order Gordon model (equation 3.35), the “water-leaving
reflectance” as ρw = ·R · Rrs(0−) (from equation 3.23), f

Q
= 0.13 for sediment-

dominated waters (LOISEL; MOREL, 2001) and R = 0,529, ρw can be estimated as
follows:

ρw = γ ·
(

u

1 + u

)
(3.57)

where γ = πRf ′
Q

which is ≈ 0.216. When combining equations and it leads to:

[TSM ] = Aρ · ρw
1− ρw

Cρ

(3.58)
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where Aρ and Cρ are:

Aρ = A

γ
(3.59)

Cρ = γ · C
(1 + C) (3.60)

3.3.2.3 The Generalized ocean color inversion model - GIOP

The GIOP is part of an effort from NASA towards consensus on a unified Semi-
Analytical Algorithm (SAA) that would encompass similarities and uniqueness from
the numerous existing SAA. GIOP allows the construction of a set of SAAs, from
a collection of options for model parametrization. GIOP also permits isolation and
evaluation of specific modeling assumptions, construction of SAAs, development of
regionally tuned SAAs, and execution of ensemble inversion modeling (WERDELL et

al., 2013).

Some assumptions are made to create a general SAA. To achieve Rrs(0−λ) GIOP
uses Lee et al. (2002):

Rrs(0−λ) = Rrs(0+λ)
0.52 + 1.7 ·Rrs(0+λ) (3.61)

which is slightly different from equation 3.23 and 3.24. Subsurface remote-sensing
reflectances are relate to IOPs by the the second order polynomial described in
equation 3.37, and coefficients g0 and g1 are user-provided.

GIOP uses absorption and backscattering coefficients as described in equations 3.30
and 3.31 which leads to:

u′(λ) =
bbw(λ) +Bbpib

∗
bpi

bbw(λ) +Bbpib
∗
bpi

+ aw(λ) + Aφia
∗
φ + a∗NAP + ACDOMi

a∗CDOM
(3.62)

The strength of GIOP is the possibility of model parametrization. Table 3.1 shows
the set of possibilities that are offered by GIOP (adapted from Werdell et al. (2013)).
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Table 3.1 - Summary of Specific Coefficients and Derived Parameters Available for Use in
GIOP - Table adapted from Werdell et al. (2013)

Eigenvector Description

a∗φ

User-provided a∗φ
Maritorena et al. (2002) tabulated a∗φ

Bricaud et al. (1998)-derived a∗φ using OC-derived Ca
Ciotti and Bricaud (2006)-derived a∗φ using user-provided size fraction

a∗dg

Equation (3.34) with user-provided Sdg
Equation (3.34) with Lee et al. (2002)-derived Sdg

Equation (3.34) with Franz and Werdell (2010)-derived Sdg
User-provided a∗dg

b∗bp

Equation (3.29) with user-provided Sdg
Equation (3.29) with Hoge and Lyon (1996)-derived Sdg
Equation (3.29) with Lee et al. (2002)-derived Sdg

Equation (3.29) with Ciotti et al. (1999)-derived Sdg
Equation (3.29) with Morel and Maritorena (2001)-derived Sdg
Equation (3.29) with Loisel and Stramski (2000)-derived Sdg

User-provided b∗bp
Loisel and Stramski (2000)-derived b∗bp

Lee et al. (2002)-derived b∗bp
Boldface indicates the parameters used in Werdell et al. (2013) testing (GIOP-DC).

In GIOP two inversion methods are used: the optimization method (previously used
by Roesler and Perry (1995)) and a linearized matrix inversion (from Hoge and Lyon
(1996)). The optimization techniques are generally based on the minimization of a
merit function as follows:

Ξ2 =
Nλ∑
i=1

(R̂rs(0−, λi)−Rrs(0−, λi))2

σ2(λi)
(3.63)

where Ξ2 is the merit function and σ(λi) is the input uncertainties and R̂rs is an
estimated Remote Sensing Reflectance. If values of σ(λi) are not available, they are
set to 1.0 and the optimization is unweighted. According to Werdell et al. (2013), in
GIOP, the LM method was used but several other optimization techniques can be
used.

For the Linear Matrix Inversion (LMI) method, the linearization proposed by Hoge
and Lyon (1996) starts with equation 3.64:
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aφ(λ) + anap+cdom(λ) + bbpi(λ) · ν = aw(λ) + bbw(λ) · ν (3.64)

where ν = 1− 1
u′
or a

bb
. For an exact solution, three different wavelengths are used to

form a system of three equations with three unknowns. After spectrally modeling
the three IOP variables with values at a reference wavelength (λr = 410 nm) the
equation becomes (equation 3.65):

a∗φ(λ)·aφ(λ)+a∗nap+cdom(λ)·anap+cdom(λ)+b∗bpi(λ)·bbpi(λ)·ν = aw(λ)+bbw(λ)·ν (3.65)

Equation 3.65 can now be used to construct the linear matrix that could be inverted
to derive the IOPs consistent with the input Rrs and the spectral models.


1 1 ν(λr)

a∗φ(λ2) a∗nap+cdom(λ2) b∗bpi(λ2)ν(λ2)
a∗φ(λ3) a∗nap+cdom(λ3) b∗bpi(λ3)ν(λ3)

·


aφ(λr)
anap+cdom(λr)
bbpi(λr)

 = −


aw(λr) + bbw(λr)ν(λr)
aw(λ2) + bbw(λ2)ν(λ2)
aw(λ3) + bbw(λ3)ν(λ2)


(3.66)

As mention by Hoge and Lyon (1996), any standard method of solving this system
of equations can be used. The Hoge/Lyon inversion algorithm uses lower/upper
deconvolution Hoge and Lyon (1996), but other methods uses QR decomposition or
an overconstrained solution (WANG et al., 2005).
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4 MATERIAL AND METHODS

This chapter presents a brief description of the study area followed by the expla-
nation of insitu sampling procedures, equipment characteristics and methods for
data processing. Details for closure analysis and uncertainties assessment as well as
semi-analytic model parametrization are also discussed.

4.1 Study Area

Lago Grande de Curuai (LGC) floodplain is located on the southern margin of the
Amazon River, near Obidos city (Brazil), 900 km upstream from the Atlantic Ocean
(Figure 4.1). It is a complex system of about 30 shallow interconnected lakes with
spatially and temporally variable hydraulic connectivity among them and with the
Amazon River. As described by Barbosa et al. (2009) the effect of the seasonal flood
pulse coupled with landforms, leads to complex water flow and mixing patterns
within the Curuai floodplain. Figure 4.2 displays a schematic representation of the
flooding dynamics of Curuai Floodplain from July-2012 to May-2014.

Figure 4.1 - Study Area - Curuai Floodplain Lake
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In the rising water period there is an inflow from the Amazon River which brings
inorganic sediments to the lake. During peak discharge most of river water enters the
floodplain as diffuse overbank flow (RUDORFF et al., 2014a; RUDORFF et al., 2014b).
In the high water period, floodplain waters are less turbid than the river as a large
portion of the sediments entering the floodplain are trapped near the banks. During
the receding period, the lake is sufficiently shallow for fine deposited sediments to be
re-suspended by wind effects, resulting in high values and variability of suspended
sediment and chlorophyll-a concentrations. Wind-induced mixing, however, modu-
late the concentration of suspended sediment and chlorophyll-a within a season and
spatially depending on the lakes fetch and depth. Low water period is characterized
by the highest suspended sediment and chlorophyll concentrations (BARBOSA et al.,
2009).

Figure 4.2 - Daily mean water level above the sea level for the 2012 - 2014 period. Red
marks indicate the period of each field campaign performed in this work.
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4.2 Field Campaign Description

Four field campaigns, here after named September,February, August and April were
performed to represent the four states of the Amazon water level, here after named
Low Water period, Rising Water Period, Receding Water Period and High Water
Period, to cover all the seasonal variability of the Curuai Lake. Dates and number
of sampling stations in each field campaign are presented in Table 4.1. Table 4.2
presents the set of measurements taken in each field campaign.

Figure 4.3 - Field Campaign Sample Stations in Curuai Lake

A Landsat-5 image from 11/24/2003 (Low Water Period) was used as background.

The distribution of sampling stations was initially set for September and based on a
historical dataset of 12 Landsat-TM images acquired in the 2003/2004 period. Each
image was classified into six (6) optically distinct water masses using a region-based
unsupervised classifier. Map algebra was used to make sure that only perennial
regions were sampled. Samples were distributed in order to represent those spectral
distinct water masses and at least three (3) samples were set for each of them.
Additional sampling stations were included based on previous field work experience.

All measurements were performed in the ≈ 9:30 a.m. to ≈ 3:00 p.m. local time pe-
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riod, avoiding large solar zenith angles (θSZA). Usually 4 to 5 stations were sampled
per day in a 30 to 40 minutes period. Each piece of equipment was deployed sep-
arately and therefore instruments sampling and water collection were not exactly
simultaneous, but as close as possible.

Table 4.1 - Field Campaign Dates and Number of Stations

Field Campaign Date (DD/MM/Y Y Y Y ) Number of Stations
September 30/09/2012 to 05/10/2012 30
February 02/02/2013 to 07/02/2013 32
August 11/08/2013 to 18/08/2013 31
April 04/09/2014 to 04/15/2014 28

Table 4.2 - Measurements carried out in each season

September February August April
Concentration Analysis

Chlo-a X X X X
Feof X X X X
TSM X X X X
TSIM X X X X
TSOM X X X X
DTC X X X X
DIC X X X X
DOC X X X X

In-Situ
ACS X X X

Hydroscat X X X
LISST X X

Ed Profiles X X X X
Eu Profiles X X
Lu Profiles X X X X

Es X X
Lw X X
LSky X X

Laboratory Spectrophotometer Measurements
acdom X
ap X
anap X
aφ X

Concentration Analysis
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4.3 Measurements Methods

4.3.1 In-Situ Radiometric Measurements

All radiometric measurements were carried out with intercalibrated TRIOS sensors
(TRIOS, 2015). Radiance and Irradiance sensors have a wavelength range of 350-950
nm, sample interval of approximately 3.3 nm. Radiance sensors have a 7◦ field-
of-view (FOV). To check the drift in intercalibration a calibration procedure was
performed using a calibrated lamp before April field campaign.

Radiometers were mounted on a structure that allows Above and In-water data
collection. In September and February, measurements were carried out in a small
motorboat (figure 4.4) and in August and April the structure was mounted in a
riverboat (figure 4.5). In September, Es was measured from the radiance reflected of
a white Lambertian Spectralon Plaque (LSP) (π · Lplaque) and an Irradiance sensor
was used for the remaining field campaigns. No Lsky was measured in September
and February and only profiles of Ed and Lu were carried out. Table 4.2 presents
radiometric measurements taken in each field campaign.

At first, procedures for Radiometric acquisition and data processing followed ocean
based NASA (2003) protocol (MUELLER et al., 2003). However due to specific charac-
teristics of turbid inland water systems some of the recommendations were not ap-
plicable and new procedures were applied (mainly for In-water measurements). The
same was applied for data processing and some methods were tested and adapted.
The description of each procedure is presented in the sections below.

All radiometric measurements were aimed to be taken simultaneously. However an
automatic integration time for each radiometer was set, which depended on the
amount of light reaching the sensor and therefore the differences between each ra-
diometer varied from 256 (milliseconds) to 4 seconds. A fixed depth approach (ZI-
BORDI et al., 2009) (see description below) was used for In-water measurements
which also determined the sampling the above water data collection, i.e. at each
depth (from the surface to ≈ 3 meters depth depending on the field campaign), 10
to 15 measurements were taken for all sensors (Above and In-water). Only one cast
was performed for each station.

4.3.1.1 Above Water Approach

Water leaving Radiance (LT ) measurements were carried out with a sensor-viewing
geometry of 45◦ zenith angle and approximately 137◦ azimuth angle taking the
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Figure 4.4 - Structure for Trios Measurements in September and February

This set up was used for Above and In-Water measurements in September and just for
Above Water in February

Sun direction as reference (MOBLEY, 1999; MOBLEY, 2015) (LT (0+, θ ≈ 45◦, φ ≈
137◦, λ)). It is worth mentioning that some variability in the azimuth orientation
was expected due to the operational constraints (boat and structure positioning).

To account for skylight surface reflection reaching the LT sensor, a Lsky measurement
was taken in the same plane but with a rotation of the mounting pole ≈ 45◦ upward
from nadir. For August and April, the downwelling irradiance (Es = Ed(0+, λ)) was
measured on the top of the boat (≈ 5m) to avoid any interference (Figure 4.5)
and for February, on the top of the structure presented in figure 4.4. As mentioned
before, in September, Es was measured from a white Lambertian Spectralon Plaque
(LSP), also presented in figure 4.4.

The correction proposed by Mobley (1999) was used, as follows :
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Figure 4.5 - Riverboat used in All Field Campaigns

The set up used for radiometric profiles as well as Above Water Measurements is presented
in the front

Lw = LT (0+, θ ≈ 45◦, φ ≈ 137◦, λ)− ρsky · Lsky(0+, θ ≈ −45◦, φ ≈ 137◦, λ) (4.1)

The ρ factor, taken from Mobley (2015), that improves Mobley (1999) suggestion
also accounting for polarization, was chosen based on the sea surface roughness
(based on the wind speed), the θsza, and sensor-viewing geometry. Since no Lsky

was measured in September and February skylight correction was not possible and
therefore no above water Rrs(0+, λ) was used for those two field campaigns. The
derived Rrs(0+, λ) (for August and April) was therefore calculated as :

RAb
rs−ρsky(0

+, λ) = Lw(0+, λ)
Es(0+, λ) = LT (0+, λ)− ρsky · Lsky(0+, θ ≈ −45◦, φ ≈ 137◦, λ)

Es(0+, λ)
(4.2)

The chosen geometry of acquisition and correction for skylight reflection, however,
does not account for all surface effects that affects Lw signal. Although the ρ factor
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can be adequately selected, the complexity of geometrical light field between the
target and the sensor, variability of environmental conditions and mainly the tilting
and drifting of the boat, input uncertainties in the RAb

rs (0+, λ) that demand further
filtering procedures.

Four filtering procedures were tested :

a) a residual correction which normalizes all Rrs taken each station by the
spectrum that presents the minimum value of Rrs at 920 nm (adapted from
Doxaran et al. (2007)).

b) the Lsky
Es

< 0.05 ratio which selects homogeneous sunny skies (low cloud
content) (QC1) (RUDDICK et al., 2006; DOGLIOTTI et al., 2015).

c) a coefficient of variation CV < 20% for Rrs(0+, λ) in 765 and 865 nm
which discard noisy/out of range spectra (QC2) (RUDDICK et al., 2006;
DOGLIOTTI et al., 2015).

The QC1 criteria was applied for all collected spectra while the QC2 was calculated
for each cast. The final chosen spectra to represent each station was calculated in
two steps: (1) first a median inside each cast and (2) second from a median of the
result of (1).

Since above water measurements are taken in a sensor-viewing geometry different
from 0◦ for zenith/azimuth angles, a correction for Bidirectional Effects should be
applied (OOWB, 2015). Bidirectional effects occur in reflection and refraction at the
air-water interface (R factor), in the relationship between AOPs and IOPs (f factor)
and at the in-water radiance/irradiance ratio (Q factor) (all of those factors were
discussed in section 3.1.4). All factors depend on sensor-viewing geometry and wind
speed but particularly for f and Q they depend on atmospheric properties (aerosol
optical thickness (τa)) and IOPs (especially the scattering phase function) which are
challenging to derive from radiometric measurements (OOWB, 2015). The classical
Bidirectional Effects correction based on pre-computed look-up-tables Morel and
Gentili (1996) and Morel et al. (2002) were not applied in this work since no tables
are available for the set of IOPs in Curuai lake. Also, no atmospheric properties
were measured in each field campaign.
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4.3.1.2 In-water Approach

The profile system for Ed, Eu and Lu measurements, was deployed in an open cage
(Figure 4.6) following the orientation of the Above Water measurements to mini-
mize effects of platform shading. The choice for a winched system was made due to
shallow lake conditions to make it easier to keep control of equipments. However the
proximity to the vessel (skiff or riverboat) increased shading effects in a proportion
which is difficult to be assessed.

In the fixed depth approach used in this work, the cage was lowered and stopped
following a “fixed interval” which varied from 0.3 to 0.5 meters depending on each
campaign. Measurements started above water (cage above the water surface), fol-
lowed by a “subsurface measurement” and were lowered/stopped respecting the
stated interval. At each depth, 10 to 15 measurements were taken for all variables.
The interval was chosen arbitrarily, and it was a source of error as discussed in
chapter 5.

Figure 4.6 also presents the dimensions of each radiometer and the position of the
pressure sensor, which is a key factor in k-functions calculations in very turbid
waters.

Initially, calibration and immersion factors provided by the manufacturer were ap-
plied (TRIOS, 2015). A normalization scheme was used to account for illumina-
tion variation during each cast. Ed, Lu and Eu profiles were normalized by Es as
(MUELLER et al., 2003) :

R̂xN (λ, z) = R̂(z, λ) · Es(λ, t(z(0+))])
Es(λ, t(z)) (4.3)

where R̂xN (λ, z) is the normalized quantity and R̂(λ, z) is the (Ed, Lu or Eu) is the
measurement at each depth (z). Es(λ, t(z))is irradiance measurement at the time
t(z) when the radiometer was at depth z and Es(λ, t(z(0+))) is the measurement at
time t(z(0+)) when the profiler was at the surface.

The diffuse attenuation coefficients (K-functions) were calculated for R̂xN (λ, z) (Kd,
Klu and Ku). To account for the effect of sensor size (Figure 4.6) in R̂xN (λ, z)
a real depth was calculated subtracting the sensor size ≈ 30cm from each depth
measurement. A tilt filtering was also performed taking 5◦ as a boundary condition
(MUELLER et al., 2003). However for some stations this limit had to be extended to
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Figure 4.6 - Trios Cage for All In-Water Measurements

For August and April a Eu sensor was included

10◦ due to the high variabiliy in sensor position. Four k-function approaches were
compared :

a) Standard K-functions (KIRK, 2010).

Kf (λ) = 1
z − zref

· ln
(

R̂xN (z, λ)
R̂xN (zref , λ)

)
(4.4)

where zref is the reference depth. For this approach, at each measured
interval (30 to 50 cm) one k-function was calculated. The advantage re-
lies in calculating several k-functions per profile, what leads to a better
understating of stratified water columns.

b) Weighted K-functions adapted from Kirk (2010) for all R̂xN (z, λ, ).

For N depth intervals :

wK(av) =

N∑
i=1

K(zi, zi+2, λ)R̂xN (zi+1, λ)
N∑
i=1

R̂xN (zi+1, λ)
(4.5)
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A data smoothing is proposed in Kirk (2010) which leads to a K(z) value
calculated as :

K(zi, zi+2, λ) = 1
2∆z · ln

(
R̂xN (zi, λ)
R̂xN (zi+2, λ)

)
(4.6)

K(zi, zi+2, λ) is multiplied by R̂xN (z, λ), in the depth interval in between,
in the numerator of 4.5. The Weighted approach gives one K-function per
profile.

c) Fitting Approach K-functions.

Two fitting approaches were applied to R̂xN (λ, z) data : The linear ap-
proach converted all in-water R̂xN (λ, z) data collected to ln R̂xN (z, λ) and
fitted it to a linear type y = ax+ b to described in equation 4.7. A Matlab
Type-I Linear Regression function (“Regress”) (REGRESS, 2015) was used.

ln(R̂xN (λ, z)) = −Kf (λ) · z + ln(R̂xN (zref , λ)) (4.7)

The Non-linear approach aimed to fit an exponential function, described in
equation 4.8, to all in-water R̂xN (λ, z) data collected. A minimization Mat-
lab function (“fminsearch”) (FMINSEARCH, 2015) was used in the fitting
procedure.

(R̂xN (z, λ)) = (R̂xN (zref , λ)) · e−Kf ·z (4.8)

In both, linear and non-linear approaches zref = 0−, i.e. it gives values
of Ed(0−, λ, ), Lu(0−, λ) and Eu(0−, λ) (R̂xN (0−, λ)) . Those values were
used to calculate the Rrs(0−, λ) for all field campaigns (RIw

rs (0−, λ)) and
RIw(0−, λ) for August and April (MUELLER et al., 2003).

To account for depth intervals, a test varying the number of depths chosen
to calculate k-functions and R̂xN (0−, λ) was performed.

4.3.2 In-situ IOP Measurements

IOP measurements were carried out with a 10 cm pathlength ACS attenuation-
absorption meter with spectral range of 400 to 750 nm and wavelength resolution of
≈ 3.5 nm (smoothed by a≈ 16 nm bandpass filter) (WETLABS, 2009). Backscattering
(bb) was measured using a HOBILabs HydroScat-6 sensor (MAFFIONE; DANA, 1997),
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which allows to estimate (bb) at six wavelength bands: 420, 442, 470, 510, 590 and 700
nm . Conductivity-Temperature-Depth (CTD) measurements were done using SBE-
37SI (Sea-Bird Electronics). At each station, the profile was measured as follows:
i) the CTD, ACS and HydroScat-6 instruments were simultaneously lowered until
≈ 75% of the lake depth; ii) they were kept at this depth for a warm up period
(8 to 10 min) to remove air bubbles, as recommended by the manufacturer; iii) in
February and August, the instruments were slowly raised, stopping for 30 seconds
every 50 cm until surface and in April, a continuous profile was performed. Sampling
rate for ACS and HydroScat-6 was set to 4Hz and 2Hz respectively.

4.3.2.1 Attenuation and Absorption Measurements - ACS

Prior to each field campaign, an ACS air calibration was performed following manu-
facturer specifications (WETLABS, 2009). The repeatable stabilization factory recom-
mendation values (≈ 0.01 m-1) were not reached but were below 0.05 m-1. However,
the uncertainty associated with the calibration is negligible when compared to the
high values of our measurements (see below). Pure water calibration was carried out
after April campaign with a maximal drift in calibration of 0.2 m-1, mainly in the
blue region (400 to 500 nm).

First, pure water offsets supplied from the instrument’s device file were applied to
all vertical profiles to compute lake water total (particulate + dissolved matter)
attenuation and absorption, (WETLABS, 2009). A 9x1 median moving window was
used to filter spurious data. Temperature correction was made based on WETLabs
(2009) and following tables from (SULLIVAN et al., 2006). As discussed in section 3.2.1,
effects of temperature in pure water should be removed from ACS measurements.

xcorr = xmeas(λ)− (Ti − Tnorm) ·ΨT (λ) (4.9)

where x could be the attenuation (c) and the absorption (a) coefficients, xcorr is
the attenuation/absorption normalized to a constant temperature, xmeas is the at-
tenuation/absorption measured at the in situ temperature, Ti is the insitu sample
temperature, Tnorm is the normalization temperature, and ΨT (λ) is the temperature
dependency m−1 ◦C−1 at the measured wavelength, extracted from Sullivan et al.
(2006).

Since salinity in Curuai Lake is negligible, no Salinity correction was applied. After
temperature correction (acorr and ccorr), the absorption tube scattering corrections
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Figure 4.7 - ACS Frame

Setup used for February, August and April

were studied and applied. Absorption tube scattering corrections account for errors
that result from scattering in the absorption tube which are: (1) the increase of the
actual photon path length in the tube due to single and multiple scattering and (2)
because part of the photons that reach the wall at an angle higher than 41.7◦, due
to internal reflection at the quartz/air interface of the tube, are assumed to be lost
and therefore not detected in the absorption detector. Both effects overestimate the
absorption coefficient measurements (LEYMARIE et al., 2010). The impact of those
errors in turbid waters is higher due to the highly scattering environment.

Six absorption tube scattering corrections were tested.The Flat method, which sub-
tracts a fraction from the absorption measurement at a reference wavelength (Equa-
tion (4.10)) :
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aFlat = acorr − acorr(λref ) (4.10)

Where aFlat stands for the ACS absorption corrected by the Flat method, and ref
is the reference wavelength. Based on Leymarie et al. (2010) instead of the com-
monly used 715 nm as a reference wavelength we used 750 nm (Interpolated) as an
attempt to improve this correction, since the absorption coefficient relative to water
is expected to be lower at 750 nm than 715 nm.

The Zaneveld Correction (ZANEVELD et al., 1994; WETLABS, 2009) is described by
the equation (4.11) :

aZan = acorr − acorr(λref ) · bcorr(λ)
bcorr(λref ) (4.11)

Leymarie et al. (2010), based on computer simulations, assessed two reference wave-
lengths, 715 and 870, for 10 centimeters AC-9. In this study absorption in 750
nm (a750) was tested as reference, due to the spectral range limit imposed by In-
terpolated ACS. The temperature corrected scattering (bcorr), was estimated as a
difference between ccorr and the acorr.

The here named Kirk method (KIRK, 1992; ZANEVELD et al., 1994) is described as
(Equation (4.12)):

aKirk = acorr − CFS · bcorr (4.12)

where the constant fraction of scattering (CFS) proposed by (KIRK, 1992) for coastal
water ranges from 0.121 to 0.162. Wet Labs manual (WETLABS, 2009), however,
recommends 0.18 for turbid waters.

The absorption tube scattering correction proposed by (RöTTGERS et al., 2013) (pro-
portionalac) was also used and tested :

arott(λ) = am(λ)− (am(715)− a715)
(
e−1
c ccorr(λ)− acorr(λ)
e−1
c ccorr(715)− a715

)
(4.13)

where a715 = 0.212 · acorr(715)1.135 and ec = 0.56. Tests for the acceptance angle
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variability were performed in (Sander de Carvalho et al., 2015) showing in general,
specifically for tests made for August Field Campaign, an induced error of 20 % in the
attenuation coefficient does not impact substantially the derived RAb

rs (λ, 0+). These
differences tended to zero and therefore, we have chosen not to use the ec = 0.56
correction proposed by (RöTTGERS et al., 2013). Another reason for not using the
ec = 0.56 factor, from Boss et al. (2009), is that it is based on low attenuation waters
(Darling Marine Center Estuary, Martha’s Vineyard Coastal Observatory (MVCO)
and a Cross-equatorial open ocean transect) which might not be suitable for high
attenuation Curuai waters.

4.3.2.2 Backscattering Measurements - Hydroscat

Sensor calibrations included dark offset and gain ratio measurements and were done
following the Backscattering Sensor Calibration Manual (HOBILABS USER’S MAN-

UAL, 2010).Hydroscat Volume Scattering Function (β(140◦)) measurements were
subtracted from pure water provided by Zhang and Hu (2009). The corrected
backscattering coefficient was calculated using the measured β as (Equation (4.14))
:

bbcorr = 2 · π · χ · (β(140◦) · σ(Kbb)) (4.14)

Where bbcorr is the corrected backscattering and χ is a non-dimensional variable
relating the (β(140◦)) to the backscattering coefficient. Here we assume χ equal to
1.08 as suggested by the manufacturer (HOBILABS USER’S MANUAL, 2010). However,
χ can vary according to acquisition angle (OISHI, 1990; BOSS; PEGAU, 2001) and
environmental conditions.

Due to high absorption and scattering values presented in the study area, Hydroscat
data must be corrected for power losses due to absorption and scattering effects along
optical path of the instrument (pathlength effect). Sigma-correction, described in the
Hydroscat Manual (HOBILABS USER’S MANUAL, 2010) was adapted to incorporate
ACS measurements. The “Sigma” correction (σ(Kbb)) depends on sensor’s optical
path geometry and is expressed as (Equation (4.15)) :

σ(Kbb) = k1 · exp (kexp ·Kbb) (4.15)

where kexp (the optical pathlength) is characteristic of the specific instrument, and
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is included in its calibration file. When the calibration is performed with DI water
the term k1 equals 1 at all wavelengths (HOBILABS USER’S MANUAL, 2010). Kbb

is the attenuation coefficient for light traveling from the sensor to the volume and
back to the detector. Kbb is related to absorption (a)and scattering (b) coefficients
as (Equation (4.16)) :

Kbb = a+Kscat · b (4.16)

where Kscat has the standard value of 0.4. In this work a new sigma correction was
tested, based on Doxaran (personal communication). This correction substitutes
the factor Kscat, by an expression based on the backscattering probability (bb/b) (in
percentage values), as follows :

Kscat = 0.0317 · ln
(
bb
b

)
+ 0.0668 (4.17)

As no ( bb
b

) is available from Hydroscat before sigma correction, backscattering prob-
ability was estimated using ACS measurements following (SULLIVAN et al., 2005)
:

bb
b

(ACS) = 0.11 · aACS(715)
cACS(715) − 0.001 (4.18)

Where bb
b

(ACS) is the backscattering probability estimated from ACS; aACS(715)
and cACS(715) are the ACS measured absorption and attenuation coefficients at 715
nm prior to application of the scattering correction to absorption. The ( bb

b
) calculated

from bb from Hydroscat and b from ACS will be called bb
b

((HS − 6)/(ACS)).

4.3.2.3 Size Distribution Measurements - LISST

Size distribution measurements were carried out with a LISST-Portable (LISST,
2015). As shown in table 4.2 measurements were taken only in April. Samples (sam-
pled as described in section 4.3.3) were measured in replica within a maximum of
three hours after sampling, following the LISST (2015) description. The LISST-
Portable estimates the particle size distribution using the forward scattering of a
laser beam (670 nm), measured with a series of 32 circled detectors, over a path-
length of 5 cm. From LISST-Portable it is also possible to measure the transmitted
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light, from which the beam attenuation coefficient of particles, cp, can be calculated.
From the optical scattering angular pattern extracted from the detector, the particle
volume concentration, V(D), is calculated from Mie Inversions. The V(D) is divided
in a total of 32 size classes that logarithmically increase with diameter (AGRAWAL;

POTTSMITH, 2000). The V(D) is calculated using manufacturer provided software
and calibration and the transformation to N’(D), described in equations 3.14 and
3.15 from section 3.1.2, was done separately. The effective particle size range mea-
sured with this laser is 2.72-460.3 µm, with the width of individual size classes
varying from 0.45 to 76 µm over this range.

4.3.3 Laboratory Measurements

At each station, 200 to 300 mL of water were sampled within the Secchi depth. In
the field, samples were kept in dark and cooled for a maximum of three hours before
filtration. 47-mm Whatman GF/F 0.7 µm pore size filters were used for chlorophyll-
a (Chla) and pre-weighted GF/C 1.2 µm pore size filters were used for TSM. The
result of 47-mm Whatman GF/F 0.7 µm was used for dissolved total carbon (DTC,
DOC and DIC) analysis.

For the determination of particulate absorption, samples were filtered by a 47-mm
Whatman GF/F 0.7 µm and for CDOM absorption analysis the filtered water was
re-filtered in a 0.2 µm pore size Whatman Membrane filter.

Both, filtered and re-filtered water were stored in light blocking containers to pre-
vent photodegradation. Except for dissolved matter (DTC, DOC, DIC and CDOM
absorption) analysis, all measurements were done in replica. Except for CDOM
samples, the remaining samples were kept frozen for five (5) days, until laboratory
analysis was performed.

4.3.3.1 Determination of Limnological Parameter Concentrations

Limnological Parameter Concentrations were determined by the International Insti-
tute of Ecology (IIE) ((IIE, 2015)) according to the following protocol: Chla con-
centration based on (NUSCH, 1980) with Whatman GF/F 0.7 µm filters soaked in
80% ethanol, heated to 75 ◦C for 5 min and immediately cooled. After 24 hours
in the dark, absorbance at 665 and 750 nm were measured with a UV-2600 Shi-
madzu spectrophotometer (Shimadzu Corporation, Japan) and the concentration
determined. DOC and DIC concentrations were determined according to Farmer
and Hansell (2007) using an infrared gas analysis Shimadzu, TOC-5000 analyzer
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with high temperature combustion. TSM determination followed Wetzel and Likens
(2000) gravimetric protocol. Sample filters were dried at 60 ◦C for a 24 hour period
and weighted to determine TSM concentration. To separate TSIM from TSOM, fil-
ters were burned at 480 ◦C for one hour to eliminate the organic matter and weighed
again.

4.3.3.2 Absorption Measurements

Laboratory absorption measurements were performed only for April datam (table
4.2), using a dual beam UV-2600 Shimadzu spectrophotometer. CDOM optical den-
sity (OD) was measured using a 10 cm pathlength quartz cell cuvette and distilled
water at the same ambient temperature as reference. The spectral absorption coeffi-
cient, aCDOM(λ) was calculated from the measured optical density (ODs(λ)) accord-
ing to equation (4.26).

aCDOM = 2.3 · (ODs(λ)−ODnull)
l

(4.19)

where “l” is the cuvette pathlength and ODnull is the optical density at a wavelength
where absorption by CDOM can be assumed to be zero, in this case, the average
over 750-800 nm.

TSM absorption coefficient (aTSM), derived Non-Algal Particles (anap) and Phy-
toplankton (aφ) absorptions were measured using the Transmittance-Reflectance
quantitative technique (T-R Method) (TASSAN; FERRARI, 1995; TASSAN, 2002). As
discussed by Stramski et al. (2015) the T-R method overcomes the limitations re-
lated to filter scattering (mainly the Reflectance) common to filter-pad approach
(Transmittance method).

Although accounting for scattering errors, the T-R also is affected by the pathlength
amplification (β−factor), which is a major source of error for filter-pad methodolo-
gies. The multiple scans and the variability of filters, whose properties can vary from
each other are other sources of uncertainties. For pathlength amplification correc-
tion, the factors described in Tassan (2002) were used. As highlighted by Stramski
et al. (2015), T-R method presents results close to those of the most reliable method
which is the so called IS method (sample inside the integrating sphere).

Another important step of T-R method is the bleaching process. This process is
done by submitting the sample filter for ≈ 20 min to a 10% sodium hypochlorite

48



(NaClO) solution before being rinsed with distilled water and re-scanned. It has been
demonstrated that NaClO bleaching oxidizes phytoplankton pigments faster than
other particulate organic matter, enabling the separation of their absorption signals
(FERRARI; TASSAN, 1998). NAP absorption fraction (ODNAP) includes unbleached
organic detritus (Organic NAP) and mineral sediments (Inorganic NAP).

TSM, NAP and Phytoplankton absorptions measurements were then converted from
optical density (OD) to absorption coefficients (m−1) using the following equation
(TASSAN, 2002):

ax(λ) = 2.33 ·ODnap

R
(4.20)

where R is the ratio of the filtered volume to the filter clearance area in meters and
x is the component (TSM or NAP). The difference between aTSM and anap leads to
the absorption due to phytoplankton pigments aφ (aφ = aTSM − anap).

4.4 Data Quality Assessment

The Data Quality Assessment was mostly based on closure exercises that chased the
following objectives :

• In-Situ Radiometric Measurements (Above and InWater) tests of literature
correction approaches and k-function calculations as well as the sensitivity
to environmental conditions and sampling strategies.

• Closure Experiments for ACS and LISST

• Closure Experiments of IOPs (ACS and Hydroscat) and AOPs (Rrs, R and
Kd) to :(1) identify most suitable set of corrections for ACS and Hydroscat
measurements using a “Hydrolight” strategy and (2) test the suitability of
forward models for the current dataset.

• Quality control using Laboratory measurement replicas.

The reliability of the measurements and methods were assessed for each set of mea-
surements at each step of data acquisition and processing. The following statistical
indexes used for test data quality assessment (ANTOINE et al., 2008; RUDORFF, 2013):

a) Unbiased Percent Difference (UPD),
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UPD =

N∑
i=1

(xtest−xref)
(xtest+xref)

2


N

· 100 (4.21)

b) Modular Relative Percent Difference (RPD)

RPD =

N∑
i=1

[ |(xtest−xref)|
(xref)

]
N

· 100 (4.22)

c) Root Mean Square Error (RMSE)

RMSE =

√√√√ N∑
i=1

(xtest − xref )
N

(4.23)

Where xtest and xref are the tested and reference measurements. Median, Mean,
Standard Deviation (SD) and Coefficient of Variation (CV) and correlation coeffi-
cient (r) are also computed.

4.4.1 In-Situ Radiometric Measurements

4.4.1.1 Above Water Approach

The Flowchart from Figure 4.8 describes the methodological steps to test the effect
of above water correction techniques. The main steps are adapted from Rudorff
(2013).

Initially, Mobley (2015) correction was applied to the Non-corrected Rrs (RAb
rs−NC =

LT
Es

) generating RAb
rs−ρsky as described in section 4.3.1.1. The three proposed cor-

rections (Residual Correction, QC1 and QC2) were applied to RAb
rs−ρsky generating

RAb
rs−RC , RAb

rs−QC1 and RAb
rs−QC2. Statistical indexes were calculated at each step, first

taking RAb
rs−NC as reference for Mobley (2015) correction and then taking RAb

rs−ρsky
for the remaining corrections. The correction with the highest impact on RAb

rs−NC

(higher difference from RAb
rs−NC) was then chosen.

4.4.1.2 In-Water Approach

K-functions tests were performed for February, August and April, because data ac-
quired in September was very noisy. Tests were performed for both: each data set
and combining all data from the three field campaigns. Only Lu and Ed profiles were
used. A series of tests were performed for In-Water Approach:
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Figure 4.8 - Flowchart of the Above Water Correction Methodology

Above Water
Non-Corrected

RAb
rs−NC

Sky/Sunglint
Correction
RAbrs− ρsky

Residual
Correction
RAb
rs−RC

Quality
Control 1
RAb
rs−QC1

Quality
Control 2
RAb
rs−QC2

Compare among chosen
corrections

Chosen RAb
rs (0+, λ)

a) Impact of K-function computing Approaches : Non-Linear, Linear,
Weighted and Standard approaches were compared. For Non-Linear and
Linear approaches, all measurements from all depths were used. For
Weighted and Standard approaches,Klu andKd were calculated using data
from all depths, divided by number of casts and the median was assumed
to represent the entire water column. Non-Linear Approach was assumed
as reference against which the remaining approaches were assessed using
the statistical indexes (Figure 4.8).

b) Impact of Number of measurements in the water column on K-functions:
A test varying the number of depths used in the calculation of Klu and
Kd, was performed using only the Non-Linear and Linear Approaches. A
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step of 1 meter was used, starting from one meter depth and finishing at 5
meters depth. To calculate statistical indexes, Klu and Kd calculated with
all measurements (5 meters depth) was used as reference (Figure 4.9).

c) Impact of computing Approaches on derived RIw
rs (0−, λ) : Non-Linear and

Linear approaches were compared. All measurements from all depths were
used. Non-Linear Approach was assumed as reference against which the
remaining approaches were assessed using the statistical indexes (Figure
4.8).

d) Impact of Number of measurements in the water column on RIw
rs (0−, λ): A

test varying the number of depths used in the calculation of RIw
rs (0−, λ),

was performed using only the Non-Linear and Linear Approaches. A step
of 1 meter was used starting from one meter depth and finishing at 5
meters depth. To calculate statistical indexes, RIw

rs (0−, λ) calculated with
all measurements (5 meters depth) was used as reference (Figure 4.9).

All tests were performed for the 500-800 nm interval due to unrealistic measurements
outside of this interval (i.e. insufficient light levels resulting in high noise/signal
affecting negatively the computation of K-functions), as will be discussed in Chapter
5. Tests were performed using only samples from 20 stations acquired February due
to the extremely high level of noise. All stations from August and April were used.
September presented the highest levels of noise and therefore, was not used in the
analysis.
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Figure 4.9 - Flowchart of the In-Water Correction Methodology - I

Ed(λ) and
Lu(λ) profiles

Normalization
to Es(λ)

Linear
Approach

Non-Linear
Approach

Standard
Approach

Weighted
approach

Compare
k-functions

Compare
Derived
RIw
rs (0−, λ)

Figure 4.10 - Flowchart of the In-Water Correction Methodology - II

Linear
Approach

Non-Linear
Approach

Test number of depths used in the cal-
culation for k-functions and derived Rrs
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4.4.1.3 Comparing Above Water (RAb
rs (0+, λ)) and In-water (RIw

rs (0−, λ))
Approaches

To compare In-water Remote Sensing Reflectances, RAb
rs (0+, λ) was converted to

RAb
rs (0−, λ) using equation 3.23. Factor R was calculated for each θsza, for each Rrs

measurement. The resulting corrected RAb
rs (0−, λ) (RAb

rs−ρsky(0
−, λ), RAb

rs−RC(0−, λ),
RAb
rs−QC1(0−, λ), RAb

rs−QC2(0−, λ)), were compared to RIw
rs calculated using Non-

Linear approach (RIw
rs−NonLin(0−, λ)). Statistical Indexes were calculated taking

RIw
rs−NonLin(0−, λ) as reference.

4.4.2 In-Situ IOPs

In order to test the performance of ACS absorption tube scattering corrections and
Hydroscat sigma correction, Hydrolight simulations were performed, according to
the steps described in the next section.

4.4.2.1 Hydrolight Experiments - ACS and Hydroscat Measurements

The closure Hydrolight based data quality analysis were performed as follows :

(i) Use Hydrolight default water absorption coefficients (H2OabDefaults.txt).

(ii) Input ACS and Hydroscat data profiles for each station, each time varying
the ACS scattering corrections for absorption and sigma correction for
HS-6 as follows:

(a) Zaneveld/0.03 - Proportional correction for absorption tube scatter-
ing correction. Hydrolight chooses the Fournier-Forand VSF based on
a wavelength independent bb

b
(ACS) = 0.03.

(b) Zaneveld/Doxaran - Proportional correction for absorption tube
scattering correction. Hydrolight chooses the Fournier-Forand VSF
based on bb

b
(ACS) calculated from Doxaran based sigma corrected

Hydroscat Measurements and ACS scattering coefficient (b).

(c) Kirk/0.03 - Kirk Method with a constant fraction of scattering (CSF)
equals to 0.18 for absorption tube scattering correction. Hydrolight
chooses the Fournier-Forand VSF based on a wavelength independent
bb
b

(ACS) = 0.03.

(d) 0.18/Doxaran - Kirk Method with a constant fraction of scattering
(CSF) equals to 0.18 for absorption tube scattering correction. Hydro-
light chooses the Fournier-Forand VSF based on bb

b
(ACS) calculated
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from Doxaran based sigma corrected Hydroscat Measurements and
ACS scattering coefficient (b).

(e) Rottgers/0.03 - Rottgers Method for absorption tube scattering cor-
rection. Hydrolight chooses the Fournier-Forand VSF based on a wave-
length independent bb

b
(ACS) = 0.03.

(f) Rottgers/Doxaran - Rottgers Method for absorption tube scattering
correction. Hydrolight chooses the Fournier-Forand VSF based on bb

b

calculated from Doxaran based sigma corrected Hydroscat Measure-
ments and ACS scattering coefficient (b).

(g) Rottgers/0.4 - Rottgers Method for absorption tube scattering cor-
rection / Hydrolight chooses the Fournier-Forand VSF based on bb

b

calculated from standard 0.4 value sigma corrected Hydroscat Mea-
surements and ACS scattering coefficient (b).

(iii) No bioluminescence or inelastic scattering;

(iv) Default wind speed (5,0 m/s);

(v) Semi-empirical sky model;

(vi) sun zenith angle was the calculated angle at the time of the field observation
at each station

(vii) in-situ irradiance (Es) was used as incident light and

(viii) Simulations were run down to 2.5 meters depth with 0.1 meters depth res-
olution (waters were assumed to be optically deep) and twenty five wave-
lengths between 400 and 900 nm, 20 nm wavelength resolution. Simulated
AOPs were later interpolated for the same interval as measured AOPs (1
nm).

Before computing the statistical indexes reference AOPs were selected according
to the following criteria: (1) The smaller surface effects on derived RIw

rs in re-
lation to RAb

rs and (2) the possibility of computing kds. Therefore, the three se-
lected AOPs used as reference were: Irradiance Reflectance RIw

NonLin(0−, λ), Remote
Sensing Reflectance RIw

rs−NonLin(0−, λ), Downwelling Diffuse Attenuation Coefficient
(Kd−NonLin(λ). Since Upwelling Irradiance Eu(0−, λ) was not measured in Febru-
ary, Eu(0−, λ) was derived from the simplistic Eu(λ, 0−) = πLu(0−, λ). Statistical
Indexes were performed for February, August and April separately. As Hydrolight
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simulations calculate AOPs for each pre-set depth (each 0.1 meters for the proposed
simulations), for Statistical indexes calculations, median values were calculated for
the 0 to 1 meter interval for (Kd(λ) and from 0 to 0.2 meters for RIw

NonLin(0−, λ) and
RIw
rs−NonLin(0−, λ).

4.4.2.2 LISST Quality Analysis

For LISST Quality Analysis, two experiments were performed:(1) Comparison be-
tween LISST and ACS attenuation coefficient (c) measurements; (2) Comparison
between measurement replicas.

4.4.2.3 Testing Forward Model Approximations

Gordon and Morel approximations (Section 3.3.1) were tested as a strategy to (1)
indirectly assess the quality of the AOP and IOP measurements as well as their
suitability as input to inverse models, (2) to investigate model performance to the
available dataset taking into account that the inverse models are based on both
approximations. Tests were made directly (Hydrolight was not used), using models
from section 3.3.1 with the inputs: AOP (RAb

rs and RIw
rs ) and IOPs (ACS total ab-

sorption coefficient and Hydroscat backscattering coefficient) . Only the median of
surface measured absorption and backscattering were used.

Two fitting designs were used: (1) first and second order polynomial fitting for each
wavelength (POLYFIT, 2016) and (2) Non-Linear fitting to the entire spectra (NLIN-

FIT, 2015). The polynomial fitting provides a set of coefficients for the combination
of the entire August+April dataset whereas for the Non-Linear fitting a single coef-
ficient is computed for each sampling station. Median and Standard deviation were
computed to assess the quality of Non-Linear fitting coefficients for each forward
model approximation. Fitting approaches provided the set of coefficients f/Q, f ′/Q,
g0 and g1 which were then compared to values commonly used in the literature.

4.4.3 Laboratory Measurements

Optical Active components (ap, anap and aφ) replicas were compared using statistical
indexes. First set of samples was taken as reference. The removal of 400 to 520nm
and 640 to 700nm intervals from anap spectra were tested, to prevent phytoplankton
pigment contamination as proposed by Bricaud et al. (2010). A Non-Linear fitting
procedure (equation 3.28) (NLINFIT, 2015) was applied to the data, to compute
the fitted anap (anap−fit). The anap−fit was then used to compute aφ−fit as follows:
aφ−fit = aTSM − anap−fit. Statistical Indexes were also computed for anap−fit, and
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aφ−fit in order to assess efficiency of Bricaud et al. (2010) procedure in removing
phytoplankton pigment contamination.

4.5 Curuai Lake Bio-Optical Variability

The seasonal variability of biogeochemical variables, k-functions (Kd(λ), Klu(λ),
Ku(λ) and RIw

rs (0−, λ)) was assessed just by plotting seasonal changes and computing
descriptive statistics: Median, Mean, Maximum, Minimum Standard Deviation and
CV.

Regarding the IOPs, however, the analysis focused on their spectral characteristics
and on their relationships to each biogeochemical variable concentration. These anal-
ysis were carried out as follows: Seasonal Comparison and April Field Campaign. In
the Seasonal Comparison ACS and Hydroscat datasets from February, August and
April were compared whereas for April Field Campaign only laboratory absorption
and LISST data-sets were used. Details of both analysis are further discussed in the
next sections.

4.5.1 IOPs Seasonal Comparison

The seasonal comparison of IOPs spectra and shape features was based on both sur-
face and profile measurements. Only surface data was used to assess the relationship
between IOPs and biogeochemical variables.

For building surface IOPs database used in this analysis, a median of IOPs mea-
surement was taken from 0.5 to 1.0 meters. The common approach of integrating
within the first optical depth ( 1

Kd
) (GORDON; MCCLUNEY, 1975) was not possible

because ACS and Hydroscat size prevented measurements above 0.5 meters. Profiles
were performed to different maximum depths (February ≈ 2.5 meters; August ≈ 5.0
meters; April ≈ 4.5 meters) due to the variability in lake maximum depths among
periods.

This analysis used a type II linear regression analysis to model the relationship be-
tween IOPs and biogeochemical variables, using “lsqbisec” function implemented in
MATLAB by Edward T. Peltzer (http://www.mbari.org/staff/etp3/regress.
htm) based on (SPRENT; DOLBY, 1980).

Linear regression analysis against suspended matter (TSM, TSIM and TSOM) was
first run for bbp , bp and cp+CDOM for the entire spectra and specific wavelengths
(bbp(700nm), bp(700nm) and cp+CDOM(660nm)) were chosen for comparison with
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previous studies. Only 23 stations out of 32 were used for February because ACS
measurements were above equipment sensitivity (Noise Signal in the Blue (400 to
500 nm). The analysis was performed combining samples from all seasons and for
each season. Specific coefficients (c∗p+CDOM b∗p b

∗
bp) computed from Type II linear

regression analysis were compared to literature values.

The absorption line height at 676 nm (BRICAUD et al., 1995) was calculated as
in Boss et al. (2007), replacing particulate matter absorption (ap(676)) for ACS
ap+CDOM(676), to estimate phytoplankton absorption (aφ(676)) (Equation 4.24).

aφ(676) =
[
acorr(676)− 39

65acorr(650)− 26
65acorr(715)

]
(m−1) (4.24)

Type II linear regression between aφ(676) and Chla concentration was used to re-
trieve Chla from ACS measurements. This line-height method was used due to the
fact that it reduces the influence of dissolved materials as well as non-algal parti-
cles on the bulk absorption (ROESLER; BARNARD, 2013). Type II linear regression
coefficients provided also estimates of Phytoplankton specific coefficient (a∗φ(676)).

The following power-law function (equation 4.25) (also described in equation 3.29)
was Non-Linearly fitted to ACS and Hydroscat measured scattering bp(λ) and
backscattering bbp(λ).

x = x(λref ) ·
(
λref
λ

)γx
(4.25)

where (x = b or bb), γx is the exponent and λ is the wavelength. The reference
wavelengths (λref ) were chosen as 555 nm and 510 nm respectively). The fitting
procedure was made on wavelengths intervals from 550 nm to 750 nm for scattering
coefficients and for 510, 590 and 700 nm for backscattering measurements to avoid
absorption influence due to high absorption in the blue region (DOXARAN et al.,
2009). The indexes γb and γbb were analyzed among seasons.

4.5.2 The April Field Campaign

4.5.2.1 Absorption Analysis

Absorption spectra (ap, anap, aφ and acdom) were filtered to remove null and negative
values and then acdom and anap spectra were fitted to an exponential (NLINFIT, 2015)
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(equations 4.26 and 4.27).

aCDOM = aCDOM(λref ) · e(−Scdom·(λ−λref )) (4.26)

anap = anap(λref ) · e(−Snap·(λ−λref )) (4.27)

where λref = 440.

In order to calculate a∗p and a∗φ two approaches were used: the ratio ap
[TSM ] and

aφ
[Chla]

and similarly to section 4.5.1, type II linear regression was used to calculate spectral
a∗p (using ap and [TSM]) and spectral a∗φ (using aφ and [Chla]).

4.5.2.2 LISST Analysis

Particle Volume Size (V (D)) and Particle Number Size (N ′(D)) distributions were
plotted and replicas were graphically compared. N ′(D) distributions were fitted to
the Junge distribution (equation 3.15).The relation ξpsd = γx + 3 (BOSS; PEGAU,
2001; DOXARAN et al., 2009; SLADE; BOSS, 2015) was used for comparing ξpsd and
γb.

4.6 Inverse Models

GIOP, QAA and Nechad models, described in section 3.3.2, were submitted to dif-
ferent types of analysis: (1) For GIOP modeling a series of IOP input variables
both measured in this research and provided by literature were tested. (2) Two
versions of QAA were used only having Rrs(0+, λ) as input variable and without
any parametrization attempt; (3) Nechad model was tested using as input IOPs
both measured in this research and provided by Nechad et al. (2010). An attempt
of parametrization was made using TSM concentration as a calibration parameter.
Details are provided in the subsections 4.6.1, 4.6.2 and 4.6.3.

Only data from February, August and April were used to test the models due
to extremely noisy Rrs(0−, λ) in September. Attempts to use both Rrs(0−, λ) and
Rrs(0+, λ) as input to GIOP and QAA models indicated that only Rrs(0+, λ) pro-
vided reliable results i.e. the noise in the blue region made the inversion impossible.
Therefore, Rrs(0−, λ) dataset was used only for Nechad model. Only 23 stations out
of 32 (the same selected for IOPs Seasonal comparison) were used in February.
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April dataset allowed a analysis of all the IOPs necessary to parametrize and test
the proposed inverse models (a∗p(λ), a∗nap(λ), acdom(λ) and b∗bp(λ)). For the remaining
seasons, April data was used as input to run models for February and August.

4.6.1 GIOP

Table 4.3 shows the group of entries used to test GIOP. All combinations of val-
ues presented in table 4.3, i.e. bbp Exponent, anap+cdom Exponent, a∗φ and Inversion
Methods were tested for April, using Laboratory aT−w (aT−w = ap + acdom − aw),
anap+cdom, aφ as reference. The 400 to 750 interval (with a 1 nm interval) was used
for all entries.

The set of GIOP outputs for each station in every season was compared to mea-
sured IOPs using RMSE and RPD index. GIOPs aT−w, bbp, Chlorophyl-a for April,
August and the combination of both were compared to ACS, Hydroscat, measured
Chlorophyl-a concentration respectively.

Table 4.3 - Parameters Used for GIOP Tests

Air-Water transmission Lee et al. (2002) (Default)
aw(λ) and bbw(λ) Pope and Fry (1997) and Morel (1974) (Default)

AOP-IOP relationship (0.0895,0.1247) from Lee et al. (2002)

bbp Exponent

eta Lee et al. (2002) (Default)
1.03373 from Maritorena et al. (2002)

bbp Exponent from February
bbp Exponent from August
bbp Exponent from April

anap+cdom Exponent
0.015 Lee et al. (2002) (Default)

0.02061 from Maritorena et al. (2002)
anap+cdom Exponent from April

a∗φ

Bricaud et al. (1998)
Maritorena et al. (2002)
Ciotti and Bricaud (2006)
Median a∗φ from April

Linear Regressed a∗φ from April

Inversion Method Non-linear inversion using fminsearch Matlab routine
Linear matrix inversion using QR decomposition

A bbp and anap+cdom exponent sensitivity analysis was carried out to further test
GIOP suitability using Wang et al. (2005) method. A matlab code available from
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GIOPSensitivity (2005) was used. Table 4.4 shows test’s criteria. Acceptable solu-
tions were: positive values and convergence (ConvCrit) which states that differences
between modeled and measured Rrs cannot exceed a given threshold.

Each acceptable solution provided a set of IOPs(aT , anap+cdom, aφ and bbp) as well as
the exponents of anap+cdom and bbp. Modeled IOPs (median, 5 and 95 percentiles of
solutions) were compared to measured IOPs for all wavelengths (350 values). Median
anap+cdom and bbp derived exponents and its respective standard deviations were also
compared to measured values (Measured anap+cdom exponent was calculated from
fitting an exponential for the sum anap + acdom).

Table 4.4 - Parameters Used for GIOP Sensitivity Analysis

Air-Water transmission Lee et al. (2002) (Default)
aw(λ) and bbw(λ) Pope and Fry (1997) and Morel (1974) (Default)

AOP-IOP relationship (0.0895,0.1247) from Lee et al. (2002)
bbp Exponent Variation of (0:0.1:3)

anap+cdom Exponent Variation of (0.01:0.001:0.03)
a∗φ Linear Regressed a∗φ from April

Inversion Method Overconstrained Linear matrix inversion

4.6.2 QAA

Two versions of QAA were used : QAA-V5 which is the Version 5 of QAA developed
in Lee et al. (2007) and described in section 3.3.2.1 and the QAA-Mishra developed
in Mishra et al. (2014) for algal-bloom-dominated waters. The main difference of
QAA-Mishra and QAA-V5 is the use of aT (708) (equations 4.28 and 4.29) for model
parametrization (from equations 3.39 and 3.40 in section 3.3.2.1):

aT (λ0) = aw(λ0) + 10(−0.7153−2.054·χ−1.047·(χ2)) (4.28)

χ = log
0.01 · Rrs(0−, 443)−Rrs(0−, 620)

Rrs(0−, λ0) + 0.005 · Rrs(0−,620)
Rrs(0−,443) ·Rrs(0−, 620)

 (4.29)

were λ0 = 708.
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QAA-(Mishra and V5) outputs and Laboratory Measured aT (λ), aφ(λ) and
anap/cdom(λ) were compared using April data. QAA-(Mishra and V5) outputs and
ACS measured aT (λ) and Hydroscat measured bbp(λ) were also compared for April,
August and for the combination of both, using RMSE and RPD index.

4.6.3 Nechad

The Nechad model was tested using both: Nechad et al. (2010) Ap and Cp parameters
and derived from measured parameters as follows.

a) For April field campaign : The parameters Ap and Cp were calculated for
specific a∗p(λ), b∗bp(λ) and acdom(λ) measured in April. A test was made with
a∗nap(λ) instead of a∗p(λ) for Cp. For a∗p(λ), a∗nap(λ) and b∗bp(λ) median and
specific coefficients calculated using linear regression were tested (4.5.2.1
and 4.5.1).

b) February and August : Similar to April Ap and Cp were calculated for
February and August using a∗p(λ), a∗nap(λ) and acdom(λ) from April and
b∗bp(λ) measured in February and August. Similar to April tests, b∗bp(λ) me-
dian and specific coefficients calculated using linear regression were tested
(4.5.2.1 and 4.5.1). Tests were also performed grouping all stations from
February, August and April.

c) Linear Fitting for Ap : A type II linear fitting was performed using TSM
concentrations and the term ρw

1− ρw
Cp

from equation 3.58 in section 3.3.2.2
to compute Ap. Four fitted Ap were derived (February, August, April and
All Samples) from Rrs(0−, λ), Rrs(0+, λ) and respective [TSM]. Half of the
stations were used for calibration Ap and the other half for validation

For all tests, estimated TSM were compared to TSM concentrations (Second set of
Samples were not used) using the statistical indexes RMSE and RPD.
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5 DATA QUALITY ASSESSMENT

This chapter presents the results of the data quality assessment described in section
4.4 as follows: (a) For In Situ Radiometric Measurements: Comparison of different
corrections of measured RAb

rs (0+, λ); Comparison of K-function approaches and test
the impact of the number of measurements in the water column for K-functions and
derived RIw

rs (0−, λ); Comparison of RAb
rs (0+, λ) and RIw

rs (0−, λ). (b) For In-Situ IOPs:
Hydrolight experiments to assess the best set of corrections for the scattering effect
in the absorption tube and for Hydroscat Sigma Corrections; comparison of LISST
measurement replicas and LISST/ACS; Forward models tested for ACS, Hydroscat
and RAb

rs (0+, λ)and RIw
rs (0−, λ). (c) Laboratory replicas differences (ap, aφ and anap)

and biogeochemical variables (TSM, TSOM and TSIM and Chla).

5.1 In-Situ Radiometric Measurements

5.1.1 Above Water Approach

Figure 5.1 presents the Non-corrected (RAb
rs−NC(0+, λ)) spectra for August and April

as well as (RAb
rs−ρsky(0

+, λ)) corrected for sky/sunglint effects (MOBLEY, 2015).
Sky/sunglint correction caused a decrease in RAb

rs−NC(0+, λ) spectra in all wave-
lengths but particularity in the blue range (400 to 500 nm). As this region is more
affected by sky/sunglint effects, this larger decrease in RAb

rs−ρsky(0
+, λ) indicates that

the correction was effective in removing them.

However, the correction caused negative values in RAb
rs−ρsky(0

+, λ) below 400 nm and
above 850 nmmostly in April. Overcast sky conditions or the presence of intermittent
clouds were likely the cause of those negative values. Quality Control criteria 1 (QC1)
shows that for all measured spectra in August and April, ≈ 26 % and ≈ 76 % resulted
in Lsky

Es
> 0.05, respectively. For those conditions, values of ρsky ·LSky can be higher

than LT due to an inadequate characterization of both, the skyglint and the ρsky
factor. Particularity, for this study, the ρsky factor was based only on the θsza and
on the geometry of acquisition since a full description of sky conditions was not
available.
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Figure 5.1 - August and April Non-Corrected (NC) and ρsky corrected

(a) August RAbrs−NC(0+, λ) (b) August RAbrs−ρsky
(0+, λ)

(c) April RAbrs−NC(0+, λ) (d) April RAbrs−ρsky
(0+, λ)

Spectra that passed the QC1 (RAb
rs−QC1(0+, λ)) test are presented in Figure 5.2.

All the spectra which violated QC1 were removed (five stations were removed
from August, and fourteen from April). It is also worth mentioning that even af-
ter QC1, which supposedly presented only clear sky measurements, some spectra
still presented high values in the blue region (400-500 nm), indicating an unsuitable
sun/skyglint correction.
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Figure 5.2 - August and April RAbrs−QC1(0+, λ)

(a) August (b) April

The residual correction (RAb
rs−RC(0+, λ)) is presented in Figure 5.3. As discussed in

section 4.3.1.1, this correction used RAb
rs−ρsky(0

+, 920) to normalize all spectra and
account for cloud glint and illumination variation. Before normalizing, however, a
filtering procedure discarded all spectra with negative values in 920 nm. Based on
this criteria, no stations were removed. Although the assumption of 920 nm as
a background is not completely suitable, since the signal in that wavelength can
be related to some noise inherent to detector variability, the Residual Correction
presented a satisfactory result, with no negative values in the visible region (400 to
700 nm).

Figure 5.3 - August and April Rrs−RC

(a) August (b) April

The second criteria (QC2) to account for cloud glint and illumination variability (CV
< 20 % in casts) removed one sampling station in both August and April campaigns
(Figure 5.4). QC2 criteria resulted in RAb

rs−QC2(0+, λ) similar to RAb
rs−RC(0+, λ), re-

gardless of one spectra in August. This similarity suggests the following: (1) QC2
was not effective enough to account for biased spectra, or, (2)RAb

rs (0+, λ) was not

65



sensitive to QC2.

Figure 5.4 - August and April RAbrs−QC2(0+, λ)

(a) August (b) April

Statistical indexes were calculated at each step, first taking RAb
rs−NC as reference for

Mobley (2015) correction and then taking RAb
rs−ρsky for the remaining corrections.

The correction with the highest impact on RAb
rs−NC was then chosen.

Statistical Indexes analysis are presented in Figure 5.5. The greatest difference was
observed between Non-Corrected RAb

rs−NC(0+, λ) and RAb
rs−ρsky(0

+, λ) (blue curve),
reaching almost -100 % (UPD) in April and a RMSE that reaches ≈ 0.01. The higher
impact of sun/skyglint correction reinforces the need of this correction. Among the
three tested filtering procedures (apart of sun/skyglint correction) the Residual Cor-
rection resulted in the largest differences when compared to RAb

rs−ρsky(0
+, λ) , reaching

more than 20 % in the blue and infrared regions. QC1 and QC2 had a lower impact
when compared to the residual correction, although differences could be as big as 5
to 10%.
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Figure 5.5 - Above Water Corrections Statistical Indexes

(a) (b) (c)

(d) (e) (f)
UPD(%), RPD(%) and RMSE for August (a,b,c) and April (d,e,f). Color Code (xtest and
xref ): Blue (RAbrs−ρsky(0

+, λ) and RAbrs−NC(0+, λ)); Red (Rrs−RC and RAbrs−ρsky(0
+, λ));

Black (RAbrs−QC1(0+, λ) and RAbrs−ρsky(0
+, λ)); Green (RAbrs−QC2(0+, λ) and RAbrs−ρsky(0

+, λ))

Tests results indicate that sun/skyglint and the Residual Correction have the highest
impact on measured RAb

rs−NC(0+, λ). Therefore, RAb
rs−RC(0+, λ) was used as input for

Inverse Models (Chapter 7) testing. As QC1 and QC2 corrections did not present
large differences in relation to RAb

rs−ρsky(0
+, λ) and caused the discard of a significant

number of measured spectrum they were not applied in the modeling process.

5.1.2 In-Water Approach

The use of a fixed depth approach (section 4.3.1) in very turbid shallow waters
is mainly affected by sampling strategy and by the sink/depth rate applied to ra-
diometric instrumentation. Figure 5.6 shows an example of downwelling irradiance
(Ed) and upwelling radiance (Lu) profiles. It is noteworthy that light decays rapidly,
losing ≈ 50% of the signal in the first 50 cm.

The fixed depth approach, clearly, does not lead to continuous profiles, what de-
creases the quality of water column characterization. Instead, it leads to “punctual
measurement clouds” which, due to the fast light decay with depth, dropping it
quickly approaches towards zero, limiting the number of measurements for k-function
calculation. Also the closer the values are from zero, the higher the uncertainty.
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Regarding k-function calculations (section 4.3.1.2), Linear and Non-Linear ap-
proaches are mostly driven by measurements close to the surface. Regarding the
Non-Linear approach, it seems that the curvature of the fitted exponential is mainly
based on measurements closer to the surface (mostly above one meter depending on
turbidity). The curvature also depends on wavelength. This is particularly essential
for the blue range where the decay at its maximum, and for some stations, the decay
is abrupt (blue dots of figure 5.6) making the calculation of k-functions impossible.
The impact of deeper measurements on the Linear approach was, apparently, higher.
When the logarithm transformation was performed (Equation 4.7), “measurement
clouds” close to zero (deeper values) changed the slope what directly impacts on
k-function calculation.

For theWeighted and Standard approaches, the effect of deeper measurements are re-
lated to the uncertainties within these measurements, where uncertainties are higher.
The Weighted approach smooths k-function values. Extreme values within the water
column, which could be due to measurement errors are eliminated. However, when
those extreme values are related to true water column variability they are also lost.
The same logic describes the Standard approach used in this work. The median of
all k-functions using Standard approach for each profile also reduces variability.

Figure 5.6 - Example of Irradiance (Ed) and Radiance (Lu) profiles

(a) (b)

Station from April field campaign. Color represent real visible wavelengths. Color code :
Blue - 440 nm; Green - 550 nm ; red/brown - 676 nm. Wavelengths were arbitrary

chosen

Figure 5.7 presents the statistical indexes comparing Weighted, Standard and Linear

68



approaches, for February, August and April, taking the Non-Linear approach as
reference (Section 5.1.2) . Linear approach presents the smallest differences (overall
UPD and RPD < 5% ; RMSE <0.5) for most of the spectra, with a larger difference
toward the green to blue range (500 to 550 nm). The Weighted approach presents
RPD and RMSE similar to Linear approach, and an increase in the overall UPD,
which indicates no bias between Linear and Weighted approaches, but a considerable
difference between them. The standard approach presents the largest difference with
the highest overall UPD, RPD and RMSE.

The comparison among seasons presented, as expected, higher statistical indexes for
February, which agrees with the presence of the highest concentration of Optical
Active Components (OAC) (Table A.2). However, the differences between seasons
for each approach does not exceeds 5% in the ≈ 550 to 750 nm range, being much
higher outside of it.

It is worth mentioning that the statistical indexes (figure 5.7) are somehow unex-
pected, especially due to the similarities amongst them. That could be explained
by two factors: (1) homogeneity of the water column in most of the stations (better
discussed in Chapter 6) which leads to similar low kd variability; (2) kd calculations
driven by measurements closer to the surface, mainly the first meter depth. This is,
in some way, relevant to shallow turbid lakes since any approach chosen to calculate
kd would have similar errors. However this similarity could also be related to the
lack of measurements imposed by the choice of depth intervals for the fixed depth
approach, which does not capture details of the water column variability.

Regarding klu calculations, figure 5.6 shows that the decay is similar to Ed. However,
when compared to Irradiance, radiance values are much lower, causing an increase
on measurement uncertainties, as observed in the statistical indexes below 550 nm
and above 750 nm. That fact constrains the analysis of klu to the 600 to 700 nm
interval. Differently from kd statistical indexes, there is no pattern indicating which
approach is the most similar to Non-Linear, used as reference. From UPD it is not
possible to come up with a conclusion regarding the most stable approach, but RPD
and RMSE shows that, despite of April, where the linear approach presents the lower
values, February, August and All Samples are similar. Again, the similarity of those
approaches are unexpected and could also be explained for the above mentioned
reasons.
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Figure 5.7 - Statistical Indexes comparing Non-Linear, Linear,Weighted and Standard for
Kd (a,b,c) and Klu (d,e,f) . Kd−NonLin and Klu−NonLin were taken as refer-
ence.

(a) (b) (c)

(d) (e) (f)
Symbol code: solid line: KPonderate, “o”: KStandard, “*”: KLinear. Color code : Black -

All Samples; Blue - February; Red - August; Cyan - April

Figures 5.8 and 5.9 summarizes the results of the comparison of number of depth
used to calculate Kd and Klu, respectively (Section b). There is almost no differ-
ence between Linear and Non-Linear approaches when using measurements below 3
meters depth (Black), which is somehow expected, since, at larger depths almost no
light is available. Meaningful differences were found when using measurements up to
one (Blue) and two (Red) meters depth. For Non-linear Approach, Klu (Figure 5.9
a, b, c) is slightly more affected by the choice of depths than Kd (Figure 5.8 a, b, c)
although both k-functions presents low overall indexes (UPD < 5%, RPD < 6% and
RMSE < 0.2). The linear approach, on the other hand, is considerably affected by
the choice of measurements in the water column. Specially for Klu, UPD and RPD
reaches 10% or higher, in the 550 to 700 nm interval, despite the fact that RMSE
remain below 0.5 m−1.

Regarding the differences among seasons, the choice of depths in the water column
seems negligible for 2 meters (Red) but meaningful for 1 meter (Blue). For Non-
Linear Kd (Figure 5.8 a, b, c), August (Symbol: “−′′) presented the highest overall
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UPD although April (Symbol: “∗′′) presented the highest RPD and RMSE. Non-
Linear Klu (Figure 5.9 a, b, c) reinforces April as the most affected by the choice
of measurements in the water column. Possible explanations are the use of fixed
depth approximate interval for each field campaign and the concentration of OACs.
In April, radiometric measurements were performed within shorter measurement
depth interval (≈ 30 cm between measurements) which includes more observations
in the 0 to 1 meter depth interval. Also, the lower concentration of OACs (Table
A.2) decrease Ed and Lu decay rate and therefore deeper measurements become
relevant to k-functions calculation.

Different from the Non-Linear approach, the effect of choice of measurements in the
water column for 2 meters (Red curves) is not negligible for the Linear approach.
Overall differences (UPD >0.5 % and RPD > 1% are observed for Kd and Klu. But
similar to the Non-Linear approach, the largest differences are observed within the 0
to 1 meter depth interval. Also, similar to the Non-Linear approach, April presents
the highest statistical indexes.

Figure 5.8 - Depth comparison for Non-Linear (a,b,c) and Linear (d,e,f) Kd

(a) (b) (c)

(d) (e) (f)
Kd using All measurements at all depths was taken as reference. Symbol code : Solid

Line - All Samples; “x” - February; “–” - August; “*” - April; Color code : Blue - All
Measurements above 1 meter depth; Red - All Measurements above 2 meter depth; Black

- All Measurements above 3 meter depth;
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Figure 5.9 - Depth comparison for Non-Linear (a,b,c) and Linear (d,e,f) Klu

(a) (b) (c)

(d) (e) (f)
Klu using All measurements at all depths was taken as reference. Symbol code : Solid

Line - All Samples; “x” - February; “–” - August; “*” - April; Color code : Blue - All
Measurements until 1 meter depth; Blue - All Measurements until 2 meter depth; Black -

All Measurements until 3 meter depth;

As previously discussed, the choice of approach, as well as the selected depth in-
terval used to calculate k-functions, directly influences the calculation of Ed(0−)
and Lu(0−). Figure 5.10 presents the statistical indexes for modeled Rrs from Non-
Linear and Linear approaches described in section 5.1.2c. Similar to Klu, below 550
nm and above 700 nm, statistical indexes present higher values (positive and neg-
ative) mainly due to errors driven by the fixed depth approach. In the 600 to 700
nm interval, UPD presents values lower than 5% and similar for all seasons. RPD
otherwise, shows a high bias, with differences larger than 30% in the 600 to 700
nm interval and 100% outside of that interval. RMSE shows even larger differences.
Those indexes show a significant bias between Linear and Non-Linear approaches to
estimate Ed(0−) and Lu(0−) and therefore to model Rrs(0−).
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Figure 5.10 - Comparison of Rrs(0−) derived from Linear and Non-Linear K-functions
approaches

(a) (b) (c)
Rrs−NonLin was taken as reference. Color code : Black - All Samples; Blue - February;

Red - August; Cyan - April

Figure 5.11 shows the results for the impact of computing approaches (Non-Linear
and Linear K-function) on derived RIw

rs (0−, λ) as discussed in section 5.1.2. Figure
5.11 suggests that the Non-Linear approach, despite of the local spikes, displays
higher stability than Linear approach for the fixed depth dataset. Similar Kd and
Klu for 1 meter depth interval, presented the highest indexes for April.
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Figure 5.11 - Depth comparison Rrs(0−) from Non-Linear (a,b,c) and Linear (d,e,f) K-
function approaches

(a) (b) (c)

(d) (e) (f)
Rrs(0−) using All measurements at all depths was taken as reference. Symbol code :

Solid Line - All Samples; “x” - February; “–” - August; “*” - April; Color code : Blue -
All Measurements until 1 meter depth; Blue - All Measurements until 2 meter depth;

Black - All Measurements until 3 meter depth;

Despite the fact that the different approaches have impact on the k-functions, their
differences are commonly below 10 % in the 550 to 750 nm, what is reasonably
acceptable. The differences on k-functions and estimated RIw

rs (0−) computed with
different number of measurements in the water column are also below 10 %. Based
on those analysis, the Non-Linear Approach, in the 500 to 800 nm interval, seems
to be the best approach to derive k-functions and RIw

rs (0−).

The Linear approach seems to be more affected by the fixed depth approach adopted
in this study. Due to the rapid decay of Ed(0−, λ) or Lu(0−, λ), the measurements
are confined in two “big data clouds”, one close to the “surface” and a second one
close to “zero”. This behavior is somehow biased and do not represent the complete
water column. The Non-Linear approach fits an exponential to measured data, and
although influenced by the decay of Radiance and Irradiance, it better represents
the water column K-functions and RIw

rs (0−).
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5.1.3 Comparing Above and In Water Rrs Approaches

The results from the comparison between RAb
rs (0−, λ) and RIw

rs (0−, λ) are presented
in Figure 5.12. Indexes are considerably high reaching 60% RPD, 60% UPD and 0.02
RMSE in the 550 to 700 nm interval. Below 550 nm and above 700 nm differences
reach extreme values, mostly due to, already discussed, underestimation of Lu(0−)
(Section ).

RAb
rs−RC(0−, λ) (Black) is the correction with the largest agreement with Non-linear

Rrs (RIw
rs−NonLin(0−, λ)) having an overall UPD below 30% in the 550 to 700 nm

interval. RAb
rs−NC(0−) (Red) presents the highest overall UPD, RPD and RMSE.

All above water corrections cause a decrease in RAb
rs−NC(0−, λ) values, which in-

creases the agreement to RIw
rs−NonLin(0−, λ). Also the underestimation of Lu(0−, λ)

causes a decrease in RIw
rs−NonLin(0−, λ) contributing to larges discrepancies between

RAb
rs−RC(0−, λ) and RIw

rs−NonLin(0−, λ).

Figure 5.12 - Comparison of Above Derived RAbrs (0−, λ) and In-Water Non-Linear derived
RIwrs (0−, λ) for August + April (All samples from August and April)

(a) (b) (c)

Non-Linear Rrs was taken as reference. Color Code for tested RAbrs : Red =
Rrs−NC(0−, λ), Blue = RAbrs−ρsky(0

−, λ), Black = RAbrs−RC(0−, λ), Cyan = RAbrs−QC1(0−, λ),
Green = RAbrs−QC2(0−, λ)

Shading effects, illumination variation, sun/skyglint effects and underestimation
of Lu(0−) in In-Water Rrs calculations and also bidirectional effects are the
main reasons for the discrepancies between RAb

rs−RC(0−, λ) and RIw
rs−NonLin(0−, λ).

RAb
rs−RC(0−, λ) and RIw

rs−NonLin(0−, λ) are affected by shading effects since all mea-
surements were performed close to the vessel, but with different error sources. Re-
garding RAb

rs−RC(0−, λ) only Lw is affected since Es was measured using a pole on the
top of the vessel, which prevents any influence from shading. Lw is also corrupted
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for platform reflection both directly and indirectly from the water surface, into the
sensor’s field of view. Non-linear Rrs(0−), on the other hand, is corrupted by shading
effects which obstruct Lu and Ed profiles simultaneously and at an specific geometry.
Bidirectional effects also affects mainly above water measurements, especially due to
the high anisotropy caused by particle size and IOPs dependency (PARK; RUDDICK,
2005; LEE et al., 2004; RUDORFF, 2013). Although (LOISEL; MOREL, 2001) showed
not a drastic variability for high loaded TSM waters, further investigations should
be addressed in future studies.

5.2 In-Situ IOPs

5.2.1 ACS and Hydroscat Corrections - Hydrolight Experiments

The results regarding the Absorption Tube Scattering Correction and Sigma Correc-
tion (section 4.4.2) are presented in the following. Figure 5.13a presents an example
of different types of correction methods on the effects of the absorption tube scat-
tering on both, ACS and Hydroscat measurements for a given sampling station
measured in February. Overall, the Zaneveld (Section 4.3.2.1) correction provides
the largest underestimation of absorption providing unrealistic values mainly in the
700 to 750 nm interval. This effect is also observed in the Flat correction with val-
ues dropping to zero in the 730 to 750 nm interval which is not expected in mineral
rich waters. Kirk and Rottgers corrections present more acceptable values mainly
in the infrared range since, for that spectral region, absorption is not zero for tur-
bid waters. The absorption tube scattering effect on the sigma corrected Hydroscat
measurement (figure 5.13b) reinforces the need of that correction, mainly due to its
impact on the slope of bbp spectra.
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Figure 5.13 - Absorption Tube Scattering Correction Effect on ACS Absorption and
Backscattering Measurements for a selected station from February

(a) ACS - Absorption (b) Hydroscat - Backscattering
Yellow - Non Corrected; Blue - Zaneveld Correction; Red - Flat Correction ; Black - Kirk

Correction; Magenta - Rottgers Correction;

Regarding the Sigma Correction, the influence of Kscat (Equation 4.16) variability
on bbp is exemplified on figure 5.14 for the same sampling station and season. The
difference between the solid black curve (Kscat = 0.4) and the red curve (Kscat ≈ 0.1)
decreases from ≈ 1.4 m−1 in the 420 nm to ≈ 0.2 m−1 in 700 nm. That shows the
meaningful impact of Kscat, specially on the bbp slope, which shows the necessity to
examine the influence of Hydroscat corrections on IOPs dataset.
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Figure 5.14 - Sigma correction parameter Kscat variability for a selected station from
February

(a) Variability of Kscat in the 0.1 to 0.4 interval with 0.1 step. Red rep-
resents the Doxaran correction. Line code - Dashed (–) Kscat = 0.1,
Dashed/Dotted (.-) Kscat = 0.2, Two Points/Grey (:) Kscat = 0.3, Solid
Kscat = 0.4

The results of the Hydrolight experiments, described in section 4.4.2 are presented
for each field campaign in the Appendix C Figures C.1, C.2 and C.3. The compre-
hensive inspection of those figures that allowed to pinpoint the the most consistent
set of corrections for ACS/Hydroscat data are synthesized in Table 5.1.The inspec-
tion criterion was to select a pair of correction for each AOP, within each season,
according to the quality of the statistical indexes for the overall spectra. Table 5.1
analysis is focused in two sets of variables: (1) Kd(λ); (2) R(0−, λ) and Rrs(0−, λ)
comparisons.

The background for this division is the fact that Kd is directly proportional to
absorption and backscattering (Kd ∝ (a + bbp)) (MOBLEY, 1994; KIRK, 2010) but
the absorption dominates that proportionality. Therefore Kd analysis is useful in
the identification of optimal scattering corrections for the absorption tube. R(0−, λ)
and Rrs(0−, λ) are, on the other hand, proportional to (bb/(a+ bb)) and therefore,
backscattering has a much higher impact on the proportionality.
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Results (Figure 5.1) shows that Rottgers correction provided the most consistent
closure for the absorption tube scattering correction whereas Doxaran correction had
a better performance for the majority of the comparisons (7 out of 12). Based on
these analysis, the pair Rottgers/Doxaran was chosen for processing ACS/Hydroscat
IOPs, and from now on, all the results are based on those corrections.

Table 5.1 - Best ACS/Hydroscat correction for each field campaign for the tested AOPs.
Color in the table are colors from curves in Appendix C.

Season AOP ACS/Hydroscat
Correction

Color of Each
Correction

February

R(0−) Rottgers/Doxaran Magenta
0.18/Doxaran Cyan

Rrs(0−) Rottgers/Doxaran Magenta
0.18/Doxaran Cyan

Kd
Rottgers/0.03 Green
Rottgers/0.4 Yellow

August

R(0−) Rottgers/Doxaran Magenta
0.18/Doxaran Cyan

Rrs(0−) Rottgers/0.4 Yellow
Zaneveld/0.03 Red

Kd
Rottgers/0.03 Green

Rottgers/Doxaran Magenta

April

R(0−) Rottgers/Doxaran Magenta
Rottgers/0.4 Yellow

Rrs(0−) Zaneveld/0.03 Red
Rottgers/0.4 Yellow

Kd
Rottgers/0.03 Green

Rottgers/Doxaran Magenta

Hydrolight closure experiment, sometimes, resulted in mismatches as high as 100%
for the Irradiance Reflectance (RPD >90 % in February) with RMSE of up to 6
(No-Units) Appendix C. For August and April those indexes (UPD, MRPD and
RMSE) are lower but could still can reach 50 % (Kd-UPD >50% in August and
Kd-UPD >60% in April). Careful closure experiment results usually agree within
20-30% (MOBLEY, 1994; MOBLEY et al., 2002; TZORTZIOU et al., 2007). Those results
highlight the hindrance involving the acquisition of consistent optical measurements
using commercial technology in turbid environments, where inorganic particulate
concentrations are very high. However, the current analysis improved the results
discussed in Sander de Carvalho et al. (2015) and suggests that a common correction
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applied to all field campaigns are more appropriate and general than tuning one
specific correction for each station, as previously suggested.

5.2.2 Lisst Experiments

Figure 5.15 presents the comparison between ACS and LISST Attenuation Coef-
ficients in 670 nm. Although, theoretically, those instruments are not comparable
due to differences in the acceptance angle (0.93◦ for the ACS and ≈ 0.0269◦ for the
LISST), Boss et al. (2009) shows that the ratio cACS

cLISST
can reach 0.4 for Ocean Case

2 waters (Martha’s Vineyard Coastal Observatory) and, although depending on the
shape of the VSF, the acceptance angle effects can be higher for turbid Curuai Lake
Waters. For most of the stations (12), for replicas, the cACS

cLISST
ratio presents val-

ues below 0.4 (blue flat line). Among those stations,the cACS
cLISST

ratio is below 0.33
for eight stations and only for three of them cACS

cLISST
is below 0.25. Therefore, the

measurements for both instruments are within the expected cACS
cLISST

values. Table 5.2
shows that, as expected, indexes are very high reaching RPD values up to 156 %.
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Figure 5.15 - Comparison ACS and LISST (670 nm) - April

Color code : Blue-First Set of Samples; Red-Second Set of Samples. Solid lines indicate
0.4 (Blue), 0.33 (Red) and 0.25 (Black)

Table 5.2 also shows consistency between replicas with UPD of ≈ 5%, RPD of ≈
16% and RMSE of ≈ 4 m−1. As mentioned before the comparison of LISST and
ACS is somehow biased due to acceptance angle effects, but also consistent with
literature. That supports the quality of the Particle Size Distributions (PSD) derived
from LISST measurements. It is worth mentioning however, that errors could arise
from particle type, inversions strategies and presence of bubbles in the measurement
chamber. Those aspects will be further discussed in Chapter 6.

Table 5.2 - LISST Statistical Indexes

Replicas Indexes
UPD RPD RMSE

LISST First and Second Set of Samples -5.026 16.840 4.027
LISST First Set and cACS 74.176 144.298 13.666
LISST Second Set and cACS 78.198 156.535 14.606
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5.2.3 Forward Models Performance

Polynomial Fitting using Morel and Gordon model approximations (Equations
3.36, 3.35, 3.37) was performed to relate AOPs (RIw

rs−NonLin and RAb
rs−RC) to IOPs

(Rudick/Doxaran corrected aT and bbp from ACS/Hydroscat) for August + April
dataset. The fitting results are summarized in Figure 5.16. It is worth mentioning
that Park and Ruddick fourth order polynomial model (PARK; RUDDICK, 2005) was
also tested but results were out of range in relation to the coefficients presented in
RuddickWebsite (2015) and therefore are not discussed.

The polynomial fit for f/Q and f ′/Q per wavelength (Figure 5.16a) shows that f/Q and
f ′/Q′varies with wavelength and are similar in shape and magnitude along the spectra,
except for the 400 to 500 nm interval, where errors are substantial (section 5.1.3). As
simulated by Loisel and Morel (2001), values of f/Q and f ′/Q are approximately within
the 0.08 to 0.13 range for type II waters. The values in Figure 5.16a, however, are
much higher for all wavelengths except beyond 700nm. Although the comparison
between f/Q, f ′/Q and the values from Loisel and Morel (2001) is not completely
adequate due to errors in both,Rrs and IOPs measurements, it is worth saying that
this difference is unexpectedly small.

Figure 5.16b shows that none of the Rrss used as input to Gordon second order
model (Equation 3.37) provided g0 and g1 values similar to those of the literature
(0.089 and 0.125 (LEE et al., 2011)). Moreover, the computed g0 and g1 vary widely
along the wavelengths, depending on the input Rrss.
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Figure 5.16 - Results for Polynomial Fitting applied for Morel’s and Gordon’s First and
Second Order models.

(a) (b)
Figure (a) presents results for Morel’s and Gordon’s First order models and Figure (b)
presents results for Gordon’s Second Order models. Solid Lines represent fitting with
RAbrs (0−, λ) and “o” symbol represent fitting with RIwrs (0−, λ). Figure (a) Color code:

Black: Morel Model f/Q (Equation 3.36), Red - First Order Gordon Model f ′/Q (Equation
3.35). Figure (b) Color code: Black “g0” and Red “g1”. Straight lines show the Lee et al.

(2011) (0.08 and 0.12)values

The median coefficients (f/Q, f ′/Q′, g0 and g1) computed using all sampling stations
in August and April are summarized in Table 5.3. They are the output of the Non-
Linear fitting applied to Gordon and Morel modeling and resulted in the same
conclusions as the analysis of figure 5.16 in the following aspects: (1) f/Q and f ′/Q′

are similar to literature values and independent of models and Rrss choice. (2) g0

and g1 using RIw
rs is completely out of the literature range, whereas for RAb

rs , the
median is near the literature range. That’s to say that measured values were able
to provide better estimates of f/Q and f ′/Q′ than g0 and g1.

Table 5.3 - Derived coefficients for Rrs/IOPs models by Non-Linear Fitting

RIw
rs (0−, λ)

(500-700 nm)
RAb
rs (0−, λ)

(400-750 nm)
Coefficient Median Std Median Std

Rrs = f/Q · (bb/a) f/Q 0.15 0.07 0.18 0.03
Rrs = f ′/Q · (bb/a+ bb) f ′/Q 0.17 0.09 0.21 0.04

Rrs = g0 · (bb/a+ bb) + g1 · (bb/a+ bb)2 g0 0.04 1.29 0.19 0.06
g1 0.73 7.24 0.18 0.38

This analysis show that the poor performance of both Polynomial and Non-Linear
Fitting between AOPs (RIw

rs and RAb
rs ) and IOPs (ACS aT and bbp) may be related,
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mainly, to measurement errors. First, the poor performance of the polynomial fitting,
g0 and g1, indicates that both RIw

rs and RAb
rs are controlling the AOP/IOP relation-

ship. This is specially true for g1 whose shape follows the spectral behavior of Rrs,
with a maximum in the green range decreasing towards the infrared. The spectral
dependence of g0 is not as noticeable but still varies with wavelength, reaching a
minimum in the green region. Second, it seems that, independent of the selected first
order modeling, it provides an estimate of f/Q and f ′/Q coefficients closer to range
reported in the literature, having a much better performance than the second order
model for the data available.

5.3 Laboratory Measurements Uncertainty

Particle absorption coefficient (ap) phytoplankton absorption (aφ) and Non-Algal
Particles absorption (anap) were analyzed only for April. Out of 25 stations sampled
in April, 5 from anap and 9 from aφ were discarded due to negative values.

Statistical indexes comparing (ap), (aφ) and (anap) replicas are presented in figure
5.17. Indexes show very high values for the particle absorption coefficient (ap) with
a UPD higher than 10%, RPD higher than 30% for all wavelengths and up to 1.3
m−1. Despite the large bias, with an RPD that reaches 30% for longer wavelengths,
the Non-Algal Particles absorption (anap) presented the best agreement with a UPD
lower than 5% UPD and RMSE ≤ 0.5. Phytoplankton absorption (aφ) reaches UPD
and RPD values higher than 25% and 80% respectively and a RMSE reaching up
to 0.7 m−1.

Several reasons explain the large differences between replicas. (1) the filtering pro-
cedure performed with a manual pump, in a high TSM concentration environment
and using a 47 mm diameter filter could explain the ap UPD values, specially in
the infrared region where ap values are lower. (2) ap RPD shows a bias which could
not be explained by sampling, and might be related to the absorption measurement
method. The position of the filter in the spectrophotometer might create a per-
sistent error, that would increase with lower absorption values, observed in larger
wavelengths.

Regarding the pigment extraction, following Tassan and Ferrari (1995), the 10%
solution of NaClO was used, since it is supposed to be more effective for turbid
inland waters. However, the variability of phytoplankton species could affect pigment
extraction time. Some phytoplankton absorption features are therefore observed in
anap spectra. Another reason for the high discrepancies observed are related to the
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NaClO solution used for pigment extraction. NaClO might remove material out of
the filter surface depending on the time of sample exposure to the solution which
can cause change in absorption coefficient. Both reasons might also contribute for
corrupting the samples (with zeroed values), removing them from the statistical
analysis.

The method suggested by Bricaud et al. (2010) resulted in discrepancies between
Replicas, depending on the wavelength. For anap and anap−fit (Black curve) UPD
values are almost identical, but from 400 to 600 nm RPD and RMSE are different.
For RPD values are higher for anap−fit (40 % and below 20 % for anap) which changes
above 600 nm. For RMSE the difference is very high being anap−fit higher for all
spectra. For aφ−fit, difference of statistical indexes are higher for UPD and lower
for RPD and RMSE. aφ−fit is negatively higher for UPD and RPD is lower for all
spectra. RMSE is almost the same being slightly lower for anap. Those statistics show
that the applicability Bricaud et al. (2010) method is questionable for this dataset
when comparing Replicas and will not be considered in further analysis.

Figure 5.17 - Statistical Indexes for Laboratory Spectrophotometer Absorption Particu-
late Material, Non-algal Particles and Phytoplankton (ap, anap, aφ) - April

(a) (b) (c)
Solid Line : Blue - ap; Black - anap; Red - aφ;. Dashed Line : Modeled by Bricaud et al.
(2010) and colors represent the same optical components. First set of measurements were

taken as reference for statistical indexes calculations.

Figure 5.18a presents the comparison of a median of ACS total absorption coefficient
(aT−w) from 0.5 to 1 meter depth and both, first and second set of samples for the
Laboratory total absorption, for each station of April field campaign. UPD and RPD
indexes (Figure 5.18b and c) show that differences start from ≈ 40% and 50% for
UPD and RPD respectively in the blue range raising up to 120 % and % 200 in
the NIR range, being ACS absorption higher than both Laboratory set of samples
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although RMSE (Figure 5.18d) is higher in the blue range. The higher values for
ACS absorption are somehow expected since even with the most suitable correction
(Rottgers), overestimation of absorption is still an issue. However it is important to
point out that in the characteristic Chla peak region in (676 nm), there is an abrupt
decrease of both UPD and RPD indexes, indicating that at this wavelength there is
an agreement between both measurement techniques. Figures 5.18b, c and d shows
almost no difference for the comparison of ACS and Laboratory first and second set
of samples.

Figure 5.18 - Comparison of Total Absorption Coefficients from ACS (aT−w) and Labora-
tory (aT−w = ap + acdom) for April

(a) (b)

(c) (d)
ACS (aT−w) was corrected by Rottgers (arott) correction. Color code (a) Blue: ACS
Absorption, Red: First set of samples of Laboratory Absorption, Black: Second set of
samples of Laboratory Absorption. For the statistical indexes calculations (using all

samples of April) in figures (b), (c), (d) (Red = First set of samples, Black: Second set of
samples) Laboratory Absorption was taken as reference.
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Table 5.4 presents the statistical indexes for TSM, TSIM, TSOM and Chla replicas.
For suspended material, UPD are lower than ± 10 % for all field campaigns but
RPD are significantly higher, reaching values up to 58 % in February. This suggests
a systematic bias between the samples which might indicate problems with concen-
tration determination, particularly for TSOM and TSIM. RMSE shows a reasonable
good agreement, reaching its highest value for TSM in February (5.451 mg · L−1).
The same behavior is observed for Chla replicas, which shows higher RPD for all
field campaigns. Both, UPD and RMSE show a good agreement for replicas being
lower than ≈ 5 % and 1.2 (µgL−1) respectively.

Table 5.4 - Indexes for Biogeochemical Variables - Replicas

Stations Index TSM
(mg · L−1)

TSOM
(mg · L−1)

TSIM
(mg · L−1)

Chla
(µgL−1)

All Seasons
UPD 2.381 3.788 1.126 4.501
RPD 12.394 35.436 17.149 10.093
RMSE 3.548 1.884 3.076 1.070

September
UPD 1.886 3.335 0.667 3.469
RPD 10.596 31.467 15.085 8.937
RMSE 3.714 2.854 3.520 1.310

February
UPD 0.195 7.335 -2.926 5.130
RPD 8.181 58.656 11.121 8.909
RMSE 5.451 2.741 4.794 1.071

August
UPD -0.832 -2.883 1.714 3.448
RPD 10.499 16.024 14.584 8.657
RMSE 1.206 0.830 0.944 0.994

April
UPD 9.075 7.663 5.423 5.030
RPD 19.969 30.714 27.805 13.343
RMSE 2.274 1.475 1.824 1.157
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6 CURUAI LAKE BIO-OPTICAL VARIABILITY

This chapter presents the results for the bio-optical characterization of Curuai Lake
as previously presented in section 4.5. Seasonal variations of biogeochemical vari-
ables, AOPs and IOPs are presented and discussed following the description of sec-
tion 4.5.1. Results for Laboratory absorption measurements as well as LISST particle
size distribution, measured only in April are also presented as described in section
4.5.2.

6.1 Seasonal variations of biogeochemical variables

The seasonal and inter-seasonal variability of biogeochemical parameters in each
season and among them is presented in Table A.2 (Appendix A) and includes all
stations for which they were available. Figure 6.1 gives an insight on the spatial and
seasonal variability of TSM, DOC and Chla concentrations.

Figure 6.1 - TSM, DOC and Chla Variability among stations

(a) September (b) February

(c) August (d) April
Color code: Red:TSM; Black:DOC; Green:Chla
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The analysis of Figure 6.1 highlights the following Curuai Lake biogeochemical vari-
ables characteristics: (1) the lowest concentrations of all biogeochemical variables
occur in April (High Water Period) and August (Receding Water Period); (2) in
August, the spatial variability of Chla is larger than that observed in April, with
spikes of concentration above 20 mgm−3; (3) DOC is almost constant in time and
space; (4) September (Low Water Period) presents the highest spatial variability
of both Chla and TSM and the highest concentration; (5) February (Rising Water
Period) TSM has also high spatial variability but average concentrations are much
lower than in September. Chl-a concentrations are also low, but with a some spikes
of very high concentration.

TSM concentration (Table A.2 Appendix A) exhibits the highest absolute variability
in February when the standard deviation reaches 31.5 gm−3. The same variability is
observed in its fractions (TSIM and TSOM) with a CV of 90.6% for TSIM. TSOM
presents a high CV in all seasons, but with median values lower than those of TSIM
indicating that IOPs are likely to be driven by inorganic particle concentration. This
assumption is also reinforced by TSOM/TSM (Figure 6.2), which for August and
April are around 0.4 and lower than that of All Samples, September and particularly
February. Similar to TSM, Chla concentration (Table A.2) presents a high CV,
likely due to ephemeral blooms of phytoplankton which can be observed specially in
August. September, however, presents the highest median Chla concentration values
(39.6 µgL−1). Dissolved Material (DTC, DOC e DIC) presents the lowest variability
with the highest CVs in February (DIC = 30%). Median and Mean values are
somehow similar among seasons and the ratio DOC/DTC (Figure 6.2) is also stable,
being slightly lower in February.

It is important to highlight that those values are consistent with Novo et al. (2004),
Bonnet et al. (2008), Barbosa et al. (2009), Lobo et al. (2012), Ferreira et al. (2012)
previous studies. In September and February biogeochemical variables concentra-
tions can be as high as those reported for very turbid Chinese (MA et al., 2006;
WU et al., 2011; WU et al., 2013), South African (MATTHEWS; BERNARD, 2013) and
Australian lakes (CAMPBELL et al., 2011). However, August and April concentra-
tions are comparable to or even lower than measurements reported in coastal waters
(DOXARAN et al., 2009; REYNOLDS et al., 2010; ASTORECA et al., 2012; CHERUKURU

et al., 2014; DOGLIOTTI et al., 2015; VANHELLEMONT; RUDDICK, 2015)
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Figure 6.2 - Biogeochemical Variables Ratios

(a) (b)
(a) TSOM/TSM (b) DOC/DTC. Grey Bars are the median and red bars are the standard

deviation of each ratio

6.2 AOPs Seasonal Inter-comparison

As observed in Appendix E (Figure E.1), k-functions results highlights the bad
quality of data mainly in September and specially for Klu spectra. It is noteworthy,
however, that below 500 nm the error is very high for all seasons, as discussed
in section 5.1.3. To come up with an analysis of the spatial variability of diffuse
attenuation in Curuai Lake, k-functions spectra were filtered for the 500 to 800 nm
interval. Also, in order to compare k-functions among seasons, a specific wavelength
(676 nm), was chosen for Table 6.1 analysis.
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Figure 6.3 - Diffuse Attenuation Coefficients (Kd and Klu) for the 500 to 800 nm interval.
K-function calculated from the Non-Linear Approach

(a) February (b) August

(c) April
Color Code: Red: Klu; Black: Kd

Both Figure 6.3 and Table 6.1 shows that values of Kd and Klu (Ku is also shown
on table 6.1) are similar to each other in each season, which was also confirmed
with Hydrolight simulations carried out in this research (section 5.2.1). According
to Mobley (1994), under a vertically homogeneous water mass at sufficient depth
below the surface, k-function become dependent only on medium composition, being
no longer affected by boundary condition, reaching the so called asymptotic regime.
In this case, all K-functions become identical (Kd = Ku = Klu).

Simulations indicated that for Curuai lake, k-function reached this asymptotic regime
at very shallow depth (10 cm). Table 6.1 reinforces the existence of this regime
because Median and Mean k-function values differ less than 2% among themselves.
It is important to stress that k-functions measurements under the asymptotic regime
become independent of the ambient light field and therefore turns into a reliable
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descriptor of the IOPs.

Table 6.1 - Statistics for the Non-Linear K-functions (Kd, Ku and Klu,) at 676 nm

Stations Index All Samples September February August April

Kd

Max 14.08 14.08 5.61 4.58 3.26
Min 1.39 5.34 2.80 1.39 1.61
Std 3.09 2.25 0.74 0.67 0.37
Mean 4.24 9.69 3.87 2.54 2.27
Median 2.96 9.51 3.73 2.39 2.25
CV (%) 72.90 23.28 19.15 26.35 16.26

Klu

Max 13.88 13.88 5.64 4.01 3.20
Min 1.37 5.38 2.77 1.37 1.59
Std 2.92 2.05 0.71 0.61 0.34
Mean 4.14 9.29 3.88 2.51 2.23
Median 2.84 9.26 3.68 2.33 2.19
CV (%) 70.51 22.12 18.26 24.19 15.14

Ku

Max 4.01 - - 4.01 3.20
Min 1.36 - - 1.36 1.63
Std 0.54 - - 0.63 0.33
Mean 2.37 - - 2.51 2.20
Median 2.25 - - 2.33 2.20
CV (%) 22.67 - - 25.16 15.06

6.3 IOPs Seasons Inter-comparison

6.3.1 Spectral Dependence of Surface IOPs

February is characterized by the highest median values for all surface IOPs (Figure
6.4) while in August and April, IOPs present lower values and with less variability,
which is consistent to TSM concentrations (Table A.1). When comparing just IOPs,
independent of seasons, attenuation, scattering coefficients and therefore the single
scattering albedo (ω0 Calculated as bp

c(p+CDOM)
) have a higher variability than the

absorption (ap+CDOM).
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Figure 6.4 - Total Median Spectral IOPs (Particulate + CDOM) Measured with ACS

(a) (b)

(c) (d)
(a) Attenuation coefficient; (b) Absorption coefficient; (c) Scattering coefficient (d)
Single Scattering Albedo (ω0 = bp

c(Particulate+CDOM)
). Solid lines are the median for all

stations (for each field campaign) calculated within 0.5 to 1 meter depth. Shades
represent one standard deviation. Color Code: Solid Black/Gray Shade- February;

Dashed Black/Blue Shade - August; Black Dotted/Red Shade-April.

Particulate backscattering measurements have a similar spectral distribution as par-
ticulate scattering (Figure 6.5a). February exhibits the highest values and August
and April show similar bbp spectra. This is also consistent with the variability in
biogeochemical parameter concentrations (Table A.1). The particulate backscatter-
ing spectra shows unexpected anomalous behavior in the blue-green range similar to
that reported by Wu et al. (2013) and which may be related to poor sigma correction,
equipment noise or even fluorescence.

Median Backscattering ratios (bbp/bp(HS6/ACS)) (Figure 6.5b) do not vary among
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seasons, particularly at 700 nm, where it ranges from 0.04 to 0.044 (Table 6.2). This
small variability suggests relatively small variation in particle size and composition
(TWARDOWSKI et al., 2001; BOSS, 2004). bbp/bp measured in coastal waters by Boss
(2004), McKee and Cunningham (2006), Loisel et al. (2007) and Snyder et al. (2008)
despite of few extreme values (0.05 - 0.06 m−1), have mean values lower than those
of Curuai Lake. An exception is shown by Cherukuru et al. (2014), which report
median values of up to 0.049 for Tasmanian coastal waters. Mineral rich coastal
waters presented by McKee et al. (2009) shows that although median values for
bbp/bp are lower than 0.03, at wavelengths larger than 650 nm, the variability in
magnitude is higher and reaches values larger than 0.05.

When compared to turbid Australian lakes (CAMPBELL et al., 2011), Curuai lake
presents larger bbp/bp than Wivenhoe Dam (0.013-0.014) but similar or even lower
than Burdekin Falls (0.039-0.093). This trend is not observed for the Chinese Taihu
lake, since Sun et al. (2009), Le et al. (2009a) reported lower median values for all
IOPs.

Figure 6.5 - Inter-campaign variability of backscattering

(a) (b)
(a) Median Hydroscat Backscattering and (b) median backscattering ratio

(bbp/bp(HS6/ACS)). Shades represent one standard deviation. Symbol/Color code: [Solid
Black Line/Crosses/ Gray Shade] - February; [Dashed Black/Circles/Blue Shade] -
August; [Black Dotted/Triangles/Red Shade] - April. In figure-b symbols in 715 nm
represents the backscattering ratio calculated from ACS and Symbol/Color code are:

Black/Crosses - February; Blue/Circles - August; Red/Triangles - April.
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Table 6.2 - bbp/bp(HS6/ACS) in 700 nm statistics for surface measurements

Statistics All Stations February August April
Min 0.024 0.024 0.031 0.033
Max 0.069 0.069 0.046 0.059

Median 0.042 0.044 0.040 0.044
Mean 0.042 0.040 0.041 0.043
Std 0.008 0.011 0.005 0.006
CV 18.199 27.079 11.585 15.077

Median γb (Equation 4.25 Section 4.5.1) varies between its highest value in the
series (1.50) in February to similar and smaller values in August (1.33) and April
(1.38) respectively. August presented the highest variability (CV = 17.74 %) and
February the highest value of all seasons (1.81). γb was maximum in April (1.71)
and significantly higher than that of February and August (Table 6.3).

The selection of wavelength ranges to avoid absorption effects in γb (550 nm to
750 nm ) and γbb (510, 590 and 700 nm ) provided the same range of values when
using the entire spectra. Two reasons can provide explanation: (1) the interval used
was not sufficient to remove the absorption effect or (2) for smaller particles, the
particulate absorption effects on scattering decrease when the particle size increases,
i.e., when the proportion of fine particles grows (DOXARAN et al., 2009).

The temporal variability in the γb agrees with the temporal variability of hydrolog-
ical/biogeochemical patterns reported by Barbosa et al. (2009) and Rudorff et al.
(2014a). According to them, in the mid-rising period (represented by February) the
Amazon River discharge to Curuai is not sufficient to maintain larger particles in
suspension; therefore γb indicates the presence of smaller suspended particles. On
the other hand, in August and April, with overbank flow (RUDORFF et al., 2014a),
the higher discharge to Curuai allows the suspension of larger particles further into
the lake, resulting in smaller γb. It is noticeable that the coefficient of variation (CV)
for γb is very low indicating that the Amazon river drives the distribution of particle
type and concentration within the lake as already reported by Bonnet et al. (2008),
Rudorff et al. (2014a), Rudorff et al. (2014b).

Particulate Scattering and backscattering slopes are considerably high when com-
pared to those of literature. Slade and Boss (2015) reported γb and γbb values up to
0.7 and 1.0 for coastal areas respectively (Martha’s Vineyard Coastal Observatory
(MVCO)). Doxaran et al. (2009), studying mineral rich coastal waters, showed that
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the near-infrared particulate scattering coefficient is represented by a simple power-
law function, with a spectral slope varying in the range of 0.1 to 1.4. Boss et al.
(2013), using a large data set encompassing a wide range of case I water, reported
a median γb of 0.73.

Compared to other inland waters, Curuai Lake still presents higher scattering and
backscattering slope values. Sun et al. (2009) and Shi et al. (2014) reported extremely
lower γb values for Taihu lake. On the other hand, high values were reported for
coastal areas in Tasmania (γbb = 0.76 to 2.01) (CHERUKURU et al., 2014). As discussed
by Slade and Boss (2015), the slope of the attenuation coefficient (γc) is linearly
related to γb with the latter being slightly smaller (see their figure 11) suggesting
that Curuai lake values are comparable to Campbell et al. (2011) (γc = 1.14 to 1.57),
Strömbeck and Pierson (2001) (γc = 1.52 to 2.84), Herlevi (2002) and Paavel et al.
(2007) (γc = 0.13 to 2.53).

Table 6.3 - Exponent γb and γbb calculated for scattering and backscattering coefficients
for all stations (for each field campaign) calculated within 0.5 to 1.0 meters
depth

Campaign IOPs Min Max Median Mean Std CV

February γb 0.94 1.81 1.50 1.47 0.21 14.21
γbb 0.87 1.43 1.08 1.10 0.17 15.38

August γb 0.74 1.67 1.33 1.30 0.23 17.74
γbb 0.85 1.57 1.09 1.14 0.16 13.92

April γb 1.10 1.80 1.38 1.37 0.13 9.78
γbb 0.97 1.71 1.35 1.33 0.17 12.72

6.3.2 Relationships between IOPs and biogeochemical parameters

IOPs provided good predictions for TSM and TSIM (Table D.1-Appendix D) that
are consistent with previous studies (HILL et al., 2011; ASTORECA et al., 2012; BOSS et

al., 2009). Attenuation and Scattering coefficients (cparticulate+CDOM in 660 nm and
bp in 700 nm) were the best predictors of TSM and TSIM, with scattering coefficient
being slightly better (Figure 6.6, and Appendix D). This result contrasts with those
of Boss et al. (2009) in which bbp was the best predictor of TSM. The reason may
be related the Hydroscat’s large pathlength which, in highly turbid waters, causes
larger measurement uncertainties (DOXARAN et al., 2013).
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The lack of relationship between TSOM and all IOPs (TableD.3-Appendix D) sug-
gests that the organic fraction contribution to scattering (bp) might be lower. This
finding is similar to Loisel et al. (2009) for ocean waters. The same behavior can be
observed for TSM and TSIM in August and April seasons, which presented higher
organic content. R2 values are lower, when compared to February, which has a higher
inorganic content. It suggests that inorganic material drives attenuation, scattering
and backscattering.

When analyzing only R2 values (Appendix D), the best fit occurred well using All
Samples, which suggests low variability of particle type through out the seasons.
However, Mass-Specific coefficients (b∗bp , b∗p, c∗(p+CDOM)) derived from the slope of the
Type II linear regression for TSM (Table 6.4) varies between seasons. Coefficients
are lower for All Samples and February and increase for August and April. These
results agrees with both OAC measurements (Figure A.1) and Babin et al. (2003b)
reports, but does not agree with Wozniak et al. (2010), which reported the existence
of higher b∗ for lower organic concentration in ocean waters.

Regardless the fact that mass-specific scattering coefficient is dependent on particle
type (i.e. index of refraction), it is also influenced by particle size (BABIN et al.,
2003b). Assuming that the particle size distribution (PSD) can be described by a
Power-law (Junge-like), the increase in b∗p results in the increase in the slope of the
distribution (ξ) (BABIN et al., 2003b). For Curuai Lake, February presents the higher
γb, which can be roughly related to the slope of the Junge distribution (γb = ξ− 3 )
and therefore to the dominance of smaller particles. That highlights the influence of
particle type (inorganic content), because despite the dominance of smaller particles,
which would increase b∗p, February still presents the lowest b∗p values.

Doxaran et al. (2009) presented results similar to those of Curuai lake (b∗p = 0.42
m2g−1 for February) working in estuaries with very high concentrations of mineral
particles (Elbe and Gironde Estuaries) with b∗p of 0.38 (m2g−1) and 0.36 (m2g−1)
respectively and where TSIM/TSM > 0.85. In contrast, Sun et al. (2010) and Sun
et al. (2012) presented slightly higher values (0.5 to 0.6) for mineral dominated
waters (no TSIM/TSM provided). Shi et al. (2014) results show an increase in b∗p as
TSIM/TSM increases: b∗p average (0.37) for a 60 % TSIM/TSM ratio (Lake Dianchi) and
a b∗p average (0.70 and 0.66) for a 90% and 80% TSIM/TSM ratio (Lakes Taihu and
Chaohu respectively). Therefore, there is no consensus regarding the relationship
between TSIM/TSM and b∗p. The reasons for those differences may be related to other
factors such as mineralogy of inorganic particles (index refraction and morphology)
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(HILL et al., 2011; BABIN et al., 2003b) as well as uncertainties on optical and analytical
measurements in turbid environments (LEYMARIE et al., 2010).

Figure 6.6 - LogLog transformed of Suspended Matter (TSM, TSOM and TSIM) and Se-
lected IOPs (bbp , bp, c(p+CDOM))

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
All Samples (N = 79). Symbol Code: “x” February Samples (N = 23); “o” August

Samples (N = 31); “4 ” April Samples (N = 25).
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Table 6.4 - Mass-Specific coefficients for TSM and TSIM calculated from the Type II Lin-
ear Regression with Attenuation Coefficient c∗(p+CDOM)(660), Scattering Coef-
ficient b∗p(700) and Backscattering coefficient b∗bp(700)

Specific IOP c∗(p+CDOM) (660) b∗p (700) b∗bp (700)
All Stations 0.52 0.43 0.02
February 0.49 0.42 0.01
August 0.84 0.67 0.03
April 1.80 0.50 0.02

The relationship between Chla concentration and derived phytoplankton absorption
(aφ(676)) from absorption line height at 676 nm (Section 4.5.1) is similar in all
seasons (1/slope ≈ 0.007 m2g−1), despite the very low R2 presented for April (Figure
6.7, Table 6.5).

Figure 6.7 - Type II Linear Regressions for Chla Concentration Samples and aφ(676)

(a) (b)
All samples (N = 79). Symbol Code: “x” February Samples (N = 23); “o” August
Samples (N = 31); “4 ” April Samples (N = 25). “X” axis scale was changed to

highlight differences. Figure (b) is a zoom of the highlighted rectangle in figure (a).
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Table 6.5 - Statistics for Chla Concentration and aφ(676)

Field Campaign 1/slope R2 RSME
All Samples (N = 79) 0.007± 0.001 0.74± 0.01 6.76 ± 0.43
February (N = 23) 0.007± 0.001 0.89± 0.03 4.97 ± 1.48
August (N = 31) 0.006± 0.001 0.65± 0.02 8.98 ± 0.30
April (N = 25) 0.006± 0.001 0.07± 0.07 3.90 ± 1.01

Such low aφ(676)∗ values are not common in open ocean case I waters (BOSS et al.,
2013). Those low values are related to Chla concentration; the higher the concen-
tration, the lower is aφ(676)∗ is mainly due to the packaging effect (BRICAUD et al.,
1995) and the low available light. Similar values to Curuai lake are presented for the
North Sea (BABIN et al., 2003) (0.004 m2g−1) and for eutrophic South African lakes
(0.005 to 0.03 m2g−1) (MATTHEWS; BERNARD, 2013). Low values (0.005 m2g−1) are
also reported in Bricaud et al. (1995) for ocean waters.

Figure 6.8 shows that the existence of a relationship between bbp/bp(HS6/ACS) and
Chla concentration that was observed in coastal waters by Boss (2004) did not occur
in Curuai lake. Similarly, bbp/bp(HS6/ACS) and TSOM/TSM did not co-vary. There are
two hypotheses to explain this lack of relationship : (1) the high turbidity of Curuai
waters causes high bbp which becomes insensitive to variation of TSOM/TSM, even for
extremes values (20% and 80%); (2) the uncertainties in Hydroscat measurements,
mainly due to the pathlength correction, is larger than the bbp changes with particle
concentration.
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Figure 6.8 - (a) Backscattering Ratio bbp/bp(HS6/ACS) and TSOM/TSM Ratio and (b)
Clorophyll- a concentration [Chl-a]/Attenuation c∗(p+CDOM)(660) for All sam-
ples.

(a) (b)
Symbol Code: “x” February Samples (N = 23); “o” August Samples (N = 31); “4 ”

April Samples (N = 25). “X” axis scale was changed to highlight differences.

6.3.3 IOPs Profiles

Scattering coefficient bp vertical profiles are homogeneous, suggesting that the water
column was well mixed throughout the seasons (Figure 6.9). Backscattering profiles
show similar distributions with higher values closer to the bottom in August (from
4 to 4.5m) probably due to re-suspension. Standard Deviation bars show a large
variation, especially in February, due to a high spatial variability during this pe-
riod (Figure 6.1) which is consistent with previous studies (BARBOSA et al., 2009;
RUDORFF et al., 2011; RUDORFF et al., 2014a). In April, when the Lake is dominated
by the Amazon River water, the scattering coefficient shows both smaller magni-
tude and smaller standard deviation what is consistent with measured OACs (Table
A.1). This OAC behavior has already been reported for Amazon Floodplain lakes
(MELACK; FORSBERG, 2001; BARBOSA et al., 2009; AFFONSO et al., 2011).

102



Figure 6.9 - Median Scattering (bp (700 nm)) Profiles

Symbol Code : Symbol Code: “x” February Samples (N = 23); “o” August Samples (N =
31); “4 ” April Samples (N = 25).Median Calculated for stations in each Field Campaign
(same as for surface analysis) in each depth. Bars represent one standard deviation.

Median profiles for γbp (Figure 6.10) are homogeneous as function of depth with
values indicating dominance of small particle size from the surface up to the maxi-
mum measurement depth. The standard deviation in February and April is almost
constant throughout the profile indicating that Curuai Lake behaves similarly with
respect to particle size. In August however, when the water leaves the floodplain, the
maximum standard deviation is observed at the surface, and decreases with depth.
There are at least two explanations for that (1) the degree at which individual lakes
which compose Curuai Lake are exposed to the overbank flooding, which may bring
less selected suspended particle types; (2) the occurrence of patches of phytoplank-
ton blooms may also contribute to the increase in standard deviation at the surface,
as also observed in Figure 6.11.
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Figure 6.10 - Median Scattering Gama Factors Profiles

Symbol Code : Symbol Code: “x” February Samples (N = 23); “o” August Samples (N =
31); “4 ” April Samples (N = 25).Median Calculated for stations in each Field Campaign
(same as for surface analysis) in each depth. Bars represent one standard deviation.

Phytoplankton related Absorption profiles (aφ(676)) (Figure 6.11) have a depth
distribution quite different from those of the scattering coefficient. Absorption co-
efficient decreases with depth in August and April and is very erratic in February,
when it displays large standard deviation from the surface to the maximum mea-
surement depth, indicating large variability among the now split Curuai floodplain
lakes during the mid-rising water level (RUDORFF et al., 2014a). This behavior is
in agreement with rising season when the Amazon River incoming water reaches
different lakes at different moments depending on their location in the floodplain.

In April, during the beginning of overbank flooding, aφ(676) indicates higher ho-
mogeneity in depth and space. In August aφ(676) displays high values at surface
and decreases with depth suggesting a higher frequency of phytoplankton blooms
which is corroborated by in-situ OACs (Table A.1). The August aφ(676) standard
deviation is larger at the surface and tends to decrease with depth, indicating that
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the phytoplankton blooms occur at specific locations in the floodplain where light
and nutrient availability triggers primary production despite Curuai lake turbidity.

Figure 6.11 - Median Chlorophyll-a Absorption Profiles

Symbol Code : Symbol Code: “x” February Samples (N = 23); “o” August Samples (N =
31); “4 ” April Samples (N = 25). Median Calculated for stations in each Field

Campaign (same as for surface analysis) in each depth. Bars represent one standard
deviation.

Despite the difficulties of acquiring reliable IOPs in turbid waters, the closure exer-
cise conducted here provided confidence in the measurements when processed using
the Rodgers/Doxaran corrections. The use of a single set of corrections for the
entire dataset also proved to be the best approach, which despite the remaining
uncertainties, allowed consistent characterization of Curuai Lake IOPs. Hence, our
work supports the use of the in-situ optical instrumentation in turbid environments
such as Amazon lakes, for which they were not designed.

Seasonal pattern of Curuai lake IOPs and TSM/TSIM concentrations were found
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to be in close agreement. Scattering coefficient proved to be more variable than
absorption, indicating that IOPs are dominated by TSM in all seasons. The absorp-
tion coefficient in 676 nm was demonstrated to be a robust chlorophyll- a predictor
even in highly turbid conditions. The backscattering ratio indicated that dominant
particle type is similar through the seasons. Particle size, however, varies from finer
particles during the rising water season (February) to slightly larger particles during
the receding water season (August). The lack of significant variability in the spec-
tral shape of scattering, backscattering and attenuation coefficients suggests the
dominance of small inorganic particles throughout the seasons, consistent with the
findings of Bonnet et al. (2008), Rudorff et al. (2014a) and Rudorff et al. (2014b),
which calculated that from 70 to 80 % of Curuai floodplain water comes from the
Amazon River.

Relationships between optical and biogeochemical variables were found to be consis-
tent with the literature. The stability of these relationships suggests that it should
be possible to design robust overarching algorithms to obtain biogeochemical infor-
mation using remote sensing of the lake properties.

6.4 The April Field Campaign

As discussed in Chapter 4, April was the only season for which, besides In-situ
(ACS/Hydroscat) and Radiometric measurements, Laboratory Absorption (CDOM
(acdom), Suspended Material (ap), Phytoplankton (aφ) and Non-Algal Particles
(NAP) (anap)) as well as LISST-PSD were measured. Since April dataset has all
measurements (Table 4.2), it will be used as the main input for Inverse Models
assessment (Chapter 7).

6.4.1 Laboratory Measurement Results

Figure 6.12 presents the absorption for CDOM (acdom) (a), Suspended Material (ap)
(b), Phytoplankton (aφ) (c) and Non-Algal Particles (NAP) (anap) (d).
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Figure 6.12 - Spectrophotometer Absorption Measurements

(a) acdom (b) ap

(c) aφ (d) anap
Absorption for: (a) CDOM (acdom); (b) Suspended Material (ap); (c) Phytoplankton
(aφ); (d) Non-Algal Particles (anap); Color Code: Red- First Set of Samples; Black:

Second Set of Samples;

The absorption by CDOM (acdom) is much higher (figure 6.12a) than those reported
by Babin et al. (2003), Binding et al. (2008) and O’Donnell et al. (2010) but closer
to those of Ma et al. (2006), Campbell et al. (2011), Wu et al. (2011). Exponential
slopes (Table 6.6) are in close agreement with values reported for coastal and inland
waters (from 0.012 to 0.022). The small variation of Scdom, acdom(440) and DOC
concentration suggests homogeneity in DOC distribution in the lake. No significant
linear relationship was observed between acdom(440) and DOC as indicated by very
low R2 values (Not Shown - Birgot et al. (InPress)).

The relationship between CDOM and DOC has been investigated since the 1990’s
with controversial results (ROCHELLE-NEWALL; FISHER, 2002; YACOBI et al., 2003;
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TZORTZIOU et al., 2007). Those studies suggest that both, aquatic system properties
(salinity, turbidity, type of DOC) and acquisition factors (wavelength, field and
laboratory methods) interfere in this relationship. The lack of relationship in the
present study can be explained by the narrow range of dissolved organic matter
concentration found across the lake during the high water season, April. Also it
might be related to fulvic/humic acids ratio, which varies widely in the Amazon
region (ERTEL et al., 1986). However, as observed in Table 6.6, due to the high
homogeneity of limnological variables during the high water season (AFFONSO et al.,
2011), this variability was not observed in April resulting in a Scdom CV of only 7%.
As the values of Scdom vary inversely with CDOM molecular weight (KIRK, 2010),
the slope analysis can be useful for distinguishing between humic and fulvic acids.
In April, median Scdom is ≈ 15 % higher than the common ocean literature values
(0.014) what might suggest a dominance Fulvic acids (ERTEL et al., 1986). Previous
studies (RUDORFF et al., 2014a; BONNET et al., 2008) also indicate that during high
water the majority source of water in Curuai Lake is the Amazon river which is
dominated by Fulvic acids. That reinforces that the lack of relationship between
acdom and DOC is mainly due to the narrow range of dissolved organic matter.

Regarding the suspended solids, ap spectra (figure 6.12b) appear to be mostly in-
fluenced by anap (figure 6.12d), with exponential shapes characterized by high rate
of decay at wavelengths < 500 nm and with a peak caused by aφ in the 650 to 700
nm range. The Type two linear relations between biogeochemical variables (TSM,
TSIM, TSOM and Chla) and ap (Appendix B) shows that the best agreement is
presented for Chla and the peak in 676 nm. A stronger agreement is also observed
for TSM and TSIM, but independent of wavelength, similar to what is observed
when using ACS and Hydroscat measurements.

The variability of anap in the range between 400 and 500 nm (2.5 to > 6 m−1) can be
explained by different proportions of TSM components (TSIM and TSOM) in the
lake, which varies from high to low TSOM/TSM ratio for each sampling station (Ta-
ble A.2 Appendix A). Besides the type of TSM composition, another factor possibly
affecting the relationship is the nature of the sediment. Different types of mineral
may have different properties of DOC adsorption. The High molecular weight DOC
which preferentially adsorb onto mineral surfaces, may explain the high values of
NAP absorption coefficients (BINDING et al., 2008). This mineral adsorption process
leaves low molecular weight components in solution causing higher concentration of
fulvic acids (KIRK, 2010). Similar to what happens to ap, the highest Linear rela-
tionship between anap and biogeochemical variables (Appendix B) was observed for
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TSIM and TSM, independent of wavelength. Very weak relationships were found for
both Chla and TSOM.

Table 6.6 presents the slope Snap for anap replicas. Snap values are comparable to
those described in (MA et al., 2006) (table 1 page 4282) for Taihu Lake. Curuai lake
Snap range is more similar to that of Taihu Lake than that of coastal oceanic waters
described in (BABIN et al., 2003). The narrow range of particle type in Curuai Lake,
in April explains the low spectral variability of Snap. The ratio between mineral
and organic particles (TSIM

TSM
≥ 0.50) also contributes to the small variability in the

slopes.

Table 6.6 - Exponents Scdom and Snap

Min Max Median Mean Std CV
CDOM (Scdom) 0.015 0.020 0.016 0.016 0.001 7%

NAP First Set (Snap−1) 0.009 0.012 0.010 0.010 0.001 9.5 %
NAP Second Set (Snap−2) 0.008 0.015 0.010 0.011 0.001 13.3 %
S(nap+cdom) First Set 0.012 0.016 0.015 0.015 0.001 9.7 %

Characteristic aφ absorption peaks occurs in the red range between 650-700 nm and
in the blue range of 430-450 nm for some of the samples, even though they were
not well defined in the blue range. The exponential increase in absorption at short
wavelengths can be associated with dissolved organic matter, which remains in the
filter and affects spectrophotometric measurements (BINDING et al., 2008).

As expected, there is a stronger linear relationship between aφ(676) and Chla. The
linear relationship between TSOM and aφ is weak, but despite this low value, the
existence of a relationship might indicate the presence of organic NAP in aφ. TSM
and TSIM presented, as expected, no relationship with aφ (Appendix B).

Specific absorption coefficients are presented in Figure 6.13 and Table 6.7. Ratio
ap/TSM or aφ/Chla present extremely high values, not comparable to those reported
in literature (MA et al., 2006; CAMPBELL et al., 2011; WU et al., 2011; MATTHEWS;

BERNARD, 2013). Babin and Stramski (2004), however, shows that minerogenic par-
ticles influence the absorption coefficient resulting in values as high as those of Figure
6.13a. Two factors explain high a∗φ coefficients: high phytoplankton absorption effi-
ciency and the pigment composition of phytoplankton cells. These effects are mainly
due to species types (CIOTTI et al., 2002), cell size (BRICAUD et al., 1995), pigment

109



content and the physiological state of phytoplankton caused by environment con-
ditions such as temperature, nutrients and light availability (BRICAUD et al., 1995;
BABIN et al., 2003; BINDING et al., 2008). The Linear approach (Blue solid and dotted
lines), however presents lower a∗φ values. Also it is worth to mention that the T-R
method does not completely remove the offset above 700 for a∗φ, indicating problems
in the methodology which might be tested in further studies.

The use of a single a∗φ to represent phytoplankton absorption characteristics for
the entire lake may be controversial, because it does not account for the variability
previously mentioned. Despite that, it might be a viable input for remote sensing
algorithms.

Figure 6.13 - Specific Spectrophotometer Absorption Measurements

(a) a∗
p (b) a∗

φ

Only stations with no zeroed or negative values ploted. Color Code : Red: First Set of
Samples and Black: Second Set of Samples for the division ap over TSM or aφ over Chla;
Solid Blue: First Set of Samples and Dotted Blue: Second Set of Samples for the Linear

Regression Specific Absorption

Table 6.7 - Specific Absorptions in 676 nm for the division ap over TSM and aφ over Chla;-
Particulate (a∗p) and Phytoplankton (a∗φ)

Min Max Median Mean Std CV
a∗p First Set of Samples 0.017 0.105 0.044 0.049 0.023 0.479
a∗p Second Set of Samples 0.020 0.094 0.038 0.043 0.018 0.418
a∗φ First Set of Samples 0.017 0.076 0.030 0.037 0.018 0.483
a∗φ Second Set of Samples 0.018 0.079 0.031 0.033 0.014 0.429
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6.4.2 LISST Results

Figure 6.14 shows the particle number (a) and the volume distribution (b) for April.
Both displays a bi-modal behavior, with a smaller peak below 10 µm and a second at
15 µm which are similar to previous observations reported by Bouchez et al. (2011)
for Solimoes River and by Espinoza Villar et al. (2013) in Madeira river.

Both figures 6.14(a and b) show the presence of artifacts which are more noticeable
in figure 6.14b: (1) the volume distribution presents a sharp increase in particle
concentration at the minimum diameter (below ≈ 5 µm) followed by a minimum at
≈ 5 µm; (2) a fast increase at the maximum diameter. As discussed by Reynolds et
al. (2010) and Agrawal et al. (2008), this sharp increase at the minimum particle
diameter might be caused by both, stray light contamination and the presence of
particles smaller than the optical measurement range. The artifact at the maximum
diameter might be caused by bubbles (Slade and Boss personal communication). The
presence of Non-spherical particles in the sample might also cause those artifacts
when one uses, as in this present study, the LISST inversion algorithm assuming
homogeneous spheres. Therefore in the fitting of Junge distribution, only the 2 to
50 µm diameter interval was used.

Figure 6.14 - Particle Size Distributions for April

(a) (b)
(a) Particle Volume Distribution (V(D)) and (b) Particle Number Size Distribution

(N ′(D)) (See section 3.1.2). Red: First Set of Samples and Black: Second Set of Samples.

Table 6.8 presents the statistical indexes for the Junge exponent. Median and Mean
values are within the range of previous investigations (≈ 4) (LOISEL et al., 2006;
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PENG; EFFLER, 2007; REYNOLDS et al., 2010; SLADE; BOSS, 2015), but CV is over 25
% which explains the high range (1.06 to 5.99).

Table 6.8 also allows the comparison of both, scattering and backscattering expo-
nents (γb and γbb Table 6.3) by applying the approximation ξpsd = γX + 3 (BOSS;

PEGAU, 2001; DOXARAN et al., 2009; SLADE; BOSS, 2015). Theoretically, γX = ξpsd−3
one would expect a linear relationship between ξpsd and γX . However, although me-
dian γX and mean values are (1.279 and 1.111) similar to those in Table 6.3, figure
6.15a shows that the variability of ξpsd is much higher than that of γb .

As discussed by Boss et al. (2001) the fitting of a Junge distribution to the PSD
depends on both, the reference number concentration N0 at a reference diameter D0

and the upper and lower boundaries of the distribution. As shown in figure 6.15b,
UPD can exceed 15 %. Previous studies by (PENG; EFFLER, 2007; PENG et al., 2009)
show that the power law model is a poor descriptor of the size distribution what
may cause the variability of ξpsd indicating the need of more sounder approaches.

Table 6.8 - Statical Indexes for fitted Junge Model Exponent (ξpsd)

Exponent Samples Min Max Median Mean Std CV

ξpsd
First Set 1.060 5.996 4.279 4.155 1.152 27.7 %
Second Set 0.896 5.937 4.111 4.055 1.143 28.2 %

Figure 6.15 - Comparison of (a) ξpsd/γb (b) Junge Model/Measured PSD

(a) (b)
(a) ξpsd + 3 and γb plot - Dotted line is the 1:1; (b) UPD calculated comparing Junge
Model and Measured PSD. Color Code: Red-First Set of Samples - Blue: Second Set of

Samples
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7 INVERSE MODELS

In this chapter the results for GIOP, QAA and Nechad semi-analytical algoriths
are presented as previously presented in section 4.6. GIOP tests and Sensitivity
Analysis follows the description of section 4.6.1. Tests of QAA versions (QAA-V5
and QAA-Mishra) follows section 4.6.2 and Nechad algorithm tests follows section
4.6.3.

7.0.1 GIOP

Figure 7.1 shows two indexes used to compare GIOPs outputs and laboratory mea-
surements for the best results as explained in Chapter 4 (Section 4.6.1). They are a
combination of bbp Exponent (1.35)(table 6.3), anap+cdom Exponent (0.015 Table 6.6),
Linear Regressed a∗φ (figure 6.13) all from April and using the Overconstrained Lin-
ear matrix inversion. RAb

rs−RC (figure 5.3) was also used as input. Only the stations
selected in section 6.4.1 (Chapter 6) were used for April laboratory comparison.
ACS/Hydroscat corrected by Rottgers/Doxaran were used and all stations from
August and April included in the comparison.

Figure 7.1 - Statistical Indexes comparing GIOP derived and Laboratory Measured
aT−w(λ) (aT−w(λ) = ap(λ) + acdom(λ)), aφ(λ) and anap+cdom(λ) for April

(a) (b)
Symbol Code: ′′o′′: aT−w(λ), ′′x′′: anap+cdom(λ), Solid Line: aφ(λ). Inputs: bbp Exponent
from April (1.35); anap+cdom Exponent from April (0.016), Linear Regressed a∗φ from

April; Overconstrained Linear matrix inversion using QR decomposition.

Figure 7.1 shows that the highest RMSE are at the 400 to 500 interval, reaching up to
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2 m−1 for anap+cdom and decreasing with wavelengths. RPD, however, highlights that
errors can reach values larger than 100 %, and different from RMSE, increases with
wavelength. Total absorption (aT−w(λ) which is aT−w = ap + acdom − aw) present
the lowest RPD values (≈ 20 to 40 %). anap+cdom(λ) RPD are around 30 % in
the blue region (400 to 500) but quickly reaches more than 100 % beyond 650
nm. Regarding aφ(λ), RPD is around 40 % in the blue and increases steadily to
90% with wavelength.This wavelength dependence of RPD may be explained by the
following facts: (1) RAb

rs−RC (figure 5.3) becomes insensitive to the components of
aT−w(λ) (anap+cdom(λ) and aφ(λ)) as the absorption by those components decrease
with wavelength or at specific absorption ranges. That explains the presence of a
signal of the phytoplankton absorption feature in the red range (aφ(λ) RPD).(2)
On the other hand, backscattering beyond 600 nm becomes a larger proportion of
RAb
rs−RC reducing its sensitivity to the components of total absorption (aT−w(λ));

(3) anap+cdom(λ) approaches zero beyond 600 which might explain the exponential
increase in RPD from this point on and (4) aφ(λ) also approaches zero beyond 700
what increases RPD (> 60%) beyond the phytoplankton absorption feature.

When comparing to ACS/Hydroscat measurements (Figure 7.2), aT−w(λ) errors are
higher than errors for aT−w(λ) presented in Figure 7.1. RMSE reaches 4 m−1 in the
blue range, particularly in 400 to 410 nm interval and RPD increases from 40 % to
100 % along the wavelengths.

The larger differences found for aT−w(λ) ACS are mainly due to differences between
aT−w(λ) from ACS and aT−w(λ) measured in laboratory (Figure 5.18 - Section5.3).
As can be noted in Figure 5.18 from Section5.3, RPD between aT−w(λ) from ACS
and aT−w(λ) measured in laboratory reaches 100 % in ≈ 600 nm what agrees with
Figure 7.2 in which RPD reaches 100 % in 700 nm for April (cyan) and around
600 nm for August (Red) and All Samples (Black) (August+April). It is noteworthy
that RMSE (Figure 7.2) is similar for August and April which might be explained
by IOP similarities between those two seasons, as presented in section 6 (Figures
6.4 and 6.5). However, as previously mentioned, RPD reaches 100% in 700 nm for
April (cyan) and around 600 nm for August (Red) what indicates that might be
differences between April and August in absorption values components (anap+cdom(λ)
and aφ(λ)).

The differences between August and April are better observed in bbp comparison
(Figure 7.2c/d). RPD errors are lower than 40% and particularly stable in the 400
to 750 nm interval. Different from aT−w(λ), bbp RPD for August is approximately
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twice the values from April (40% to 20%), which suggest that bbp Exponent in April
(1.35) might not be the best input for August retrievals. Tests using bbp Exponent
from August (1.08), however, amounted in poor results. The impact of the choice of
the bbp exponent in the inversion (Not shown) was actually very low which might
indicate that absorption characteristics dominates the retrieval of AOPs.

Figure 7.2 - Statistical Indexes comparing GIOP derived and ACS/Hydroscat Measured
aT−w(λ) and bbp(λ)

(a) (b)

(c) (d)
Color code - Black: All Samples ( = August + April), Red: August, Cyan: April. Inputs:
bbp Exponent from April (1.35); anap+cdom Exponent from April (0.016), Linear Regressed
a∗φ from April; Overconstrained Linear matrix inversion using QR decomposition.

Table 7.1 shows the results for Chla estimates. As mentioned in chapter 4 (Section
4.6.1), Chla concentration is a direct product of GIOP. GIOP derived Chla were
compared to measured Chla in August, April and All Samples. For all the tested
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seasons, the results for Chla were poor, reaching RPD > 181% in April and RMSE
shows that Chla varies ≈ 11 mgm−3. For August and All Seasons, RPD values can
be as high as 165% and 172%, respectively, and for ≈ 18 mgm−3 for August and ≈
16 mgm−3 for All Seasons. The impact of each tested GIOP input will be further
discussed.

Table 7.1 - Statistical Indexes comparing Measured and Derived TSM/Chl-a - Inputs: bbp
Exponent from April (1.35); anap+cdom Exponent from April (0.015), Linear
Regressed a∗φ from April; Overconstrained Linear matrix inversion using QR
decomposition.

Chlorophyll-a All Samples August April
RPD (%) 172.81 165.42 181.97

RMSE (mgm−3) 15.21 17.73 11.31

The variability of bbp had little impact on Chla estimates, even with the relatively
high difference from the tested values (1.03 to 1.50 for February (see Table 6.3)). The
same minor impact was observed for anap+cdom exponent (0.014 to 0.016). The highest
impact on Chla estimates was observed for tested a∗φ models, presented in Figure
7.3. The inspection of Figure 7.3 shows that there is a noticeable difference between
a∗φ models and measurements in April. In the 500 to 650 nm interval, differences are
very great. The tested models simulate the characteristic chlorophyll-a absorption
peaks in 440 and 676 nm, whilst in the a∗φ measurements no peak is observed in
440 nm and only the 676 peak is presented. Ciotti model did not provide good
Chla estimates, even when using the highest size factor (Sf = 1). With Sf = 1, the
676 nm absorption peak is much lower than that measured in April. Ciotti model
might not be suitable for inland turbid waters mainly because it was, parametrized
for Case I waters, as emphasized by (CIOTTI; BRICAUD, 2006). Maritorena et al.
(2002) model also did not result in good Chla estimates, mainly due to the poor
modeling of 676 nm feature, which is essential for Chla retrieval in CDOM rich
Curuai Lake waters. Bricaud et al. (1998) model, on the other hand, presented the
best results when compared to measured a∗φ. With Chla concentration larger than 7
µgL−1 the model approaches measured values at both, 440 nm and 676 nm peaks.
The inspection of Table A.2 (Appendix A) shows that the median of April is 8.4
µgL−1, which is within the 7 to 10 µgL−1 interval used as input to Bricaud et al.
(1998) model. The limitation of Bricaud et al. (1998) model, however, is that Chla
concentration is needed as input. This input, when using Remote Sensing methods,
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is mainly based on empirical relations and might not be adequate when dealing with
high and variable Chla environment such as that of Curuai Lake.

Figure 7.3 - Specific Absorption (a∗ph) comparison

Cyan Solid Line: Median a∗ph, Cyan Dashed Line: Linear Regressed a∗ph. Black
Color/Symbol code: Solid Line: Ciotti and Bricaud (2006) model varying the size

parameter (Sf in 0:0.1:1); Black Dashed Line: Bricaud et al. (1998) model varying the
Chlorophyll- concentration (1:2:10 µgL−1); Black “o”: Maritorena et al. (2002) Model.

It is also important to highlight the influence of errors in the measured RAb
rs−RC on

IOPs and Chla retrievals. The absence of correction for bidirectional and shading
effects would be the first to cause bias IOPs retrievals. Bidirectional effects would
cause an increase in bbp and decrease aT retrievals, whilst shading effects due to
the lack of illumination would cause the inverse, i.e. a decrease in the in bbp and
a increase aT retrievals. Also, especially for the April field campaign some stations
were measured with cloudy sky condition, which influences the surface reflectance
factors applied for glint corrections. Any glint would increase bbp artificially, which
would lead to a mismatch to the measured IOPs. Also, different from ocean waters
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were bubbles affects RAb
rs , for inland waters bubbles are rare. However, a scum is

sometimes observed in lakes surface, which would also be a source of uncertanties
for inverse methods.

The poor results presented in the previous analysis reinforce the need of sensitivity
analysis. Sensitivity analysis were carried out based on inputs described in table
4.4, with the variation of bbp and anap+cdom Exponents. Only the stations selected in
section 6.4.1 (Chapter 6) were used. The 10% criteria (ConvCrit = 0.1), which states
that differences between modeled and measured Rrs cannot exceed 10% (WANG et

al., 2005) did not provided solutions and a 30 % criteria was selected to run the
sensitivity analysis (ConvCrit = 0.3) of GIOP.

Figure 7.4 show sensitivity analysis results for all used stations in all wavelengths
(400 to 750 nm). From all the possible modeled solutions, which respect the 30 %
criteria, for aT−w, aφ, anap+cdom, bbp , figure 7.4 summarizes the median (Black),
5 (Blue) and 95 (Red) percentiles. aT−w (Figure 7.4a) median values (black) are
the closest to the 1:1 line, specially when considering values higher than 5 m−1.
Below ≈ 2 m−1, solutions deviate from 1:1 line, increasing rapidly when measured
aT−w approaches zero. For low aT−w values, median, 5 and 95 percentiles results are
similar and close to the 1:1 line. When values increase (Higher values correspond to
shorter wavelengths) there is a spread of the median, 5 and 95 percentiles solutions.
For aφ there is no dominant pattern. From 0 to 1 m−1 median, 5 and 95 percentiles
solutions are close to 1:1 line and beyond 1 m−1 median and 95 percentiles solutions
deviate from 1:1 line. The same type of behavior presented aT−w for is observed
for anap+cdom and bbp (Figure 7.4c/d). Median solutions are the closest to 1:1 line
and median, 5 and 95 percentile solutions spread from the 1:1 line with the increase
of values. The spread of data could be explained by the impact that the choice of
anap+cdom and bbp exponents. This choice of exponents has a higher impact on higher
values of anap+cdom and bbp , specially anap+cdom, which approaches zero for longer
wavelengths.
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Figure 7.4 - Comparison of Measured and Derived aT−w, anap+cdom, aph and bbp

(a) (b)

(c) (d)
Color Code: Red: 95(%) Percentiles from the sensitivity analysis solutions; Blue: 5(%)
Percentiles from the sensitivity analysis solutions; Black: Median of the sensitivity
analysis solutions. Only solutions that follows ConvCrit = 0.3 are presented.

Figure 7.5 shows the median and standard deviation of all anap+cdom and bbp expo-
nents resulted from the sensitivity analysis (ConvCrit = 0.3).In figure 7.5a, median
anap+cdom exponents spread around the 1:1 line while in figure 7.5b, median bbp

exponents are more stable with the variation of measured bbp exponent. Standard
deviation for both, anap+cdom and bbp exponents, shows that values spans over a wide
range. Therefore, accepted solutions (ConvCrit = 0.3) leads to a variety of possible
exponents which increase uncertainties and similar to what was discussed by Wang
et al. (2005). It is important to highlight that no sensitivity analysis was carried out
for aφ models, different from Wang et al. (2005), which used the Ciotti model and
variate its size factor (Sf ). As discussed previously, Ciotti model did not result in
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good estimates of IOPs and therefore a∗φ(λ) measured in April was used. Since a∗φ(λ)
was the main source of variability for GIOP, further analysis should be carried out
to achieve better uncertainties estimates.

Figure 7.5 - Comparison of anap+cdom and bbp exponents derived from for median solutions
presented in Figure 7.4

(a) (b)
“x” represent the median of anap+cdom and bbp . Bars are the standard deviation of

solutions which follows ConvCrit = 0.3

As final recommendations, the GIOP algorithm is directly dependent on the quality
of IOPs and Rrs inputs. For future studies, a better characterization of IOPs, spe-
cially a∗φ(λ) could improve the results previously obtained. Also, a careful choice of
Rrs could also contribute for the lower errors in the retrieval of IOPs and Chla.

7.0.2 QAA

Two versions of QAA were tested: QAA-Mishra and QAA-V5 (Section 4.6.2). As
described in section 4.6.2, the output of both QAA versions were compared to April
Laboratory measurements (ap(λ), anap+cdom(λ) and aφ(λ)) and with ACS/Hydroscat
aT (λ) and bbp(λ) for August, April and the combination of both (All Samples). Since
QAA provides aT (λ) , which includes absorption by water (aw), aw was added to
Laboratory (ap(λ) + acdom(λ)) and ACS total absorptions. RAb

rs−RC (figure 5.3) was
also used as input. Only stations selected in section 6.4.1 (Chapter 6) were used for
April laboratory comparison. ACS/Hydroscat Rottgers/Doxaran corrections were
used and all stations from August and April included in the comparison.

Figure 7.6 presents QAA-(Mishra and V5) results for April dataset. The comparison
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of both versions of QAA shows that, for aT (λ), in the 400 nm to 500 nm interval
QAA-Mishra (Figure 7.6c/d) outperformed QAA-V5 (Figure 7.6a/b). For the 600
to 700 nm interval, QAA-V5 was slightly better than QAA-Mishra with RMSE
lower than 1 m−1 and RPD ≈ 100 %. Also beyond 700, QAA-V5 presented lower
RMSE and RPD (< 2m−1 and ≈ 100 %), while QAA-Mishra causes a fast increase
in RMSE (≈ 1.5m−1 < RMSE <≈ 4.5m−1) and small rate of increase in RPD
(≈ 150% < RPD <≈ 170%). QAA-V5 underestimation of aT (λ) was demonstrated
by Mishra et al. (2014) for high Chla concentration and somehow explains the better
results of QAA-Mishra in the 400 to 500 nm interval. However, RPD close to 100%
along the spectra shows that, for both approaches, results are poor. For anap+cdom(λ)
comparison, in the 400 to 500 nm interval, both approaches reach RMSE larger than
5 m−1 and RPD larger than 100 %. In the 500 to 750 nm interval QAA-Mishra is
slightly better than QAA-V5 with RMSE reaching values lower than 1m−1 and
RPD < 50%. For aφ(λ), QAA-V5 outperforms QAA-Mishra in the 400 to 600
interval. RPD and RMSE are below 100% and below 1 m−1 respectively for QAA-
V5 whilst QAA-Mishra have RPD between 100 and 500 % and RMSE between 1
and 2 m−1.
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Figure 7.6 - Statistical Indexes comparing QAA-(Mishra and V5) derived and Laboratory
Measured aT (λ) (aT (λ) = ap(λ) +acdom(λ) +aw), aφ(λ) and anap+cdom(λ) for
April

(a) QAA-V5 (b) QAA-V5

(c) QAA-Mishra (d) QAA-Mishra

Symbol Code: ′′o′′: aT (λ), ′′x′′: anap+cdom(λ), Solid Line: aφ(λ)

The reasons for those poor results regarding the two tested version of QAA are
mainly related to both, RAb

rs−RC and QAA steps presented in section 3.3.2.1. Re-
garding RAb

rs−RC , the shape presented in figure 5.3 is notably different from case I
waters for which QAA-V5 was developed (LEE et al., 2002; LEE et al., 2007) and
high Chla concentration waters for which QAA-Mishra was tuned. Particularly, the
peak in 676 nm is not as noticeable as those presented by Mishra et al. (2014)
which might be one of the reasons for the very poor aφ(λ) presented in figure 7.6.
Regarding the steps of QAA, the empirical choice of aT (λ0) with λ0 = 555 for
QAA-V5 and λ0 = 708 for QAA-Mishra in equations 3.39 and 4.28 might not be
suitable for Curuai Lake Waters. Although both assumptions from equations 3.39
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and 4.28 caused high RPD, they seem to have distinct impacts on the retrieval of
aT (λ). While for QAA-V5, RPD is flat along the spectra, for QAA-Mishra, RPD is
lower for shorter wavelengths and higher for longer wavelength. This difference is
reinforced by the comparison between QAA aT (λ) and ACS absorption coefficient
(figure 7.7). QAA-V5 RMSE (figure 7.7a) is quite similar to Laboratory aT (λ) com-
parison (figure 7.6a) and QAA-V5 RPD (figure 7.7b) is lower than the comparison to
Laboratory aT (λ)(figure 7.6b), but also flat along the spectra. QAA-Mishra RMSE
shape is quite different from Laboratory aT (λ) comparison (figure 7.7c) whilst RPD
(figure 7.7d) have values below 20 % for the 400 to 600 nm interval, and rapidly
increases beyond 600 nm reaching 100 % for longer wavelengths, which follows the
same behavior of Laboratory aT (λ) comparison. Based on those observations, QAA-
Mishra assumption seems more suitable for Curuai Lake aT (λ), at the 400 to 600
nm interval.
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Figure 7.7 - Statistical Indexes comparing QAA-(Mishra and V5) derived and ACS Mea-
sured aT (λ)

(a) QAA-V5 (b) QAA-V5

(c) QAA-Mishra (d) QAA-Mishra

Color code - Black: All Samples ( = August + April), Red: August, Cyan: April.

Regarding the comparison between August and April presented in figure 7.7, both
seasons presented similar RPD values for QAA-V5, but, April presented lower RPD
for QAA-Mishra. The similarities between August and April in the performance of
both QAA versions reinforce the IOPs and biogeochemical similarities presented
Chapter 6. Another example of this similarity is observed in figure 7.8. RMSE in
figure 7.8a presents a decay from ≈ 0.55 m−1 to 0.2 m−1 in 750 nm for QAA-V5
whilst 7.8c shows that for QAA-Mishra, RMSE is flater along the wavelength. On
the other rand, QAA-V5 RPD presented approximately constant values along the
spectra in the range between 70 % to 80 % and QAA-Mishra presented RPD starting
around 60 % and increasing towards 150% for longer wavelengths. The comparisons
among seasons show very low variability and the behavior of RPD is similar to
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ACS absorption presented in figure 7.6. The difference between QAA versions for
bbT could result from the influence of aT (λ0) on the calculation of bbp(λ0) (section
3.3.2.1). This differences could also be related to the calculation of Y (Equation
3.44).

Figure 7.8 - Statistical Indexes comparing QAA-(Mishra and V5) derived and Hydroscat
Measured bbp(λ)

(a) QAA-V5 (b) QAA-V5

(c) QAA-Mishra (d) QAA-Mishra

Color code - Black: All Samples ( = August + April), Red: August, Cyan: April.

The performance of both QAA versions was not satisfactory for Curuai Lake. Al-
though some RMSE/RPD values indicate a reasonable performance (< 1m−1 and <
20% respectively) particularly for QAA-Mishra, the general analysis shows a poor
performance of both QAA versions. thus there is the need for further studies which
would test the set of parameters for the derivation of aT (λ0), bbp(λ0) and other pa-
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rameters of QAA. As a recommendation, a parametrization of QAA is crucial for
future analysis, similar to what was performed by Mishra et al. (2014).

7.0.3 Nechad

The Nechad algorithm, which was developed to retrieve TSM concentrations (sec-
tion 3.3.2.2, Chapter 3.1), was tested for February, August and April (section 4.6.3,
Chapter 4). Figure 7.9 shows the comparison of a∗p(λ) and b∗bp(λ), derived from both,
measurements taken in April and from Nechad et al. (2010) Ap and Cp tabulated
parameters (section 3.3.2.2). Two a∗p(λ) were derived from the first set of samples of
April: The median of ap(λ)/[TSM ] and from Linear Regression, as presented in Figure
6.13 in Chapter 6. b∗bp(λ) was also calculated in two different forms: as the median of
bbp

(λ)/[TSM ] and from Linear Regression, similar to the analysis described in section
6.3.2 (Table 6.4), but for each single wavelength in the 400 to 800 nm interval. b∗bp(λ)
was calculated for February, August and April, and only Hydroscat median surface
measurements were used (Section 4.5.1).

Figure 7.9a shows that both median and Linear fitted measured a∗p(λ), as well as,
a∗nap(λ), are higher than Nechad et al. (2010) a∗p(λ). The same behavior can be
observed in figure 7.9b, in which all measured b∗bp(λ) are higher than Nechad et
al. (2010) b∗bp(λ). Nechad et al. (2010) a∗p(λ) is derived from an exponential model
(a∗p(λ) = a∗p(443) · e(−slopenap(λ−443))) with slopenap = 0.0123 m−1 and a∗p(443) =
0.036m2g−1, which is an average of the specific absorption of non-algal particles
(NAP) published by Babin et al. (2003). Nechad et al. (2010) b∗bp(λ) was calculated
from b∗bp(λ) = 0.02b∗bp(555)bp(λ)/bp(555) with b∗bp(555) = 0.036m2g−1 (BABIN et al.,
2003b). Those theoretical parameters assumed by Nechad et al. (2010) are suitable
for Oceanic water and their differences will directly impact the retrieval of TSM
concentration.
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Figure 7.9 - Comparison of Nechad derived and measured a∗p(λ) and b∗bp(λ).

(a) (b)
(a) Symbol code - Solid Line: Median a∗p(λ), ′′+′′: Linear Regression a∗p(λ), ′′o′′: Linear

Regression a∗nap(λ), ′′x′′: Nechad et al. (2010) a∗p(λ). (b) Symbol code - Solid Line: Linear
Regression b∗bp(λ), ′′+′′: Median b∗bp(λ), ′′x′′: Nechad b∗bp(λ). Color code - Black: All

Samples, Blue: February, Red: August, Cyan: April.

To test the Nechad Algorithm, all combinations of measured specific IOPs (Figure
7.9) were used to calculate Ap and Cp. Nechad algorithm TSM output concentration
were compared to measured TSM concentrations for April. All possible combina-
tions of measured specific IOPs caused an overestimation of TSM. The best TSM
estimation occurred when using Linear Regressed a∗nap(λ) instead of a∗p(λ), acdom(λ)
and b∗bp(λ) from February to calculate Ap and Cp. These set of parameters were also
used to compare measured TSM toNechad algorithm output TSM for February, Au-
gust and the combination of seasons. The statistical indexes for those comparisons
are presented in Figure 7.10 for each wavelength. The comparison using tabulated
Ap and Cp from Nechad et al. (2010) is also presented.

Statistical indexes for the Nechad model calculated with tabulated Ap and Cp

caused, in general, better results than Ap and Cp derived from measurements. The
best interval to retrieve TSM is from 700 to 730 nm for all tested seasons; therefore
the analysis will be based only on this interval. For Rrs−RC(0+, λ) (Figure 7.10a/b),
August and All Samples (August + April) presented the lowest RMSE/RPD. Us-
ing Rrs−NonLin(0−, λ) (Figure 7.10c/d), August and April presented both the lowest
RMSE and RPD and February presented the highest RMSE and RPD values. For
both Rrs(0−, λ) and Rrs(0+, λ) results were better in August then April which is
somehow unexpected since IOPs from April were used to calculate Ap and Cp pa-
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rameters. This fact reinforces the similarity between August and April which was
already presented in Chapter 6.

Figure 7.10 - Statistical Indexes comparing measured TSM concentration and derived
from both: (1) Nechad model with Ap and Cp tabulated parameters from
Nechad et al. (2010) (Dashed Line) and (2) Nechad model with Ap and
Cp parameters calculated from a∗nap(λ) , acdom(λ) and b∗bp(λ) from February
(Solid Line)

(a) Rrs−RC(0+, λ) (b) Rrs−RC(0+, λ)

(c) Rrs−NonLin(0−, λ) (d) Rrs−NonLin(0−, λ)

Color code - Black: All Samples, Blue: February, Red: August, Cyan: April

The poor performance of the Nechad algorithm using Ap and Cp derived from specific
measured IOPs raises the question of the quality of measured IOPs and its influence
on estimated TSM. A test was performed varying Cp parameter (calculating Cp with
tabulated Nechad and Measured parameters alternately). Similar to arguments by
Nechad et al. (2010), the influence of Cp in the estimation of TSM is negligible.
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However, Ap is decisive for good TSM estimates. Ap depends on acdom and b∗bp (Ap =
A
γ
and A = anp

b∗
bp

from section 3.3.2.2) and in the 500 to 800 interval the influence of
acdom is minor. Therefore Ap is mainly driven by b∗bp .

Figure 7.11 shows the set of Ap derived from Linear fitting, following the description
from section 4.6.3. Four fitted Ap were derived (February, August, April and All
Samples) using Rrs(0+, λ) (Figure 7.11a) and Rrs(0−, λ) (Figure 7.11b). Cp was
calculated from a∗nap(λ) and b∗bp(λ) from February. Figure 7.11a shows that Ap fitted
for April is much higher than Ap fitted for August, which is, for instance closer to
Ap from Nechad et al. (2010). Figure 7.11b, on the other hand, shows that both,
April and August have higher Ap when compared to Ap from Nechad et al. (2010).
Those results suggest that Hydroscat measurements are overestimating bbp .

Figure 7.11 - Comparison of Ap parameters

(a) (b)
Symbol code: ′′o′′: Ap from Nechad et al. (2010), ′′x′′: Ap calculated from acdom (April)
and b∗bp from February. Solid Lines Color code - Fitted Ap parameters for: Black-All

Samples, Blue-February, Red-August, Cyan-April.

Figure 7.12 shows the comparison of the Nechad model with parameters Ap and Cp

from Nechad et al. (2010) and using fitted Ap parameters showed in figure 7.11 (sec-
tion 4.6.3). For Rrs−RC(0+, λ) (Figure 7.12a/b), models with fitted Ap parameters
show lower RMSE/RPD for wavelengths smaller than 600 nm, for all seasons. From
650 nm to ≈ 710 nm, Nechad models with Ap and Cp from Nechad et al. (2010)
outperformed models with fitted Ap parameters. Beyond 710 nm, only for April,
models with fitted Ap parameters presented lower RMSE/RPD. For All Seasons
(August + April), values for models with fitted Ap parameters are lower just for

129



wavelengths smaller than 600 nm. For Rrs−NonLin(0−, λ) (Figure 7.12c/d), models
with fitted Ap parameters presented lower RPD and RMSE at some spectra regions.
However, at the 700 to 730 interval, which presented the lowest indexes, only All
Seasons (February+August+April - Black Color) presented indexes lower than those
of Nechad models using tabulated Ap and Cp.

Figure 7.12 - Statistical Indexes comparing Nechad Model calculated with Ap and Cp pa-
rameters from Nechad et al. (2010) and calculate from Linear regressed Ap
and Cp

(a) (b)

(c) (d)
Symbol code - Dashed Line: Nechad Parameters, Solid Lines: Linear regressed

parameters Color code - Black: All Samples, Blue: February, Red: August, Cyan: April.

Nechad model results suggest that tabulated Ap and Cp parameters perform better
than parameters derived from Laboratory and Hydroscat Measurements. The prob-
able reasons for that are twofold: (1) the uncertainties of Hydroscat measurements
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are much higher than assumed even after using the most suitable correction (see
section 5.2.1) mainly due to improper pathlength correction which is enhanced in
very turbid waters; (2) Hydroscat measurements integrates bbp from 0.5 meter to 1
meter depth which might not represent bbp at the surface which is the main signal
measured by Rrs. That suggests that both instrumentation and experimental setup
for backscattering measurements should be further investigated before they can be
replaced by laboratory measurements provided in tabulated values (BABIN et al.,
2003; BABIN et al., 2003b).

As final recommendation, the Nechad algorithm can be used to retrieve TSM with a
within a 30 % error, mainly in the NIR region. The best results were found for Nechad
parameters but further studies should focuses on representative IOPs estimates, that
would clearly improve Nechad Algorithm performances. For now, the use of Nechad
parameters is the first guess for the use of this algorithm.
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8 CONCLUSIONS AND FINAL CONSIDERATIONS

This research carried out a comprehensive assessment of the protocols for both, ac-
quisition and correction of optical property measurements aiming at the bio-optical
characterization as a support to the parametrization of semi-analytical inverse mod-
els. This assessment was carried out at Curuai floodplain lake, a cardinal example
of thousands of turbid water lakes of the Amazon basin. The main challenge was to
select among protocols tuned for Case 1 waters those leading to smaller uncertainties
for very turbid waters such as found in Curuai Lake. Both, IOPs and AOPs mea-
surements, were submitted to different correction methods available in literature.
Data quality assessment indexes were then analyzed to identify the most suitable
protocols for Curuai Lake (Case 2 water). In addition, with the bio-optical charac-
terization which is, up to our knowledge is the first performed in Curuai Floodplain
Lake, provided a better understanding on how the seasonal biogeochemical vari-
ability impacts lake water optical properties. Optical water property measurements
were then used as input for the three selected semi-analytical models, to retrieve
both IOPs and biogeochemical variables (Chla and TSM).

Data quality assessment of above water measurements showed that corrections were
efficient in minimizing mainly sun/skyglint effects. However, the selected correction
(QC1) which accounts for sky cover variability, caused a drastic reduction of RAb

rs

dataset and therefore was not further applied. Furthermore, several effects like plat-
form influence, shading and bidirectional effects should be addressed in future stud-
ies. Particularly, Lee et al. (2013) proposes a skylight-blocked approach in which Rrs

is measured far from the Vessel and supposedly eliminates bidirectional effects. This
method, however, was not used in case 2 waters yet, but has the potential to be used
in future Amazon floodplain Lake studies. The fixed depth method for radiometric
profiles was not suitable for Curuai Lake waters because the available light extin-
guishes in the first meter depth. Depth intervals caused errors in K-function esti-
mates, specially in the shorter wavelengths. Therefore, future studies should focus on
measuring continuous profiles, within a low sink depth rate and increasing the num-
ber of measurements for each depth. Despite the difficulties using ACS/Hydroscat
in turbid water, Rottgers/Doxaran corrections provided reliable measurements, for
the proposed corrections but further studies should be carried out to check for the
actual accuracy of the measurements. A single set of corrections proved to be the
best approach, allowing a consistent characterization of Curuai Lake IOPs. There is,
however, a need for a complete characterization of all water column, since for highly
turbid waters as Curuai Lake, most of IOPs variability occurs near surface. For
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that, ACS/Hydroscat measurement methods should start near the surface. Regard-
ing Laboratory measurement, additional efforts should focus on sample preservation
due to the fast degradation caused by high temperatures in the Amazon region. Also,
the T-R method should be further tested for highly turbid waters, since the high val-
ues presented previously suggest either a miscarried of T-R method or an excessive
bleaching, which might also be affecting NAP and therefore, derived phytoplankton
absorption.

The observed Curuai Lake biogeochemical variability follows previous studies by
(BARBOSA et al., 2009). Measured ACS/Hydroscat IOPs variability are in agreement
with biogeochemical variability, being higher for February and lower for August and
April (Figure 6.4 and 6.5). In addition while bbp/bp small variability along seasons
suggests low particle size/composition variability, γb indicates smaller particles size
for February (Table 6.3). The higher correlation between biogeochemical variables
and ACS/Hydroscat IOPs was achieved by TSM/TSIM, suggesting that Inorganic
suspended matter drives optical characteristics of Curuai Lake. Moreover, specific
scattering coefficient (b∗p) suggests differences in particle type among season. ACS
absorption line height was a good proxy for Chla concentration (Figure 6.7 and
Table 6.5) (besides with poor results April) showing its suitability for Chla profiles,
even for without removing CDOM from total absorption (aT−w). Scattering coef-
ficient (bp) profiles show a well mixed water column among seasons, while γb and
a∗φ profiles indicate higher variability of particles size near the surface, specially for
August, mainly due to occasional phytoplankton blooms along the lake. For April,
Laboratory absorption coefficients presented high values mainly in the blue range
(400 to 500 nm) which is expected for turbid waters dominated by CDOM and NAP.
The correlation to biogeochemical variables was not as sound as for ACS/Hydroscat
measurements suggesting issues in the laboratory measurement methods. LISST-
PSD also present issues in measurements what might explain the low correlation
between Junge distribution exponent and measured γb. Laboratory and LISST mea-
surements demand further investigation and a larger dataset along the hydrological
year to come up with a better quality analysis which could lead to a reliable dataset.

The results for the three Inverse Models were not satisfactory for most of retrieved
IOPs and biogeochemical concentration. The best results for GIOP were for total
absorption coefficient (aT−w), with RPD of at least 20 % in blue range (Figure
7.1). The reminding IOPs as well as Chla showed higher errors. The main reason
for the poor performance of GIOP might be related to the uncertainties in input
parameters (RAb

rs and IOPs). Also, the bbp exponent is a median of bbp measured at
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a highers depths (0.5 to 1 meter) which might not representative of IOPs near the
surface and therefore would not be related to measured RAb

rs since light extinguishes
above ≈ 1 meter depth as shown in Figure 5.6. Further investigation should be
carried out in order to understand the main source of error in the current dataset as
well as guide future data acquisition. The two versions of QAA tested without any
parametrization, presented poor results. That lack of quality in the retrieved optical
properties reinforce the need for a parametrization of its empirical steps, based on
environment characteristics as currently performed in literature (LE et al., 2009b;
MISHRA et al., 2014). The Nechad algorithm shows errors that reach 30 % for TSM
estimates which may be considered reasonable. However best results were found for
tabulated values (from Nechad et al. (2010)) and again raises the question on the
reliability of the measured dataset.

As final recommendations, further investigation are needed in order to tune the
current acquisition and corrections protocols to inland turbid waters. This investi-
gation should be focused in the data acquisition near the surface (0.1 meters) and
with higher number of measurements in water column. The bio-optical characteri-
zation of Curuai Lake should be linked to floodplain temporal and spatial dynamics
aiming the better understanding of IOP variability in relation to physicochemical
driving forces. At last, inverse models should be further investigated aiming future
application to the retrieval of optical components and properties from satellite im-
ages. Unfortunately, the quality of the satellite data during the period of each field
campaigns (mainly Landsat 8 - OLI) had a significant amount of clouds, what would
directly affect the comparison to field data. Despite of the number of works recently
performed using Landsat 8, it is not completely suitable for waters AOC retrieval in
turbid environments, particularly CDOM and Chla, mainly due to the available set
of bands. However, with the efforts of the Remote Sensing community in launching
new satellites focused on water (Ocean and Inland) studies (Sentinel 2 and 3), we
believe that this study will help on future development of algorithms focused on
Amazon waters.
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Appendix A

A.1 Descriptive Statistics of the Biogeochemical used for IOP relation-
ships

Table A.1 - Descriptive Statistics of the Surface Optically Active Substances used for IOP
relationships (23, 31 and 25 Stations for February, August and April respec-
tively)

Stations Index TSM
(mg · L−1)

TSOM
(mg · L−1)

TSIM
(mg · L−1)

Chl-a
(µgL−1)

February

Min 6.1 12.7 7.0 4.5
Max 68.5 68.4 58.4 13.8

Median 12.9 28.4 21.5 7.3
Mean 16.7 30.7 22.8 7.9
Std 15.4 15.5 13.9 2.3
CV 119.6 54.4 64.6 31.6

August

Min 2.3 1.4 0.8 0.6
Max 91.0 19.0 14.7 9.0

Median 13.4 9.8 5.8 4.0
Mean 10.1 9.0 5.1 3.4
Std 15.8 4.1 3.7 1.8
CV 156.7 45.9 71.5 51.0

April

Min 1.9 3.2 1.2 2.0
Max 22.1 22.3 16.0 11.0

Median 8.7 11.7 6.6 5.2
Mean 8.4 11.4 6.0 4.6
Std 4.7 4.6 3.4 2.3
CV 55.7 40.0 56.9 49.6

163



Table
A
.2

-D
escriptive

Statistics
ofthe

Surface
O
ptically

A
ctive

Substances
-A

llSam
ples

Stations
Index

D
T
C

(m
g
·
L
−

1)
D
IC

(m
g
·L
−

1)
D
O
C

(m
g
·L
−

1)
T
SM

(m
g
·
L
−

1)
T
SIM

(m
g
·
L
−

1)
T
SO

M
(m
g
·
L
−

1)
C
hl-a

(µ
g
L
−

1)
Pheophytin
(µ
g
L
−

1)

A
llSam

ples

M
ax

13.4
7.0

7.7
161.9

137.2
42.0

92.1
38.7

M
in

5.1
1.4

2.9
1.4

0.8
0.6

1.9
0.1

Std
1.4

1.2
1.0

36.0
28.7

8.8
19.4

7.9
M
ean

9.4
4.3

5.1
35.2

25.1
10.0

19.6
6.5

M
edian

9.5
4.1

5.0
17.9

10.3
6.7

12.2
3.3

C
V

14.4
28.7

18.7
102.4

114.2
87.9

99.4
121.6

Septem
ber

M
ax

11.7
4.9

7.5
161.9

120.8
42.0

92.1
38.7

M
in

8.9
2.8

5.1
40.2

19.6
15.1

12.7
6.2

Std
0.7

0.5
0.6

29.4
25.1

7.6
19.9

8.8
M
ean

10.0
3.9

6.1
83.3

59.2
24.1

43.3
18.5

M
edian

9.7
3.7

6.0
84.8

60.4
22.8

39.6
17.1

C
V

7.5
7.5

10.6
35.3

42.4
31.7

46.1
47.4

February

M
ax

12.1
7.0

7.0
150.8

137.2
17.4

68.5
9.0

M
in

5.1
1.5

2.9
8.1

2.1
4.5

2.3
1.0

Std
1.5

1.5
0.9

31.5
28.9

3.1
13.8

1.6
M
ean

9.4
4.9

4.4
40.7

32.0
8.7

15.4
3.9

M
edian

9.6
5.2

4.2
31.8

25.0
7.8

11.2
3.6

C
V

15.7
29.9

19.9
77.4

90.6
36.0

89.9
41.4

August

M
ax

9.6
4.2

7.0
19.0

14.7
9.0

91.0
5.5

M
in

6.4
1.4

3.5
1.4

0.8
0.6

2.3
0.1

Std
0.7

0.7
0.7

4.1
3.7

1.7
15.7

1.6
M
ean

8.3
3.3

5.0
9.8

5.8
4.0

13.4
2.1

M
edian

8.4
3.4

4.9
9.0

5.1
3.4

10.0
1.6

C
V

8.6
22.0

14.8
42.2

63.0
44.0

117.8
73.5

April

M
ax

13.4
6.9

7.7
22.3

16.0
11.0

22.1
11.5

M
in

8.2
4.0

4.1
3.2

1.2
2.0

1.9
0.8

Std
1.2

0.7
0.8

4.6
3.4

2.3
4.7

1.9
M
ean

10.5
5.2

5.3
11.7

6.6
5.2

8.7
2.9

M
edian

10.3
5.3

5.0
11.4

6.0
4.6

8.4
2.8

C
V

11.6
12.7

14.3
38.9

52.0
44.3

53.6
65.8

164



Appendix B

B.1 Absorption Measurements and its respectively Statistical Indexes
for is relation to biogeochemical components for April

Figure B.1 - Statistical Indexes for Particulate Absorption ap and TSM/TSOM/TSIM
Linear Fitting

(a) (b)

(c) (d)
Color code: Black-TSM; Red-TSOM; Blue-TSIM; Magenta-Chla. Symbol code: Solid

Line- First set of Samples; Dashed Line- Second set of Samples.
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Figure B.2 - Statistical Indexes for Particulate Absorption anap and TSM/TSOM/TSIM
Linear Fitting

(a) (b)

(c) (d)
Color code: Black-TSM; Red-TSOM; Blue-TSIM; Magenta-Chla. Symbol code: Solid

Line- First set of Samples; Dashed Line- Second set of Samples.
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Figure B.3 - Statistical Indexes for Particulate Absorption aφ and TSM/TSOM/TSIM
Linear Fitting

(a) (b)

(c) (d)
Color code: Black-TSM; Red-TSOM; Blue-TSIM; Magenta-Chla. Symbol code: Solid

Line- First set of Samples; Dashed Line- Second set of Samples.
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Appendix C

C.1 Results for Hydrolight Experiments

Figure C.1 - Hidrolight Experiment - February

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Comparison Measured AOPs and Hydrolight Derived AOPs for February field

campaign. Red - Zaneveld/0.03; Blue - Zaneveld/Doxaran; Black - 0.18/0.03; Cyan -
0.18/Doxaran; Green -Rottgers/0.03; Yellow - Rottgers/0.4; Magenta -

Rottgers/Doxaran. The name/name stand for the combination Scattering
Correction/Hydroscat Correction
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Figure C.2 - Hidrolight Experiment - August

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Comparison Measured AOPs and Hydrolight Derived AOPs for August field campaign.

Red - Zaneveld/0.03; Blue - Zaneveld/Doxaran; Black - 0.18/0.03; Cyan - 0.18/Doxaran;
Green -Rottgers/0.03; Yellow - Rottgers/0.4; Magenta - Rottgers/Doxaran. The

name/name stand for the combination Scattering Correction/Hydroscat Correction
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Figure C.3 - Hidrolight Experiment - April

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Comparison Measured AOPs and Hydrolight Derived AOPs for April field campaign.

Red - Zaneveld/0.03; Blue - Zaneveld/Doxaran; Black - 0.18/0.03; Cyan - 0.18/Doxaran;
Green -Rottgers/0.03; Yellow - Rottgers/0.4; Magenta - Rottgers/Doxaran. The

name/name stand for the combination Scattering Correction/Hydroscat Correction
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Appendix D

D.1 Statistical Indexes for TSM, TSIM and TSOM and IOPs

Table D.1 - Statistical Indexes for TSM and IOPs. For UPD, RPD and RMSE, TSM was
taken as reference.

Statistics IOPs All Stations
(N = 79)

February
(N = 23)

August
(N = 31)

April
(N = 25)

R2

(
b∗p(700)

)
0.78 0.70 0.37 0.40(

b∗bp(700)
)

0.85 0.85 0.38 0.37(
c∗(p+CDOM)(660)

)
0.84 0.85 0.38 0.39

UPD

(
b∗p(700)

)
31.34 -1.46 1.03 -0.07(

b∗bp(700)
)

-2.86 0.04 1.23 1.92(
c∗(p+CDOM)(660)

)
-4.41 0.16 0.89 1.72

RPD

(
b∗p(700)

)
35.36 26.26 27.83 29.25(

b∗bp(700)
)

30.31 14.16 28.92 25.59(
c∗(p+CDOM)(660)

)
30.36 14.49 28.82 25.22

RMSE

(
b∗p(700)

)
5.92 8.15 3.05 3.28(

b∗bp(700)
)

5.01 5.77 3.13 3.42(
c∗(p+CDOM)(660)

)
5.09 5.84 3.17 3.39
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Table D.2 - Statistical Indexes for TSIM and IOPs. For UPD, RPD and RMSE, TSIM
was taken as reference.

Statistics IOPs All Stations
(N = 79)

February
(N = 23)

August
(N = 31)

April
(N = 25)

R2

(
b∗p(700)

)
0.80 0.75 0.45 0.37(

b∗bp(700)
)

0.86 0.83 0.51 0.62(
c∗(p+CDOM)(660)

)
0.85 0.83 0.52 0.62

UPD

(
b∗p(700)

)
-0.90 -5.89 -31.03 -4.24(

b∗bp(700)
)

10.93 0.05 -13.17 1.43(
c∗(p+CDOM)(660)

)
-67.13 0.36 -15.83 0.97

RPD

(
b∗p(700)

)
61.37 33.08 54.10 39.67(

b∗bp(700)
)

45.59 21.02 42.19 30.54(
c∗(p+CDOM)(660)

)
47.12 20.30 42.86 30.60

RMSE

(
b∗p(700)

)
4.89 6.72 2.57 2.50(

b∗bp(700)
)

4.12 5.64 2.50 2.05(
c∗(p+CDOM)(660)

)
4.17 5.58 2.50 2.05

Table D.3 - Statistical Indexes for TSOM and IOPs. For UPD, RPD and RMSE, TSOM
was taken as reference.

Statistics IOPs All Stations
(N = 79)

February
(N = 23)

August
(N = 31)

April
(N = 25)

R2

(
b∗p(700)

)
0.05 0.00 0.00 0.00(

b∗bp(700)
)

0.28 0.46 0.00 0.00(
c∗(p+CDOM)(660)

)
0.28 0.42 0.00 0.00

UPD

(
b∗p(700)

)
18.29 35.21 20.77 53.89(

b∗bp(700)
)

18.07 42.43 52.87 56.59(
c∗(p+CDOM)(660)

)
18.79 47.18 38.45 61.65

RPD

(
b∗p(700)

)
13.56 29.59 20.96 64.89(

b∗bp(700)
)

10.67 39.52 20.25 62.73(
c∗(p+CDOM)(660)

)
11.13 46.97 11.14 66.62

RMSE

(
b∗p(700)

)
2.24 2.13 1.72 2.17(

b∗bp(700)
)

2.37 1.73 2.99 2.83(
c∗(p+CDOM)(660)

)
2.41 1.81 3.54 2.96
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Appendix E

E.1 Measured AOPs

Figure E.1 - Diffuse Attenuation Coefficients (Kd and Klu) for the 400 to 800 nm interval

(a) September (b) February

(c) August (d) April
Color Code: Red: Ku; Black: Kd
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