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ABSTRACT

We present a model that unifies the cosmic star formation rate (CSFR), obtained
through the hierarchical structure formation scenario, with the (Galactic) local star
formation rate (SFR). It is possible to use the SFR to generate a CSFR mapping
through the density probability distribution functions (PDFs) commonly used to
study the role of turbulence in the star-forming regions of the Galaxy. We obtain
a consistent mapping from redshift z ∼ 20 up to the present (z = 0). Our results
show that the turbulence exhibits a dual character, providing high values for the star
formation efficiency (〈ε〉 ∼ 0.32) in the redshift interval z ∼ 3.5−20 and reducing its
value to 〈ε〉 = 0.021 at z = 0. The value of the Mach number (Mcrit), from which 〈ε〉
rapidly decreases, is dependent on both the polytropic index (Γ) and the minimum
density contrast of the gas. We also derive Larson’s first law associated with the
velocity dispersion (〈Vrms〉) in the local star formation regions. Our model shows
good agreement with Larson’s law in the ∼ 0.1 − 30pc range (when our model is
compared to the observational data), providing typical temperatures T0 ∼ 2− 50K
for the gas associated with star formation. As a consequence, dark matter halos of
great mass could contain a number of halos of much smaller mass, and be able to
form structures similar to globular clusters. Thus, Larson’s law emerges as a result of
the very formation of large-scale structures, which in turn would allow the formation
of galactic systems, including our Galaxy.

Keywords: Star Formation. Turbulence. Large-Scale Structures. Cosmology.
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CONECTANDO A TAXA CÓSMICA DE FORMAÇÃO ESTELAR
COM A TAXA DE FORMAÇÃO ESTELAR LOCAL

RESUMO

Apresentamos um modelo que unifica a Taxa Cósmica de Formação Estelar (CSFR
em inglês), obtida atravez do cenário de formação de estruturas, com a taxa de
formação estelar local (Galáctica) (SFR em inglês). É possível utilizar a SFR para
gerar um mapa da CSFR através da função de distribuição de probabilidade (PDFs)
da densidade comumente utilizada no estudo do papel da turbulência nas regiões
de formação estelar na Galáxia. Obtemos um mapa consistente a partir de redshift
z ∼ 20 até o presente (z = 0). Nossos resultados mostram que a turbulência exibe
um caráter dual, resultando em altos valores para a eficiência de formação este-
lar (〈ε〉 ∼ 0.32) no intervalo de redshift z ∼ 3.5 − 20 e reduzindo seu valor para
〈ε〉 = 0.021 em z = 0. O valor do número de Mach (Mcrit), para o qual 〈ε〉 decresce
rapidamente, é dependente em ambos do índice politrópico (Γ) e do contraste de
densidade do gás (scrit). Derivamos a primeira Lei de Larson associada a disper-
ção de velocidade (〈Vrms〉) nas regiões de formação de estelar local. Nosso modelo
mostra boa concordância com a Lei de Larson no intervalo ∼ 0.1 − 30pc (quando
nosso modelo é comparado com dados observacionais), com temperaturas típicas
T0 ∼ 2 − 50K para o gás associado a formação estelar. Como consequência, os
halos de matéria escura com maior massa poderiam conter halos de menor massa,
formando estruturas semelhantes aos aglomerados globulares. Sendo assim, a Lei
de Larson emerge como um resultado da formação estelar cosmológica e vinculada
com a formação das estruturas em grande escala do universo, da qual possibilitaria
a formação de sistemas galacticos, incluindo a nossa Galáxia.

Palavras-chave: Formação Estelar. Turbulência. Estruturas em Grande-Escala. Cos-
mologia.
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1 INTRODUCTION

This first chapter, we review essential concepts that are fundamental in our study of
theoretical star formation rate (SFR), the leading subject of this work. However, it
is important to make clear that this thesis presents a discussion about the similarity
that exists between the local and cosmological star formation. Unifying the descrip-
tion of these two cosmic rates, we have been able to obtain, in an analytical way, the
evolution of the Mach number as a function of the redshift, obtaining this function
from the time the first star formed in the universe to the present. On the other
hand, it is also possible to obtain originally an interpretation of the so-called Lar-
son’s Law, which emerges as a consequence of the formation of large-scale structures
of the universe. The original results of this work are described in two articles:

a) Connecting the Cosmic Star Formation Rate with the Local Star Formation
(GRIBEL et al., 2017); written in co-authorship with Oswaldo D. Miranda
and José W. Vilas-Boas.

b) Can Globular Clusters Contain Dark Matter? to be submitted to "The
Astrophysical Journal"; written in co-authorship with Oswaldo D. Miranda
and José W. Vilas-Boas.

As a result, the text of this thesis will contain some paragraphs similar to those
found in our articles. This is natural since, in fact, this thesis originated from the
articles that we publish.

In section 1.1, we focus on structure formation, this theory describes how large-
scale structure (LSS) forms and evolve in cosmic time. Comprehend this will lead
us to formulate a cosmological model for the SFR, as will be seen in chapter 2. In
section 1.2, we focus on regions of the interstellar medium (ISM) where occurs the
formation of stars, the molecular clouds (MC) and their dynamical properties, which
are essential for characterising the local SFR (chapter 3). Section 1.3 introduces the
SFR both in theoretical and observational aspects. We focus on the cosmological
process directly related to the formation of the first stars of the universe. The local
(galactic) star formation emerges, in this scenario, as a result of the formation of
large-scale structures. We conclude this chapter, with section 1.4, reinforcing the
primary objectives that led us to develop this work.
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1.1 Theory of Structure Formation

The standard model of cosmology describes a Universe that is homogeneous and
isotropic at scales greater than 100 Mpc. However, at small scales, we observe struc-
tures like galaxies and clusters of galaxies creating sheets and filaments. To under-
stand how these structures have formed, we need a theory that defines how initial
perturbations grow through gravitational instability.

The study of gravitational instability, or gravitational Jeans instability, was done by
Jeans (1902). In his work, he analyses the instabilities of clouds of gas in the process
of star formation in a static Universe. However, this treatment is also applicable to
our study of LSS. Jeans (1902) considered small fluctuations in density and velocity
in a mean fluid that is homogeneous and isotropic. He showed how these perturba-
tions grow in time if the pressure is smaller than the gravity of a density fluctuation
(COLES; LUCCHIN, 2002), as we will see below.

The theory of structure formation is very complicated and requires general relativ-
ity. However, for our purpose, it will be sufficient to limit our study to the linear
and Newtonian case. So we are restricted to perturbations δ << 1 (see below the
definition of δ); the size of the structure is smaller than the horizon size, and the
matter content can be treated as a non-relativistic fluid.

Consider an ideal fluid described by density ρ(t, ~r), velocity v(t, ~r), pressure p(t, ~r)
and φ the gravitational potential, where t is time and ~r is the Cartesian coordinate.
The fluid equations are given by (MO et al., 2010),

∂ρ

∂t
+ ~∇~r.(ρ~v) = 0 (1.1)

∂~v

∂t
+ ~v.~∇~r~v = −1

ρ
~∇~rP − ~∇~rφ (1.2)

~∇2
~rφ = 4πGρ (1.3)

Note that the equations above have four unknown variables for three equation. Thus
to close the set of equations we need the equation of state (EOS), that determines
the thermodynamics of the fluid, P = P (ρ, S), where S is the entropy. We know
that dS = dQ/T , and

2



T
dS

dT
= H− C

ρ
(1.4)

where H and C are, respectively, the heating and cooling rate per unit volume. Using
the first law of thermodynamics, we have

TdS = d

(
3
2
P

ρ

)
+ Pd

(
1
ρ

)
(1.5)

remembering that P = (ρ/µmp)kBT , substituting the temperature into equation
(1.5),

d, lnP = 5
3d ln ρ+ 2

3
µmp

kB
Sd lnS, (1.6)

P ∝ ρ5/3exp
(2

3
µmp

kB
S
)

(1.7)

We can perturb the fluid around its Hubble flow and solve the hydrodynamical
equations at first order in the perturbed quantities. Thus, we split each quantity into
a homogeneous background (indicated by a bar) and an inhomogeneous perturbation
(indicated by a δ), where the perturbations are small compared to their background:

ρ→ ρ̄(t) + δρ ≡ ρ̄(t)(1 + δ(~x, t)) (1.8)

P → P̄ (t) + δP (1.9)

~u→ ~v + a(t)H(t)~x (1.10)

φ→ φ̄(x, t) + δφ (1.11)

where a(t) is the scale factor of the universe and H(t) is the Hubble parameter.
However, we are considering a universe that is Friedmann-Robertson-Walker
(FRW), that is expanding, remembering that the co-moving coordinate ~x is given
by ~r = a(t)~x, so the peculiar velocity ~v is,

~u = ȧ(t)~x+ ~v, ~v ≡ a~̇x, (1.12)

3



that describes the motion of the fluid element relative to the fundamental observer
(the one co-moving with the background) at ~x. With (x, t) replacing (r, t) as the
space-time coordinates, the time and spatial derivatives transform as

~∇~r →
1
a
~∇~x;

∂

∂t
→ ∂

∂t
− ȧ

a
~x.~∇~x (1.13)

Each equation (1.1), (1.2) and (1.3) has the correspondent perturbed equation, as
shown below,

∂δ

∂t
+ 1
a
~∇~x.~v = 0 (1.14)

∂~v

∂t
+H~v+ = − 1

aρ̄
~∇~xδP −

1
a
~∇~xφ̄ (1.15)

∇2φ = 4πGa2ρ̄δ (1.16)

and equivalent background equation, that correspond to the FRW Universe,

∂ρ̄

∂t
+ 3ρ̄H = 0 (1.17)

∂H

∂t
+H2 + 4π

3 Gρ̄ = 0 (1.18)

∇2
rφ = 1

a2
~∇~xφ = 4πGρ (1.19)

Considering the equations above, we reach

∂2δ

∂t2
+ 2H∂δ

∂t
= 4πGρ̄δ + c2

s

a2∇
2δ (1.20)

As we are restricted to the linear regime, we can describe the perturbation fields in
Fourier modes, and each mode will evolve independently. So using the fact that ∇
can be replaced by i~k and ∇2 by −k2 in the Fourier transformation, we obtain

∂2δ~k
∂t2

+ 2H∂δ~k
∂t

+
[
k2c2

s

a2 − 4πGρ̄
]
δ~k = 0 (1.21)

4



Solving this equation will lead us to the evolution of the perturbation with cosmic
time. Note that, it is a second order differential equation, so we will have two solu-
tions, as we will discuss below. The second term is responsible for suppressing the
perturbation, and this effect has to do with the expansion of the Universe described
by the Hubble parameter, this term is also known as Hubble drag. The last term will
deal precisely with the concept of gravitational instabilities, the gravity is respon-
sible for the increase of an overdensity, grabbing more and more matter from the
surround. In contrast, the pressure prevents the collapse if it is stronger than the
gravity term, the inhomogeneities will not grow (DODELSON, 2003).

Considering a static universe, we set H = 0, so the equation (1.21) became

d2δ~k
dt2

= −ω2δ~k with ω2 = k2c2
s

a2 − 4πGρ̄ (1.22)

Setting ω = 0 defines the Jeans length,

λpropJ = a(t)λcomJ → λpropJ = cs

√
π

Gρ̄
, (1.23)

For λ < λJ (k > kJ) we have ω2 > 0 and the solution of the equation (1.22), is
δ~k(t) = Ae±iωt that is a solution for sound waves. Considering now λ > λJ (k < kJ),
the corresponded ω2 < 0, the pressure can not support the gravity - this is the case
we are looking for, when the perturbations can grow.

The evolution of the Jeans length for the baryonic component can be calculated using
the equation (1.23). Considering ρ̄ for different epochs, before and after recombina-
tion. So we know that the baryonic matter and radiation decouples from each other
after recombination, so the sound speed can be approximated as a non-relativistic
monatomic gas (MO et al., 2010),

cs =
(

5kBT
3mp

)1/2

(1.24)

However, before recombination, the baryons and photons act like a single fluid, and
so the adiabatic sound speed is

5



cs = c√
3

[
3
4
ρ̄b(z)
ρ̄γ(z) + 1

]
(1.25)

In this case, because the content of the fluid is relativistic, the Newtonian treatment
cannot be considered a good approximation. Nevertheless, for an order-of-magnitude
analysis, we may still use this to define a Jeans length.

Setting the density perturbations as a pressureless fluid, the equation (1.21) give us,

d2δ

dt2
+ 2 ȧ

a

dδ

dt
= 4πGρ̄mδ (1.26)

Deriving once more equation (1.18),

d2H

dt2
+ 2 ȧ

a

dH

dt
= 4πGρ̄mH (1.27)

this give us the solution for the background as δ− ∝ H(t). Using this solution
and with a little algebra we obtain the second solution, known as growing mode or
growing function (for more detail see (DODELSON, 2003)),

δ+ ∝ H(a)
∫ a

0

da′

[a′H(a′)]3 . (1.28)

For a realistic case, the equation above is fitted given the following solution regarding
density parameters for matter and dark matter in ΛCDM scenario (CARROLL et al.,
1992),

δ+(a) ≈ 5Ωm(a)a
2[1− ΩΛ(a) + Ω4/7

m + (1/2)Ωm(a)]
(1.29)

It is important to emphasise that here our focus is the perturbation on the cold
dark matter (CDM) and the behaviour of the baryon component. Here we briefly
summaries a few results on the GR treatment that will be useful to understand the
formation of LSS in next chapter.

Until the fluctuations of the CDM enter the horizon they are frozen. At Sub-horizon,
matter fluctuations starts to grow logarithmically in the radiation era, that is δm ≈
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ln a. They turn to a power-law, δm ≈ a at matter era and then stops growing at the
dark energy era. This behaviour is described by what we call as transfer function,
that tell us the evolution of the CDM component from primordial perturbation to
a redshift z, as we will see in section 2.1.2.

The baryon perturbation cannot be completely described only with the Newtonian
theory this is mainly because before the decouple (z > zdec ≈ 1100) photons and
baryons are coupled strongly to each other via Compton scattering. However, after
the decoupling, both fluctuations, the baryonic and CDM, are coupled to each other
via gravitational potential of the total density (ρdm + ρb). One of the results is
that the baryonic perturbation follows (or approximates) the perturbation of CDM
during the matter era, δb → δdm (BAUMANN, 2015).

1.2 Interstellar Medium

The ISM is an extended and complex matter that goes beyond the scope of this
thesis. However, we are interested in regions of star formation, the molecular clouds
(MC), that compose 2-4% of this medium. The MC differ from other parts of the
ISM by their gas properties, that is dense, cold and in the molecular form. These
objects are the largest molecular structures that range in mass values of 103 to
106M� and few parsecs. The star formation will be occurring in the densest regions
of these clouds, the molecular clump/cloud (MC), sub-section 1.2.2 (SMITH, 2004;
KLESSEN, 2004).

1.2.1 Interstellar Turbulence

Turbulence is defined as a chaotic motion and when it occurs dominates over oth-
ers phenomena and increasing energy, dissipation, mixing, heat transfer, and drag
(GEORGE, 2013). Turbulence is also a physical process very present in astrophysics.
In regions like MC, it plays a vital role in the star formation rate, as we shall see in
the next section 1.3. However, theoretical studies of turbulence are mostly defined
by a flow that is incompressible and subsonic rather than compressible, supersonic
and magnetised, that characterise the MC and is far more complicated (KLESSEN,
2004).

Although we are interested in supersonic turbulence, here we briefly comment some
results of incompressible and unmagnetized flow that will give us insights of the
behaviour of the turbulence on regions of star formation. The velocity field evolves
according to the Navier-Stokes equation, this equation is non-linear and is not trivial
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to resolve, i.e. (FALCETA-GONCALVES et al., 2014).

Kolmogorov (1941) studied a solution for this equation based on dimensional analy-
ses that describe well the behaviour of the turbulence. He assumed that the turbu-
lence is driven by larger scales defined as L, and form eddies. These eventually inter-
act with each other, transferring energy to smaller scales, forming smaller eddies.This
process is called the cascade of energy. The energy is dissipated as Ė = ηv3/L, where
η is a constant.

From these we obtain the energy spectrum E(k)dk ∝ k−5/3dk, where k = 2π/l,
and l is the dynamical scale. So there is an important range that characterises the
transference of energy down scales without an influence of the driving or viscosity,
the so-called inertial range.

The ISM has characteristic far from what we saw above, it is highly compressible,
reaching a Mach number up to 50 in cold regions, i.e. MC. These regions also have
different phases, following an equation of state (EOS) where the pressure and tem-
perature depend on the density, P ∝ ρΓ, with Γ being the polytropic index. We
also have the driving mechanism of the turbulence that has a variety of process at
different scales.

How do we characterise the turbulence in the ISM? One of the most used tools is
statistic, more specific the one-point probability distribution function (PDF), f(x),
where x is a variable such that f(x)dx is the probability of this variable be in the
interval [x, x+dx]. Usually these variable describes the turbulence on these mediums,
like, the velocity v-PDF, velocity increments ∆v-PDF, and density ρ-PDF.

The PDF’s obtained with observations show a non-Gaussian behaviour, which con-
tradicts with those found in numerical models for incompressive turbulence, this
emphasises that the ISM cannot be described by this theory and that the turbu-
lence is highly compressible.

The driving mechanism, or the origin, of the turbulence in the ISM, is a complex
topic and not understood yet. These driving sources depend on the scales we are
considering.

1.2.2 Molecular Clouds

On our way to understand the star formation process, we must comprehend struc-
tures like a molecular cloud, referred hereinafter as MC. They are substructure,
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densest regions of giant cloud (GMC) compose by gas in molecular form and is
where stars are born. These regions usually are not well defined, and the matter
distributions suffer rapid transitions from molecular to atomic, forming an envelope
of neutral hydrogen (LARSON, 1994).

Here our focus is on the observational proprieties of these clouds. The relevant
observational data are the linewidth and the integrated line strength of molecular
clouds. For a Gaussian line, the variance (or velocity dispersion) is related to the
Full Width at Half Maximum (FWHM) of the observed lines, as follows,

FWHM = 2
√

2 ln 2σ ≈ 2.355σ. (1.30)

When these clouds are observed at large distances or with low spatial resolution,
the surface density becomes constant for all these MC at a value of ∼ 100M� pc−2.
This reveals a scaling relation known as Larson’s law (LARSON, 1981). Another
characteristic is that all clouds show us a velocity dispersion greater than predicted
by thermal motion of temperatures 10−20 K and the average can be described with
a scaling relation (KLESSEN, 2011),

σ = 0.5
(

L

1.0 pc

)0.5

kms−1 (1.31)

This contribution of the velocity dispersion is associated with supersonic turbulence.
Combining these two relations, we get the third one,

αvir ≡
5σ2L

GM
≈ 1, (1.32)

where M is the mass of the cloud and G is the gravitational constant.

It is important to emphasise that these regions, commonly known as clumps and
cores, pre-set the masses of the stars. So the central question here is, how occurs
the transition between cloud and stars? How much of this gas is turned into stars?
Moreover, how is it distributed?

These clump masses have a distribution that follows a power law, the so-called core
mass function (CMF), given by
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dN

d logM
∝Mα (1.33)

where α ≈ −0.6± 0.2.

Different from the analytic or simulation case, here this information is taken from
observed quantities. However, these measurements are dimensionally limited, along
with the line-of-sight.

Information about the velocity structure of the MC is obtained from the line profile,
that is the histogram of the radial velocities.

1.3 Star Formation

Last section we discuss some proprieties of the MC, here we are going to focus on
their correlation with the star formation process and how to measure it (subsection
1.3.1). To complement, we also review theoretical models that explain some of these
observations, subsection 1.3.2.

1.3.1 Observational aspects

There are different tracers of the star formation process, and each one is sensitive
to a range of mass. So for the case where we have massive stars, we can use the
ultraviolet (UV) light although this method is usually very affected by the dust
emission. Hα emission can also be used and is restricted to HII regions that are
photoionized by O stars that have a lifetime up to 20Myr. Infrared emission is
obtained from the energy that dust absorbs from the UV and is reradiated as MIR
and FIR. This is the direct indicator that is used to obtain the SFR.

The cosmological SFR, on the other hand, also uses UV observations. However, the
observable samples are flux-limited making the intrinsic luminosity of the faintest
objects vary with the redshift. The incompleteness of the samples is corrected by
using a functional (called Schechter function) to the luminosity function obtained
from the observations themselves. As a result, the cosmological SFR is mainly de-
rived from the observed luminosity at high redshift, and dominated by the luminosity
of the high mass stars.
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1.3.2 Theoretical models

1.3.2.1 Turbulence-regulated: The local star formation

Fluid dynamical forces drive most of the fundamental processes in the Universe and
so play a crucial role in our understanding of astrophysics.In star formation mod-
els, turbulence in molecular gas is the primary mechanism to regulate the efficiency
of the SFR. There is consent, in the literature, that turbulence works against the
gravitational collapse on average. However, turbulence is intermittent, and there are
always regions where the turbulent flow tends to raise the gas density and thereby
promote gravitational collapse. Thus turbulence plays a dual role, preventing col-
lapse on large-scales while encouraging it in unusual, local regions.

However, our knowledge about turbulence is limited, given by Kolmogorov’s the-
ory (K41) (KOLMOGOROV, 1941). In this theory, turbulence is incompressible, ho-
mogeneous and isotropic, characteristics that do not correspond to the ISM. The
turbulence in the interstellar medium is highly compressible and supersonic, this is
difficult to study analytically, so we need to resort to full 3D computer simulations.
One of the results obtained in these simulations is the density probability distri-
bution function (PDF) and the power spectrum of such compressible, supersonic
turbulence. The ρ-PDF is the key ingredient for theories of star formation.

1.3.2.2 Cosmological model

The cosmological model for star formation is intrinsically coupled with the very
formation of large-scale structures that we observe. As a result of the evolution of
density perturbations after recombination, the first halos of dark matter decouple
from the expansion of the Universe and collapse at redshift ∼ 20. This generates
conditions so that the baryonic matter falls into the wells of the gravitational po-
tential of these halos, initiating the star formation and ending the so-called "cosmic
dark ages" (which lasted from the end of recombination to the formation of the first
star of the universe) (BROMM; LARSON, 2004; BROMM, 2013).

There are different possible variants to describe the SFR from this basic scenario
(above highlighted). However, what we will follow in this thesis is the description
developed in the work of Pereira and Miranda (2010)
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1.4 Main purpose

The studies on star formation, as done so far, treat local star formation and cos-
mological star formation as distinct models. It is unclear, from these models, if
the physical processes that dominated star formation at high redshifts are the same
physical processes that regulate star formation at the local level (molecular clouds in
our galaxy and nearby galaxies). In this work, we present a model that unifies these
two star formation rates. The physical processes describing both star formations are
the same. In this unified scenario, turbulence is the moderating agent that facilitates
and induces star formation at low Mach number values; reducing star formation ef-
ficiency when a given critical Mach number is exceeded. In our model, the so-called
Larson relations (which apply to local star formation) emerge as a signature of the
cosmological star formation. Structures formed at high redshifts resemble globular
clusters, which once incorporated into more massive halos form galaxies. It is the
set formed by the unified scenario and its implications that constitutes the central
objective, and the motivation, of this thesis.
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2 COSMIC STAR FORMATION RATE

As we saw in section 1.1, the theory of structure formation is a basis to construct a
theory of cosmological SFR. There we work on the linear regime, δ << 1. However,
the structures that we see today have densities higher than the average density of
the Universe. As these perturbations eventually became non-linear, δ > 1, we need
a new formulation to describe this evolution (subsection 2.1.1). In general, non-
linear evolution is very complicated, and there is no analytic formula describing the
general case. Here our focus is on dark-matter perturbations that will grow and form
structures know as dark matter halos (DMH), these objects are fundamental on
the study of galaxy formation, and so on the process of star formation.

The Cosmic Star Formation Rate from now on referred to as CSFR, is based on the
hierarchical or "bottom-up" model for galaxy formation. In this scenario individual
structure, progenitor, form a larger structure by the process of merging, i.e. the
DMH, that grows in mass as it mergers with halos of lower masses.

Figure 2.1 - Flow chart describing the process of galaxy evolution.

Source: Mo et al. (2010)

Briefly, as the halos collapse, they add material from their neighbourhood, and this
will become the gas content that will turn into stars (cold gas in Figure 2). Thus
the CSFR, is given by the amount of gas entering into the halos, so the process that
governs the SFR in this scenario is described by the interplay of gas falling into
collapsed object, and the feedback of these gas through others processes, like stellar
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winds and supernova event (section 2.2). Figure 2 represents the various process
that occurs in the evolution of a galaxy and how they affect each other.

2.1 Dark Matter Halo

In this section we focus on DMH, that is, the statistical proprieties of these objects
that are the host of the star formation process. So first we need an analytic model
that characterises the density perturbation of CDM in the non-linear regime, this is
given by the spherical collapse model (sub-section 2.1.1), and then we go to impor-
tant statistical properties as power spectrum and their normalisation, variance and
transfer function (sub-section 2.1.2) and finalise with mass spectrum of virialized
DMH, that will be the basis of the cosmological model.

2.1.1 Spherical collapse model

In this subsection, we extend the study of structure formation to the non-linear
case (gravitational collapse), with a focus on collisionless systems, like dark matter,
where the primary physical interaction is gravity.

We already know the behaviour of the linear perturbation δlin. As time goes by,
non-linear effects become important. Thus, we can describe the overdensity δ into a
linear and a non-linear part at every time, i.e. δ(t,~k) = δnl(t,~k) + δlin(t,~k). At early
times, δnl is basically zero and δ ' δlin holds at all scales of interest (linear regime),
here we consider a spherical density that at these times approaches the density
of the background, ρ̄, and expands, together with the background, accordingly to
the Friedmann equation (Hubble flow). So we need to find the dynamics of these
densities.

First, we consider the density of the perturbation. We consider a spherical density
perturbation contrast in the absence of cosmological constant. According to Newto-
nian equation,

d2r

dt2
= −GM

r2 (2.1)

where M is the mass within the mass shell. Integrating (2.1) we obtain,

1
2

(
dr

dt

)2

− GM

r
= E (2.2)
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We are interested in the solution when E < 0, that is, when the spherical shell col-
lapse instead of expand (E > 0). The solution is given by two parametric equations,

r = A(1− cos θ) (2.3)

t = B(θ − sen θ) (2.4)

where A and B are two constant to be determined by the initial conditions. To find
these constants, we expand the solutions for θ � 0

r = A

(
θ2

2 −
θ4

24

)
and t = B

(
θ3

6 −
θ5

120

)
(2.5)

Doing some calculus, we get to a relationship between these two constants, given by,

A3 = GMB2 (2.6)

Initially, the perturbation expands with the Hubble flow, so the evolution of ρ ≈ ρ̄.
For θ → 0,

r → 1
2Aθ

2 and t→ 1
6Bθ

3 ⇒ θ6 = 8r3

A3 = 36t2
B2 (2.7)

we obtain,

r3 = 9
2GMt2 (2.8)

Rewriting r3 = 3M/4πρ, and substituting in the equation (2.8) we obtain

3M
4πρ = 9

2GMt2 ⇒ 6πρGt2 = 1 (2.9)

So the mean density of the top-hat (that is, constant density within the perturbation)
is,
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ρ = 3M
4πr3 = 3M

4πA3 (1− cos θ)−3 (2.10)

The mean density of the background is,

ρ̄ = 1
6πGt2 = 1

6πGB2 (θ − sen θ)−2 (2.11)

The actual overdensity of our spherical top-hat region, according to the spherical
collapse model, which in general will be non-linear is

1 + δ = ρ

ρ̄
= 9

2
(θ − sen θ)2

(1− cos θ)3 (2.12)

where we have used that A3 = GMB2. So in maximum expansion (θ = π), we find
r = 2A and t = πB. The final collapse of the perturbation occurs when θ = 2π, so
r = 0 and t = 2πB. Substituting this into equation (2.12), we have for the linear
case

δt = 1, 06 δc = 1, 69 (2.13)

where δt is the density contrast at turn around and δc at the collapse. The non-linear
case is given by,

δt = 5, 55 δc =∞ (2.14)

As time passes, the perturbation grows until becomes maximal and the perturbation
stops expanding. This state is called turn around and marks the epoch when the per-
turbation decouples entirely from the Hubble flow of the homogeneous background,
and it begins the contraction.

Here we treat an idealised case, where this perturbed density is spherically sym-
metric and non-collisional so that at larger times this density will become infinitely.
However, there is no spherical symmetric overdensity in the Universe, so the per-
turbation does not collapse to a single point. In particular, since dark matter is
non-dissipative, the collapse will extend until it reaches a specific density contrast,
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as we shall see below. This point, in which the halo of dark matter ceases the con-
traction is called virialization.

2.1.2 Statistics of the overdensity field

2.1.2.1 Initial conditions and linear power spectrum

So first we use one statistic parameter know as, correlation function,

ξ(~x, ~x′) = 〈δ(~x)δ(~x′)〉 (2.15)

where 〈...〉 means the ensemble average. So because we are considering the pertur-
bations as homogeneous and isotropic, the correlation function will also obey the
same proprieties, as consequence, ξ(~x, ~x′) = ξ(r), where r = |~x − ~x′|. If we want a
spectral representation of the field, we can decompose it in Fourier modes δ~k,

〈δ~kδ
∗
~k
〉 = (2π)3δ(~k − ~k′)P(~k) (2.16)

where

P(k) =
∫
ξ(x)e−i~k.~xdx3 (2.17)

The function P(~k) is called power spectrum. Because the correlation function
obeys homogeneity and isotropy the same holds for the power spectrum, so P(~k) ≡
P(k).

P(k) ∝ kns (2.18)

If the index ns = 1 this is called Harrison-Peebles-Zel’dovich spectrum, em-
phasising that the spectrum not introduce any particular length scale.

Today we have inflation as a good candidate to reproduce this spectrum, the most
straightforward models of inflation being governed by a single inflaton field, pro-
ducing an initial density field which can be regarded as a realisation of a Gaussian
random field. The power spectrum for modes entering the horizon during matter
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domination is

P(k) ∝ kns , ns = 1− 6ε+ 2η (2.19)

where ε and η are the slow-roll parameters.

Another aspect is that the linear power spectrum of the linear overdensity field δlin
is

P(t, k) = A0k
nsT 2(k)D2

+(t) (2.20)

with A0 the normalization of the spectrum for the present time t0.

2.1.2.2 Filtering and moments

In the real universe, the overdensity field acts on all scales. As we saw in section
1.1, this overdensity field grows as δ(~x, t) ∝ D(t), with D(t) being the linear growth
rate. An important concept in cosmology is the filtering, where contributions to
the density field below a given length scale are filtered out. Mathematically, this is
obtained by convolving the overdensity with some window function W (r).

To obtain the mass function, we consider that a region with massM within a sphere
of radius R has a density contrast δ. Thus, the change in radius is given by

∆R = 1
V

∫
esf

δ(~r)d3r (2.21)

Also, we consider a window functionW (r) which is equal to 1 within the sphere and
0 outside, this is the most common window function in cosmology called the top-hat
filter with radius r. Therefore,

σ2
r = 〈∆R2〉 =

〈 1
V

∫
d3rδ(~r)W (r) 1

V

∫
d3r′δ∗(~r′)W ∗(r′)

〉
(2.22)

We conclude,

σ2
r = 1

V 2

∫
d3rd3r′W (r)W (r′)ξ(|r − r′|) (2.23)
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In Fourier space,

∆R = 1
V

∫ d3k

(2π)2/3 δkWke
i~k.~r (2.24)

Thus the variance is given by,

σ2 = 1
V 2

∫ d3k

(2π)3 〈δ
2
k〉
∫
d3kWkW

∗
k (2.25)

Again we conclude that,

σ2 =
∫ d3k

(2π)3
P (k)|Wk|2

V 2 (2.26)

The window function, in Fourier space, is

Wk =
∫
d3rW (r)e−i~k.~r = 3V

4πR3

∫
r2sen θ dr dθ dφ e−ikrcos θ (2.27)

Wk = 3V J1(kR)
kR

(2.28)

Thus, we can rewrite the equation (2.26) as:

σ2 =
∫ k2dk

2π2 P (k)
(

3sen (kR)− 3kR cos (kR)
(kR)3

)2

(2.29)

2.1.2.3 Normalisation of power spectrum

The normalisation of P(k) is frequently quoted in terms of

σ2
8 ≡

∫ ∞
0

dk

k
∆2(k)

(
3J1(Kr)

kr

)2

(2.30)

where
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∆2(k) ≡ k3

2π2P(k) (2.31)

with r = 8h−1 Mpc, which is the measure of the variance at a sphere of radius 8h−1

Mpc. The normalisation, in our case, is made using primary data obtained from
studies of cosmic microwave background radiation (through the COBE, WMAP
and Planck satellites), that probes the matter density fluctuations near horizon size
at large scales, denoting by δH , which defines

∆2(k) = k3P(k)
2π2 = δ2

H

(
k

H0

)3+n

T 2(k) (2.32)

with T (k) being the transfer function. The value of δH is given by,

105δH = 1.94Ω−0.785−0.05lnΩm
m exp(añ+ bñ)2 (2.33)

where ñ = n− 1, a = −0.95, and b = −0.169.

2.1.3 Press & Schechter Formalism

The Press & Schechter formalism (PS74) derived the mass spectrum of virialised
objects. The treatment is statistical and involves the study of density fluctuations
by assuming that there is a density threshold δc that defines the collapsed structure,
as we saw in section 2.1.

The statement is that the collapse of the objects of specific mass could be calculated
by analysing the density fluctuations on the desired mass scale. Thus the mass within
a region in which the smoothed density fluctuation has the critical value δc at some
redshift, correspond to an object that has just virialised with a mass M(R) and if
the region exceeds the critical density, this value is found when smoothed on a large
scale. So the cumulative probability gives us the volume fraction occupied by these
virialised objects,

fPS(> M) = 1√
2π

∫ ∞
1,69/σ

dx e−x
2/2 = 1

2erfc
[
ν√
2

]
(2.34)

where ν = 1, 69/σ, and erfc(x) is the complementary error function. Consider
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for example, fPS(0) should give us the fraction of all mass in virialized object,
erfc(0) = 1, and the fPS(0) = 1/2, a half of the mass density of the universe
is contained in virialized objects, this problem is associated with the underdense
regions that collapse onto overdense regions, Press & Schechter multiplied fPS by a
factor of 2 to account for all.

The number of a virialised object with masses between M and M + dM is

dn

dM
dM = ρM

M

∣∣∣∣∣dfPS(M)
dM

∣∣∣∣∣dM (2.35)

and

dfPS
dM

= 1√
2π

d

dM

[∫ ∞
ν

dxe−x
2/2
]

= 1√
2π

dν

dM
e−ν

2/2 (2.36)

We conclude,

dn

dM
dM = 1√

2π
ρM
M

dν

dM
e−ν

2/2dM (2.37)

writing in terms of mass variance,

dn

dM
dM =

√
2
π

ρM
M2

δc
σ

∣∣∣∣∣ d ln σd lnM

∣∣∣∣∣exp
(
− δ2

c

2σ2

)
dM (2.38)

2.2 Hierarchical Model for Star Formation Rate

As we saw in section 1.3.2.2, cosmological models that describe the star formation
since the first ones are based on the CDM model. Here, we will be using the model
proposed by Pereira and Miranda (2010) in a self-consistent way. The authors used
a Press-Schechter-like formalism to describe the formation of dark matter halos as
a function of the redshift. Eventually, these created halos will have conditions to
accrete baryonic matter, of the cosmological environment, that fall into the gravi-
tational wells seeding the birth of the large-scale structures of the universe. Using
Schmidt and Salpeter laws, the authors obtain the CSFR from redshift ∼ 20 up to
the present. In particular, the authors find a good agreement with the observational
data in the redshift range [0-5]. In 2011, Pereira and Miranda (2011) showed, using
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the same model, that would be direct to connect the CSFR with the growth of su-
permassive black holes. They reproduced very well the quasar luminosity function,
using their formulation, and they showed that the supermassive black holes could
reach masses up to 106 solar masses just by accretion processes.

Miranda (2012) used the same model to constrain the coalescence rates of three
different binaries: double neutron stars (NS-NS), the neutron star-black hole binaries
(NS-BH), and the black hole-black hole systems (BH-BH). After that, another work
applied the same model to investigate quintessence models of dark energy and their
connection to the CSFR (FERREIRA, 2014). These results drew the attention of
other authors who showed that the cumulative function of Long Gamma-Ray Bursts
(LGRBs) is very well reproduced by the PM-CSFR model up to redshift ∼ 8 (HAO;

YUAN, 2013a; WEI et al., 2016), they also included in their analyses a statistical test,
Kolmogorov-Smirnov test (KS-test), concluding that PM-CSFR is much better than
other CSFRs described in the literature with a p-value ∼ 0.92. Latter, Hao and Yuan
(2013b), Wanderman and Piran (2015) investigated the delay-time distribution of
short GRB progenitors, using the PM-CSFR model, which is a valuable property to
constrain the progenitor of these sources.

We are interested in the process of star formation, so to obtain the rate of conversion
of the gas into stars, in the hierarchical model, first we need to account the gas quan-
tity inside the halo. This is given by the following equation (PEREIRA; MIRANDA,
2010),

ρ̇g = −d
2M∗
dV dt

+ d2Mej

dV dt
+ ab(t) (2.39)

The first term represents the stars formed from the gas contained in the halo. Using
the Schmidt law that describes the correlation between star formation and the gas
content as a power law (SCHMIDT, 1959),

d2M∗
dV dt

= Ψ(t) = kρg (2.40)

where d2M∗/dV dt is the rate at that gas is converted in stars, ρg is the gas density,
and k = 1/τs, where τs is the time-scale for star formation.

The second term is the ejected mass from stars by stellar winds and supernova
events(feedback or outflow),
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d2Mej

dV dt
=
∫ 140M�

m(t)
(m−mr)Φ(m)Ψ(t− τm)dm (2.41)

where the lower limit in the integral, m(t) is the star mass with lifetime t. In the
integrand, mr is the remnant stellar mass, that depend on their progenitor. This
values is given below,

• Progenitors with mass m < 1M� have a high lifetime so they do not
contribute to Mej.

• For progenitors with mass 1M� ≤ m ≤ 8M�, we have

mr = 0.1156m+ 0.4551 (2.42)

• For progenitors with mass 8M� < m ≤ 10M�, mr = 1.35M�.

• Progenitors with mass 10M� < m ≤ 40M� explode as supernova leaving
neutron stars as remnants, mr = 1.4M�.

• Progenitors with mass 40M� < m ≤ 140M� produce black holes remnants,

mr = 13
24(m− 20M�) (2.43)

To calculate the gas quantity eject, we need to multiply this by the initial mass
function (IMF) and the SFR at the retarded time t − τm, where τm is the lifetime
of a star of mass m. To complement we use the fit of Scalo (1986) and Copi (1997),

log10(τm) = 10.0− 3.6 log10

(
M

M�

)
+
[
log10

(
M

M�

)]2

(2.44)

The last term is the baryon accretion rate. The fraction of baryons is obtained
considering that the baryon density follows the dark matter density, with this in
mind we can use the Sheth and Tormen (1999) mass function,

F (ν) = A

(
1 + 1

(aν)p

)(
ν

2

)1/2 exp(−aν/2)√
π

(2.45)

where ν = [δc(z)/σ(M)]2, and A = 0.3222, a = 0.707, p = 0.3 are constants. The
numerical density of halos is given by,
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n(M, z) = 2 ρ0

M2

∣∣∣∣∣dln(σ(M)
dln(M)

∣∣∣∣∣ F (ν) (2.46)

moreover, the fraction of baryons is

fb =
∫Mmax
Mmin

n(M, z)MdM∫∞
0 n(M, z)MdM

(2.47)

The integration limits in equation (2.47) are the minimum and maximum masses a
halo must have to collapse. We consider Mmin = 106M� and Mmax = 1018M�. So
the baryon accretion rate is

ab(t) = Ωbρc

(
dt

dz

)−1 ∣∣∣∣∣dfbdz
∣∣∣∣∣ (2.48)

remembering that ρc is the critical density, and dt/dz is the age of the universe given
by,

∣∣∣∣∣ dtdz
∣∣∣∣∣ = 9.78h−1

(1 + z)E(z)Gyr (2.49)

where H0 = 9.78h−1 Gyr and E(z) = ∑
i Ω

(0)
i (1 + z)3(1+ω) is the expansion term

(ω is the equation of state parameter for dark energy; as we consider cosmological
constant then ω = −1). The initial mass function is (SALPETER, 1959),

Φ(m) = Am−(1+x) (2.50)

where x = 1.35 is the IMF slope, with Φ(m) being normalised by the following
relation:

A
∫ 140M�

0.1M�
mΦ(m)dm = 1 (2.51)

The CSFR is numerically obtained through a FORTRAN code based on the Press
& Schechter formalism. First, we set some cosmological parameters (initial parame-
ters), the density of baryons, matter (baryonic + dark matter), dark energy (cosmo-
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logical constant), and Hubble parameter. These parameters are taken from WMAP
data (BENNETT et al., 2013). We also set, the redshift, the time-scale for star forma-
tion, halo minimum mass and slope of the IMF, these parameters we have chosen
from the best fit obtained by (PEREIRA; MIRANDA, 2010). The values are presented
in table 2.1. Additional parameters as the minimum and maximum masses for the
IMF are 0.01M� and 140M�, and maximum halo mass, Mmax = 1018M�.

Table 2.1 - Initial cosmological parameters.

Ωm Ωb Ωd h z τs(yrs) Mmin(M�) x
0.279 0.0463 0.721 0.7 20 2.0× 109 106 1.35

Note. Ωm corresponds to the total matter (baryonic plus dark matter) density
parameter; Ωb is the baryonic density parameter; ΩΛ is the density parameter asso-
ciated with dark energy (cosmological constant); h is the Hubble constant written
as H0 = 100h km s−1 Mpc−1; z is the redshift at which star formation begins; τs is
the timescale for star formation;Mmin corresponds to the lowest mass a halo of dark
matter must have to detach from the expansion of the universe, to collapse and to
virialize (it is approximately equal to the Jeans mass at recombination); x is the
exponent of the IMF.

Numerical integration of equation (2.39) give us the value of ρg, with this we return
to Schmidt law, equation (2.40), to obtain the CSFR. However, this first calculation
is not normalised, of course all the gas contained in these halos do not form stars.
To do this we rely on observations, the most accurate measurement is the present
SFR, ρ̇∗(z = 0) = 0.016M� yr−1Mpc−3 (PEREIRA; MIRANDA, 2010). The figure 2.2
show us the result of the simulation from redshift 20 to the present.

The efficiency of SFR during the cosmic evolution can be written as,

〈ε〉 = ρgas
ρtotal

(2.52)

where ρtotal has been already calculated, and ρgas is the fraction of the gas that was
converted into stars. The figure 2.2 shows the CSFR, it has a peak around redshift
z = 3.5 and then starts to fall, we can see this either, in the figure 2.3, that show
the efficiency against redshift. Once we have this scenario characterised, the CSFR
can be written as

At high redshift, the efficiency is constant and then drops drastically at low redshift.
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Figure 2.2 - Evolution of the CSFR with redshift derived for the hierarchical structure for-
mation scenario (standard ΛCDM cosmological model). At redshift 3.5, the
CSFR achieves maximum value (ρ̇∗ = 0.147M� yr−1Mpc−3). The observa-
tional points (HP) are taken from Hopkins (2004), Hopkins (2007).
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ρ̇?(z) = 〈ε〉ρg

τs
(2.53)

where ρg is the gas density and τs is the timescale for star formation.

We must emphasise that the 〈ε〉 has two important functions; one is to normalise
the CSFR at present time as ρ̇∗(z = 0) = 0.016M� yr−1Mpc−3; the second is to
consider the effective fraction of gas that is converted to stars.
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Figure 2.3 - Star formation efficiency as a function of the redshift. The determination of
〈ε〉 is done through Equation (2.52). The efficiency is almost constant within
the range ∼ 3.5 − 20 in redshift, with an average value close to 〈ε〉 = 0.32 .
For z ∼ 3.5, the efficiency rapidly decreases, reaching 0.021 at z = 0.
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3 GALACTIC STAR FORMATION RATE

In this chapter we focus on the local SFR, this model is characterised by dynamical
proprieties of MC. As we saw in the introduction, some dynamical process of MC,
like the supersonic turbulence, is used to control the star formation process. It is
important to emphasise that the supersonic turbulence has a dual character in the
efficiency of star formation. Depending on the scales involved, preventing the collapse
of large-scale while encouraging it in local regions. However, before discussing the
statistical aspects derived from the simulations of star formation regions, we will
diverge into the historical aspects.

Our current knowledge about galactic star formation processes comes from the work
of Kennicutt (1998b), who was the first to observe a large sample of data and find
a correlation between the gas surface density, Σgas and the SFR per unit area, Σ?,
given by

ΣSFR = (2.5± 0.7)× 10−4
(

Σgas

1M� pc−2

)1.4±0.15

M� kpc−2 yr−1, (3.1)

where ΣSFR is the star formation rate (SFR) per unit area and Σgas is the gas surface
density. This correlation can be applied to a large number of nearby galaxies. Al-
though Kennicutt (1998a) found that the relationship was adjusted by the exponent
1.4± 0.15, a similar result could be obtained by dividing Σgas, in Equation (3.1), by
τdyn—the disk orbital time.

However, as highlighted by Salim et al. (2015), a significant scattering remains from
these scenarios, so that ΣSFR can vary significantly for any of the two inputs, i.e.,
Σgas and Σgas/τ (see also (HEIDERMAN et al., 2010; KRUMHOLZ et al., 2012; FEDER-

RATH, 2013)). Additionally, with the improvement of observational data over the
last 20 years, especially through CO observations, it has been possible to study the
correlation between molecular gas and SFR at scales ∼ 0.5 − 1 kpc (LEROY et al.,
2013). In particular, this correlation has shown that the depletion time is approxi-
mately constant with τdep = Σmol/ΣSFR ≈ 2.2 Gyr, where τdep is the time required
for the star formation to use up the current molecular gas supply. It is important to
note that there is some controversy in the literature about the constancy of τdep. For
example, using COLD GASS data (CO LEGACY DATABASE FOR GASS—Galex
Arecibo SDSS Survey) (SAINTONGE et al., 2011a; SAINTONGE et al., 2011b), find a
non-constant depletion time over a wide range of galaxies, although the variation is
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small.

Based on the mass of molecular gas within the solar circle, which is on the order
of 109M�, and the SFR in the Galaxy (∼ 1M�yr−1, so yielding τdep ∼ 1 Gyr,
corresponding to 100 times the freefall time), Krumholz and McKee (2005) suggest
that the ratio εff = τff/τdep ∼ 1/100 could provide an observational constraint to
stellar formation theories. In particular, εff is called the dimensionless star formation
rate per freefall time. This quantity represents the mass of molecular gas converted
into stars per freefall time of the system.

The low inferred value for εff inevitably raises the question of what is the primary
factor that makes the star formation rate so small in molecular clouds. Although it
is possible to consider different mechanisms to explain this result, turbulence has
the highest potential to regulate star formation.

Current studies on star formation regions are mainly based on the so-called density
probability distribution function (ρ-PDF) obtained from numerical simulations. In
section 3.1 we will review some theoretical aspects associated with ρ-PDF, while in
section 3.2 we will show how the SFR can be derived from these previous concepts.

3.1 The Density Probability Distribution Function

To characterise the turbulence in these regions, we must resort to the statistical study
of dynamical variables. One of these statistical tools most used is the probability
distribution function (PDF), that can be from density or a dynamical parameter.
Here we will be using is the ρ-PDF obtained from numerical simulations. The PDF
is obtained through a normalised histogram over all particles of the simulation.

The ρ-PDF, denoted by pM(s) (or pV (s)), describes the probability that a mass M
(or a volume V ) to have a logarithmic density in the interval of [s, s+ ds].

In this section we included two PDF’s, that are most appropriate to star-forming
regions, resulting from numerical simulation of supersonic turbulence.

3.1.1 Isothermal

The ρ-PDF for isothermal and supersonic turbulence gas has a log-normal form with
a log-density contrast given by s ≡ ln(ρ/ρ0). This ρ-PDF is obtained through 3D
numerical simulations that also includes magnetic field,
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pV (s) = 1√
2πσ2

s,V

exp

(
− (s− s0)2

2σ2
s,V

)
(3.2)

This equation has two important parameters:

a) the volume-weighted density variance σs,V and,

b) the mean value s0,which is related to the variance by s0 = −σ2
s,V /2 due to

mass conservation.

3.1.2 Non-isothermal

Hopkins (2013a) first introduced this proposed ρ-PDF, he improved the model that
describes the isothermal gas (subsection 3.1.1), but the link with a non-isothermal
gas was yet not made. Hopkins (2013a), describes his model with additional super-
sonic turbulence effects, the intermittent, characterised by T , in his paper.

This ρ-PDF is given by,

pV (s) = I1(2
√
λω(s))exp[−(λ+ ω(s))]

√
λ

θ2ω(s) (3.3)

λ ≡
σ2
s,V

2θ2 ; ω(s) ≡ λ

(1 + θ) −
s

θ
(ω(s) ≥ 0) (3.4)

where I1(x) is the modified Bessel function of the first kind. There are two other
essential parameters, nominally:

a) the volume-weighted standard deviation of logarithmic density fluctuations
σs,V and,

b) the intermittency parameter θ.

When θ → 0, the intermittent model is simplified to the log-normal PDF.

Although this model does not follow a lognormal form, it can still characterise an
isothermal gas. As already emphasised in the introduction the medium where stars
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form has different phases, that is, density and temperature varies. In this case, the
form of the ρ-PDF will differ from the isothermal case and will depend on the
equation of state (EOS).

The link between the Hopkins’s PDF with a non-isothermal gas was done by Feder-
rath and Banerjee (2015). The authors studied the behaviour of the ρ-PDF in their
simulations, by modelling the EOS, given by, P ∼ ρΓ and T ∼ ρΓ−1 where Γ is the
polytropic index, and the pressure and temperature depend on the density. They
found that the ρ-PDF develop a power-law tail at low density for Γ > 1 and for
Γ < 1 it becomes closer to the log-normal distribution. They also found that for
Γ < 1 more filaments appears at small-scales than for Γ > 1.

3.1.3 Variance-Mach relation

Here we discuss the width of the ρ-PDF, that is, the relation between the variance-
Mach (σs−M). This parameter is usually linked with the properties of the turbulent
gas, like the Mach number (M) that measures the turbulence energy, the b parameter
that describes the turbulence driving mechanism (that we will be discussing better
in next section), and finally β that is the ratio of thermal to magnetic pressure
(KAINULAINEN et al., 2014).

For purely hydrodynamical, supersonic turbulent and isothermal gas, the results
from numerical simulation give a variance-mach relation as σ2

s = ln (1 + b2M2)
(PADOAN et al., 1997; PASSOT; VAZQUEZ-SEMADENI, 1998; PRICE et al., 2010). When
is also included magnetic fields, this relation has a lower value and is described by
σ2
s = ln (1 + b2M2β/(β + 1)), where β is the ratio of thermal to magnetic pressure

(MOLINA et al., 2012).

Here we reproduce the theoretical calculations for a non-isothermal gas made by
Federrath and Banerjee (2015). In this case, considering a polytropic regime of
turbulence, since it is more general and we can also recover the case for isothermal
by setting Γ = 1. So as discussed in the introduction, the supersonic turbulence
generates shock waves which cause gas compression.

Before we get into details of shock waves to find the density contrast, we need to find
the relation between the variance and the density contrast. We do this by averaging
over the whole ensemble of shocks in a cloud with a volume V , so
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σ2
ρ/ρ0 = 1

V

∫
V

(
ρ

ρ0
− 1

)2

dV ' ρ

ρ0
(3.5)

that we approximate for supersonic turbulence, ρ� ρ0. To complete the treatment,
we write the density variance as a logarithmic density variance, given by

σ2
s = ln(1 + σ2

ρ/ρ0) ' ln(1 + ρ

ρ0
) (3.6)

First, we need to define the density contrast in a single, non-isothermal shock. Con-
sidering the Rankine-Hugoniot shock jump conditions. In the stationary case, the
fluid equations give us

ρ1 v||,1 = ρ2 v||,2 (3.7)

ρ1 v
2
||,1 + P1 = ρ2 v

2
||,2 + P2 (3.8)

The velocity is perpendicular to shock front, i.e. parallel to the flow direction, and it
is, denoted by ||. The indices 1 and 2, are the pre-shock and post-shock, respectively.
The pressure for a polytropic gas is given by, P = c2

sρ/Γ. Inserting this relation into
(3.7) gives,

ρ1

(
v2
||,1 +

c2
s,1

Γ

)
= ρ2

(
v2
||,2 +

c2
s,2

Γ

)
(3.9)

substituting the mass conservation, the equation above become,

ρ1

(
v2
||,1 +

c2
s,1

Γ

)
= ρ2

(
v2
||,1
ρ2

1
ρ2

2
+
c2
s,2

Γ

)
(3.10)

The post-shock sound speed is,

c2
s,2 = c2

s,1

(
ρ1

ρ2

)1−Γ

(3.11)

substituting cs,2 in equation (3.10),
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ρ1

(
v2
||,1 +

c2
s,1

Γ

)
= ρ2

v2
||,1
ρ2

1
ρ2

2
+
c2
s,1

Γ

(
ρ1

ρ2

)1−Γ
 (3.12)

Dividing by ρ1c
2
s,1 and multiply by Γ, this give us

Γ
v2
||,0

c2
s,0

+ 1 = Γ
v2
||,0

c2
s,0

(
ρ0

ρ

)
+
(
ρ0

ρ

)−Γ

(3.13)

Denoting the pre-shock with index 0 and the post-shock without index. Substituting
M = v||/cs,0 into (3.13). If this pre-shock is turbulent, the velocity v||,0 = bv0 is only
a fraction of the total velocity, where b is the compressive-to-solenoidal mode mixture
parameter, so

Γb2M2 + 1 = Γb2M2
(
ρ0

ρ

)
+
(
ρ0

ρ

)−Γ

(3.14)

Re-writing, x ≡ ρ/ρ0, this equation becomes

xΓ + Γb2M2( 1
x
− 1)− 1 = 0 (3.15)

There are analytical solutions for this equation, but these are restricted to three
values of Γ, given below,

σ2
s = ln

[
1 + 1

8
(
4b2M2 + b4M4 + b3M3√8 + b2M2

)]
for Γ = 0.5 (3.16)

σ2
s = ln

[
1 + b2M2

]
for Γ = 1.0 (3.17)

σ2
s = ln

[
1 + 1

2
(
−1 +

√
1 + 8b2M2

)]
for Γ = 2.0 (3.18)

This equation must be solved numerically for density contrast x and a general poly-
tropic index, Γ.

The Figure 3.1 show us the value of σs vs Mach (similar to figure 8 in (FEDERRATH;

BANERJEE, 2015)). Here we chose some models by solving the equation (3.15), Γ =
0.7 and Γ = 1.5, and the analytical solutions correspond to the solid lines. Note that
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Figure 3.1 - Variance-Mach relation.
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there is a value for each lines crossing, that corresponds to a value where the critical
density is unity. With this value all models are described as x = b2M2, and then
the value of Mach and driving mechanism are given byM× = 1/b and the value of
the variance σs =

√
ln 2.

The second way to characterise σs is presented by (NOLAN et al., 2015) specifically
for adiabatic turbulence. In particular, these authors used high-resolution hydrody-
namic simulations to investigate the relationship between σs andM in both isother-
mal and non-isothermal regimes. Their main result is a new relationship between
density variance and Mach number, given by

σ2
s = ln

[
1 + b2M(5γ+1)/3

]
, (3.19)

for bM . 1, and

σ2
s = ln

[
1 + (γ + 1) b2M2

(γ − 1) b2M2 + 2

]
, (3.20)

for bM > 1, where γ is the adiabatic index.

Nolan et al. (2015) conclude that to study adiabatic turbulence, these relationships
can introduce important corrections, especially if the gas is non-isothermal (γ 6= 1).
In this thesis, however, we will strictly follow the formalism presented by Federrath-
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Banerjee (FB15) (FEDERRATH; BANERJEE, 2015). Because we have Γ,M, b beside
σs,V, then it is possible to use the Hopkins PDF (HOPKINS, 2013b) to obtain the
SFR (see, in particular, Federrath and Banerjee (2015)).

3.1.4 Intermittency

There are several views of intermittency, but we simply can say that intermittency
is related to the percentage of time a flow exhibits irregular temporal behaviour
at any selected spatial location. Said in another way, intermittency, in the sense
of dynamical systems, is a phenomenon associated with switching between nearly
steady and chaotic behaviour, or between periodic and chaotic behaviour. A com-
plete treatment on intermittency is not the scope of this monograph. Here we review
some concepts that are important to the work we are doing. An excellent reference
on the mathematical treatment of intermittency can be found in Frisch (1995),
for readers interested in learning more about this subject. To understand intermit-
tency we need first define the structure function. Considering the velocity increment
δ~u(~x, l) = ~u(~x + ~l) − ~u(~x), between two points separated by ~l.The longitudinal
velocity component is δ~u|| = δ~u(~x, ~l).~l/l such that we can define the p-th order
longitudinal velocity structure function as,

Sp(l) = 〈|δ~u|p〉 (3.21)

One finds that in the inertial range the structure function follow a power law,

Sp = apl
ξp (3.22)

where ξp are scaling exponents and ap some constants. For turbulence to be self-
similar, it is required that the state at some scale can be mapped onto the state at
some other scale by a simple linear scaling relation,

ξp = cp (3.23)

where c = 1/3. The structure function can be re-write as,

Sp(l) = apε
p/3lp/3 (3.24)
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where ap are dimensionless. See that the structure function is somewhat heuristically
defined. However, looking at Equation (3.24) we can see that for p = 2 we obtain the
widely-quoted Kolmogorov k−5/3 energy spectrum. Some authors as, for example,
Frisch (1995) call this result as Kolmogorov’s 2/3 law. In a turbulent flow at very
high Reynolds number, the mean-square velocity increment is S2(l) =< (δu(l))2 >

between two points separated by a distance l. Note that (δu(l))2 is the magnitude
of the vector δu. Thus, the structure function is related to kinetic energy in this
case. The meaning of this result is that, in these scales, the viscosity is unimportant
because inertial forces dominate viscous forces. As a consequence, Reynolds number
is very high, and at low to moderate wavenumbers, advective effects dominates
diffusive effects in the Navier-Stokes equations. We should mention that this would
correspond to Kolmogorov’s assumption for which turbulence statistics depend only
on the length scale l and the dissipation rate ε which, somehow, justify the structure
function as described in (3.24).

3.2 The SFR for polytropic turbulence

We have seen in the last section that the behaviour of the density in local star-
forming regions is described by two different ρ-PDF, one characterises the isothermal
and the other a non-isothermal gas. Joining all these concepts we can define the
fraction of the gas content in these molecular clouds that will turn into a star in one
free-fall time, the so-called SFR per free-fall time (SFRff ).

In this model, the higher densities form stars fast, because this is directly associated
with the free-fall time as,

tff =
√

3π
32Gρ (3.25)

in other words, tff is small for high densities, and so stars form fast. However, these
values are averages and do not describe the substructures of MC. In this scenario,
the SFR can be determined from the consideration that there is a minimum density
contrast to initiate the star formation process. That is,

SFR ∼
∫ ∞
ρcrit

ρ

tff (ρ)p(ρ)dρ (3.26)

We can re-write this equation in terms of s ≡ log(ρ/ρ0). This simplifies the integral,
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producing

ρ

tff
=
√

32Gρ
3π ρ ∼ ρ3/2 ∼ exp

(3
2s
)

(3.27)

then

SFR ∼
∫ ∞
scrit

exp
(3

2s
)
pV (s)ds (3.28)

This equation is known as the multi-freefall model of SFR (KRUMHOLZ; MCKEE,
2005).

3.2.1 Isothermal

Assuming the log-normal PDF given by the equation (3.2) and substituting into
(3.28), this integration can be resolved analytically, resulting in

SFR ∼ 1
2exp

(3
8σ

2
s,V

) [
1 + erf

(
σ2
s,V − scrit

(2σ2
s,V )1/2

)]
(3.29)

where,

σ2
s,V = ln(1 + b2M2) (3.30)

This case only works when considering Γ = 1. Remembering that the equation (3.28)
is dimensionless, so to obtain the total star formation in the MC, we need to multiple
by a factor "like" ρg/τs if we wish to express the local SFR in units ofM�yr−1Mpc−3.

3.2.2 Non-isothermal

Similarly to the previously section, we substitute the ρ−PDF in equation (3.28),
but here we use the Hopkins (2013a) model, referred as pV ,

SFRff (Γ ,M , b) ∼
∫ ∞
scrit

e3s/2pV (s, σs,V (Γ ,M , b), θ(Γ ,M , b))ds (3.31)

where we do not have an analytical solution and need to solve numerically.
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Here, we use a Fortran code to calculate equation (3.31). Introducing the factor
ρg/τs we have for a polytropic gas

ρ̇SFR = ρg

τs

∫ ∞
scrit

exp
(3

2s
)
phk(s)ds, (3.32)

where ρg is the gas density of the cloud and τs is the timescale for star formation.
Note that phk only denotes pV given by equation (3.3).

If we use in (3.32) the PDF of the isothermal case, no constraint will need to be
imposed on the Mach number. However, for phk representing the non-isothermal case,
then we will have a restriction on the interval of Mach. This is mainly explained by
the fact that the parameter ω(s) that compose the Hopkin’s PDF (HOPKINS, 2013b),
must always be positive, because if ω(s) < 0 then pv = 0. So this will constrain the
interval that Mach number must have to keep w(s) > 0 for each model as showed
in table 3.1 and Figure 3.2.

The Figure 3.2 is a complement that will be important to understand the mapping
that we will be doing next chapter. The upper left panel of Figure 3.2 shows the
influence of Γ on ρ̇SFR. The smaller Γ is larger the power of the integral (3.31) will
be, for fixed b = 0.40 and scrit = 2. While for Γ = 1 there is no restriction on the
Mach number, for Γ > 1 the values ofM travel within limits set by the intermittency
parameter. Note that by increasing Γ, the power of the integral decreases, as well
as the peak of ρ̇SFR, is shifted to low Mach number values.

In the upper right-hand panel we present the behaviour of solution (3.31) by setting
scrit = 2 and Γ = 1. Note that the peak of ρ̇SFR is shifted to low values of M when
b has its value increased.

In the lower panel of figure 3.2 we set Γ = 1 and b = 0.40 and we vary the value of
scrit. Note that the power of the integral (3.31) falls with the increase of scrit since
less gas will be used to form stars. In addition, increasing scrit will shift the ρ̇SFR
peak to lower Mach number.

Table 3.1 presents a summary of the main solutions of equation (3.31) and which
were presented in the three panels of Figure 3.2. The results consider b = 0.4. The
valuesMmin andMmax were chosen so as to allow a good visualisation of the solution
of equation (3.31) as shown in the panels 3.2. The parameter Mpeak refers to the
Mach number associated with the peak of the ρ̇SFR function. Models with Γ > 1
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Figure 3.2 - The local SFR versus the Mach number. In these plots we are interested only
in showing the behaviour of the solution given by equation (3.32). Thus, the
plots are presented by considering ρg/τs = 1. The reader can observe in each
of the panels which parameters were kept fixed and which were varied to
obtain the solution for the integral represented in equation (3.31).
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have the values of Mmin and Mmax constrained by the intermittency parameter.

Table 3.1 - Mach Numbers for Each Model

scrit = 2 scrit = 3 scrit = 4
Γ Mmin Mmax Mpeak Mmin Mmax Mpeak Mmin Mmax Mpeak

1.0 0.35 300.00 55.52 0.53 208.52 53.00 0.72 104.77 42.60
1.1 0.39 300.00 45.75 0.60 125.17 41.73 0.83 63.40 30.80
1.2 0.43 220.36 37.56 0.67 78.14 32.30 0.95 39.55 22.05
1.3 0.47 140.86 30.83 0.76 50.24 24.63 1.10 25.06 15.70
1.4 0.52 92.62 25.31 0.85 18.55 20.80 1.30 15.86 10.06
1.5 0.57 62.34 20.75 0.96 21.87 13.80 1.62 9.72 7.57
1.6 0.62 42.75 16.96 1.11 14.50 10.10 2.36 5.12 4.62
Note. The values of Mmin and Mmax correspond to the interval on what the ρ-
PDF does not cancel (for Γ > 1). The Mpeak is the value of the Mach number at
the maximum value of ρ̇SFR.
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4 MODEL UNIFYING THE COSMIC STAR FORMATION RATE
WITH LOCAL STAR FORMATION RATE

In this chapter, we will present the original results of our research. We will show
how from these two apparently different cosmic star formation rates, it is possible
to construct a unified model. This scenario allows one to describe the star formation
at high redshifts - at the end of the so-called cosmological dark age, as well as the
star formation of our Galaxy.

Our model shows the existence of similarity and complementarity between CSFR
and SFR. The theoretical and observational implications are quite interesting. This
chapter is based on two articles of our authorship:

a) Connecting the Cosmic Star Formation Rate with the Local Star Forma-
tion by Carolina Gribel, Oswaldo D. Miranda and José W. Vilas-Boas,
published in The Astrophysical Journal, vol. 849, 108 (2017)(GRIBEL et al.,
2017);

b) Can Globular Clusters Contain Dark Matter? by Carolina Gribel, Oswaldo
D. Miranda and José W. Vilas-Boas, to be submitted to "The Astrophysical
Journal"; written in co-authorship with Oswaldo D. Miranda and José W.
Vilas-Boas.

4.1 Similarity and complementarity between the two stellar formation
rates

There are different approaches to study theoretical star formation. They usually dif-
fer in scales and physical process that sets the SFR. As we saw in previous chapters,
at galactic-scales it is characterised by gravity and feedback models, the so-called
top-down, while in MCs or local scale, it is turbulence-regulated and magnetic-
regulated, the bottom-up models. This last one can also be used to construct the
SFR at galactic-scales, this can be done with a model that describes how these
clouds are arranged at larger scales (KRUMHOLZ, 2014; KRUMHOLZ, 2015).

So how do we proceed? The SFR, shown in chapter 3, describes the local star
formation, and following the same idea, we are going to use this SFR to reproduce
the CSFR, our cosmological model. In the same way, here we need a formalism that
characterises how the gas is arranged in larger scales, this was done in chapter 2, by
the parameter that gives the fraction of baryonic gas that enters into DMH. These
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concepts should describe the CSFR, and the parameters of the local SFR as averages
values weighted over the mean mass of the halo on a defined redshift. So we can
obtain SFR for the large scales.

Here we have to emphasise that the primary process that regulates the SFR is
supersonic turbulence. Our ansatz is that both models describe the same physical
processes. With this in mind, we can propose that

ρ̇?(z)
〈ε〉

= ρ̇SFR, (4.1)

or explicitly

ρ̇?(z)
〈ε〉

= ρg(z = 0)
τs

∫ ∞
scrit

exp
(3

2s
)
phk(s)ds. (4.2)

Comparing the equation (2.53) with (3.32), note that two variables are responsible
for regulating the SFR: 〈ε〉 and the SFR per free-fall time (SFRff ), respectively.
Both parameters have the same meaning, the fraction of gas that will be converted
into stars. However, the physical process associated with this regulation is different.
At equation (3.32) this is directly associated with the dynamics of the MC. One of
the main processes we discussed was supersonic turbulence; the turbulent flow causes
compression of the gas and forms densest regions, which eventually will become stars.
In (2.53) the efficiency was not associated with any physical process, but it can be
interpreted as an average value of a set of different processes.

Here our primary purpose is to give a physical meaning to 〈ε〉 by associating it
to supersonic turbulence. One parameter that characterises the SFR is the Mach
number1 that describes how turbulent the medium is. This is one of our primary
results and is discussed in section 4.2. More than this, we are considering both
isothermal and non-isothermal PDF, and this will have a considerable effect on the
value of Mach number and consequently on theM− 〈ε〉 relationship.

There are a few considerations that we need to analyse. First, the integral above,
equation (4.2), is solved by setting the parameters Γ, b, and scrit as functions of the
Mach number, as described in chapter 3. At z = 0 we should recover the equation
(2.53) to maintain consistency with the results of the cosmological model, so the

1Remembering always that these local parameters are going to be treated as weighted average
parameters.
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integral results as unity. Second, the local SFR should be able to reproduce the
CSFR. That is, at each value of redshift, we have a variation in the parameters ρ̇?
and 〈ε〉 on the l.h.s of equation (4.2) and we keep the density ρg(z = 0) on the
r.h.s, frozen for its value at z = 0. Then, we obtain the values ofM that satisfy the
equality of this equation for each redshift value that composes the CSFR.

For all models, we set the characteristic timescale (τs) for star formation at 2 Gyr,
these are determined by varying local parameters in intervals of, Γ = 1.0-1.4, b=0.4-
0.8, and scrit=2-4.

Figure 4.1 shows the results obtained for scrit = 2 and different values of Γ. We have
in red ρ̇?/〈ε〉 (the CSFR weighted by the efficiency) as a function of the redshift,
axes x1−y1. In blue we have the ρ̇SFR (local SFR) as a function ofM, axes x2−y2.
Let’s focus a little more attention, initially, on the top two panels of that figure.
The left panel shows a "well-behaved" model; in which it is possible to construct
a complete mapping from redshift ∼ 20 to z = 0 involving the two cosmic star
formation rates. The vertical line marks the redshift at which the CSFR reaches its
maximum value (z ∼ 3.5). On the other hand, the right panel shows a model in
which it is not possible to mimic the CSFR through the SFR. Note that mapping
is only possible in the range 4.25 . z ≤ 20. The blue dashed line in that panel
indicates the point at which the mapping "breaks". This result can be understood
by the fact that ρ-PDF for Γ = 1.6 cannot provide "enough power" in the integral
(4.2) to compensate for the variations of the parameters ρ̇? and 〈ε〉 with the redshift.
This saturation indicates that there is no physically possible solution for scrit = 2
with Γ = 1.6 (with Mpeak ∼ 17 at z = 4.25).

The vertical line marks redshift z = 3.5 where the ρ̇? (CSFR) reaches its maximum
value. For the "physically well-behaved" models this also defines a value ofM which
depending on Γ, and it ranges from ∼ 6 − 9 for z = 3.5. For the local Universe,
z = 0 theM varies ∼ 7− 13, as compiled in Table 4.1. In this table, we present the
nine physically healthy models studied in this thesis.

The bottom panels show the difference between two driving mechanisms b = 0.4
and b = 0.8. Note that both do not affect the maximum value of the SFR, so that
varying the b parameter will not change how the SFR can mimic the CSFR. The
only difference is the corresponding Mach value, mainly because the maximum value
of the SFR is not affected by the change in the driving mechanism. Only the peak
is displaced to smaller Mach numbers.
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Figure 4.1 - Mapping of model with scrit = 2. The upper panels show on the left a model
in which the SFR can mimic the CSFR over the entire redshift interval (Γ =
1.40); the one on the right shows a model where the complete mapping is
not possible (Γ = 1.60). The lower panels show the influence of the driving
parameter on the results.
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In Figure 4.2 we see the same as in Figures above, the best model is the left panel
and the worst the right one. Note that we used Γ = 1.4 because as we increase the
value of the scrit less gas is available for forming stars, as shown in Figure 3.2. So
eventually the redshift where occurs the saturation will tend to z → 20. Note that,
despite being similar to scrit = 2, the correspondentM will be different. At z = 3.5
it is in the interval of ∼ 9− 15, and at z = 0, it ranges from ∼ 11− 22 for physically
well-behaved models.

In Figure 4.3, we have the same pattern. The only model that completely map the
CSFR for scrit = 4 is for Γ = 1.0. To complete the information, we have the Table
4.1 for all the nine models, that describe the CSFR from z = 20 to z = 0.

From the Figures above, it is clear that the local SFR can, varying the Mach number,
describe the CSFR from z = 20 to the present. To verify the agreement of these
model, we evaluate the degree of deviation through the relation
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Figure 4.2 - Mapping of model with scrit = 3. Physically well-behaved model on the left
panel and model with incomplete mapping on the right.
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Figure 4.3 - Mapping of model with scrit = 4. Physically well-behaved model on the left
panel and model with incomplete mapping on the right.
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D(%) = |ρ̇?/〈ε〉 − ρ̇SFR|
ρ̇?/〈ε〉

× 100%, (4.3)

Moreover, we divide the redshift interval 0− 20 into 12, 000 linearly spaced points,
inferring the degree of deviation (D) from the equality represented by Equation (4.3).
Table 4.2 shows the result of this analysis. We take the distribution of deviations
concerning the total number of points within three classes: the first class encom-
passing deviations less than 1%; the second class comprising deviations between 1%
and 5%; the last class considering deviations between 5% and 10%.

From Figures 4.1, 4.2 and 4.3 (and also Table 4.2), it is possible to verify the excellent
mapping that the SFR, through the use of both isothermal and non-isothermal PDFs,
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Table 4.1 - Mach numbers for each of the nine models analysed.

scrit = 2 scrit = 3 scrit = 4

Γ z = 0 z = 3.5 z = 0 z = 3.5 z = 0 z = 3.5
1.0 6.8 5.8 10.9 9.3 20.8 16.6
1.1 7.6 6.4 13.8 11.3 − −
1.2 8.7 7.0 21.8 15.2 − −
1.3 10.2 7.9 − − − −
1.4 12.8 9.3 − − − −

Note. The values ofM are identified in two distinct instants of time. The redshift
z = 3.5 (the universe is about 1.8 Gyr old for the cosmological parameters used to
characterise the CSFR) corresponds to the instant of time when the CSFR reaches
the peak while z = 0 (∼ 13.7 Gyr for the age of the universe) represents the local

universe.

has made of the CSFR since the time when the first star formed in the universe
(z ∼ 20) up to the present.

Table 4.2 - Distribution of the Deviations of the Equality Established by Equation (4.2)
When We Divide the Interval in Redshift (0− 20) into 12,000 Linearly Spaced
Points.

scrit Γ D < 1% 1% ≤ D < 5% 5% ≤ D < 10%
2 1.0 0.980 0.020 8.33× 10−5

2 1.1 0.982 0.018 −
2 1.2 0.983 0.017 −
2 1.3 0.998 0.002 −
2 1.4 0.999 0.001 −
3 1.0 0.994 0.006 −
3 1.1 0.999 0.001 −
3 1.2 0.999 0.001 −
4 1.0 0.999 − 8.33× 10−5

Note. For all nine models, the deviations presented can be considered very small-less
than 1% for more than 98% of the points considered in the analysis.

So to conclude, we have a complete mapping depending on the combination of scrit
and Γ. Varying the driving mechanism does not affect the mapping. It is important
to point out once again that the "fail" models, in making a complete mapping of
the CSFR from the SFR, have as characteristic the "low power" of the integral 4.2.
That is, the integral can not cover the variations of the cosmological part (left side
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of this equation). This result is easier to understand if we follow the panels shown
in Figure 3.2 in conjunction with the panels shown in Figures 4.1-4.3; additionally
compare the model descriptions from Table 3.1 with the "healthy models" presented
in Table 4.2.

4.2 Relationship between Mach number and star formation efficiency

In this section we discuss one of our main results, that is the relationship between
the Mach number with the star formation efficiency (SFE). This result is obtained
directly by the mapping of the local SFR with the CSFR, as showed in Figures 4.1,
4.2 and 4.3 in the previous section.

Before we discuss the relations M − 〈ε〉, we analyse the evolution of the Mach
number in cosmic time. There are two ways of seeing this evolution, one concerning
redshift and another to a parameter that we call as crossing time, τe. Here our
definition of crossing time is τe = t(z = 0)/10, where t(z = 0) is the cosmic time at
redshift z = 0 and the value of 10 was chosen to compare with the results obtained in
numerical simulations made by Federrath and Banerjee (2015). In their work, all the
simulations were run for 10T , where T is the crossing time defined as T ≡ L/(2σv),
where L is the scale of the system and σv is the velocity dispersion. The authors
argue that when the turbulence reaches values of t ≥ 2T , the turbulence is fully
developed and only oscillates in small values, as we can see in the right panel of
Figure 4.4.

Although our definition for crossing time seems arbitrary, the readers can compare
the behaviour of the left panel of this Figure (our results) with the right panel
extracted from the work of Federrath and Banerjee (2015). Both panels present
"similarity of results". For Federrath and Banerjee (2015), the turbulence is fully
developed in the environment when the Mach number is approximately constant
(small ripples around an average value). It is interesting to note that our model has
the same characteristic when t/τe ∼ 2. Thus, we can say that turbulence is fully
developed in the cosmic structures when the universe reaches about 2.8 Gyr (which
corresponds to redshift ∼ 2.5). It is instructive also to verify that the two models
have the same behaviour when we vary the polytropic index Γ.

Figure 4.5 shows the Mach evolution with redshift (left) and theM− 〈ε〉 relation-
ship (right). The upper panels show all the models identified by the values of Γ,
considering scrit = 2, the bottom panels show the results for the model with scrit = 4
and Γ = 1, while the middle panels show some models with scrit = 3. Note that we
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Figure 4.4 - The evolution of Mach number according to the crossing time.
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exclude the models that does not map the CSFR from z = 20 to redshift z = 0.

We must emphasise, once more, that the local SFR, used to describe the formation
of stars in MC, can also be used to construct or "mimic" the star formation in larger
scales, the CSFR. This complementary character between these two laws of SFR,
in the models above, completely described from the very first stars formed in the
Universe to the present. This allows us to analyse the role of the Mach number and
consequently the turbulence, in the formation of the large-scale structures of the
universe.

Because our work is based on semi-analytic formalism, we can not provide rich
details about the fragments that occur in these regions of star formation, as magne-
tohydrodynamic (MHD) simulations can do. However, as already discussed before,
we present average values weighted by the mass of the DMH. These structures are
the host of the baryonic matter that will be eventually turned into stars.

Analysing the relation betweenM vs z, left panels of Figure 4.5, note that the first
halos formed at z = 20, as described by the hierarchical structure formation scenario,
have masses ∼ 106M� generating the potential wells for the fall of the baryonic
matter. As the redshift decreases, more and more massive halos can decouple from
the Hubble flow, collapse, and virialise, generating conditions to capture more and
more baryons from the surrounding environment (the universe itself). Thus, the
Mach number increases with the growth of the CSFR.

In the case scrit = 2, there is no great influence of the polytropic index (Γ) on the
results up to z ∼ 12. For the case scrit = 3, we can also verify that there is no great
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Figure 4.5 - The curves show the evolution of the Mach number with the redshift from the
map generated by the SFR for the CSFR, and also show how the cosmological
star formation efficiency, 〈ε〉, is linked toM. The top panels show some models
identified by the values of Γ with scrit = 2. Intermediate panels show the
results for scrit = 3. The bottom panels show the scrit = 4 model with Γ = 1.
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Figure 4.6 - Comparison of models with observations at low and high redshift (z).

Source: Renaud et al. (2012).

influence of the polytropic index on z value up to ∼ 15 and the models differ little.
However, as the universe evolves, the Γ parameter becomes more important to the
value ofM.

As presented in chapter 3 the behaviour of theM−Γ is consistent with the results
above, and synthesised through Equations (3.19)–(3.20), as well as from the analysis
of several authors with respect to the relation σs versusM (see, i.e., Federrath and
Banerjee (2015), Nolan et al. (2015)).

Another important aspect involving the relationM−z is that for an interval z ∼ 1−3
and local (z = 0), we found average values similar to what was also found in the
work of Salim et al. (2015). In their paper, the authors, using extragalactic sources
presented predictions to the value of the Mach number. In particular, their results
for disk galaxies agree with our results for the Mach number values within the same
redshift interval. The same can be said analysing the results of Renaud et al. (2012).
The authors found thatM = 10 for disc galaxies at high redshifts (see Figure 4.6),
that is also consistent with the results of Salim et al. (2015). So, our results with
scrit = 3 (Γ = 1.2) and scrit = 4 marginally return the estimates for the Mach number
from (RENAUD et al., 2012) to high-z mergers.

In Figure 4.5 analysing the r.h.s, observe the behaviour of the star formation ef-
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ficiency (SFE), generated by the CSFR, against the M provided by the SFR. All
the models have a similar character, with a high SFE, 〈ε〉, up to a particularMcrit.
From this critical value, the SFE rapidly decreases. These results show the dual role
played by turbulence as proposed by Klessen et al. (2010). The same authors argue
that the formation of the first stars of the Universe were subject to the same dynamic
processes of the local star-forming regions. This is precisely the result described from
the mapping CSFR-SFR.

Realise that the polytropic index do not affect the results forM <Mcrit, while for
M > Mcrit, the 〈ε〉 rapidly decrease and the models starts to diverge from each
other in the results 〈ε〉 versusM. The value ofM associated with the SFE will be
greater for higher values of Γ. This dependence is also seen in the critical density
scrit. That is,Mcrit ∼ 4 for scrit = 2, while for scrit = 3 we haveMcrit ∼ 6, and for
scrit = 4 we findMcrit ∼ 8.

Klessen (2000) showed that the SFE decreases systematically as either the driving
scale of the turbulence is decreased or the turbulent Mach number is increased. In
particular, our unified model shows this behaviour when M exceeds Mcrit. It is
worth stressing that Federrath and Banerjee (2015) present an interesting analysis
of the structures formed from non-isothermal polytropic turbulence. The authors
find, as a result of their simulations, that Γ < 1 leads to a more fragmented density
field with filaments with high density contrasts, while Γ > 1 softens the density
contrasts of small scales.

We can also analyse the relation for 〈ε〉 versus z, given in chapter 2 (Figure 2.3).
This relationship, which allows us the SFR to map the relation M versus z, can
be made with the recent work of Scoville et al. (2017). These authors, using ALMA
observations from the long wavelength dust continuum, estimate ISM masses for
708 galaxies within the range ∼ 0.3 − 4.5 in redshift. In that work, they show the
evolution of the star formation efficiency (SFE in the nomenclature of those authors)
within the range 0− 3.5 and through the relative ratio SFE(z)/SFE(z = 0).

The Figure 4.7 shows that our ratio 〈ε(z)〉/〈ε(z = 0)〉 is greater than that by
approximately a factor ∼ 1−2.5 within the same range 0−3.5. Scoville et al. (2017)
conclude that the increase in the star formation within the analysed redshift range
is due to both the increase in mass of the ISM and the increase in the conversion of
gas to stars. This result is identically obtained by PM in their model for the CSFR.

The discussions presented in this section reinforce our analysis of the complemen-
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Figure 4.7 - The 〈ε(z)〉/〈ε(z = 0)〉 evolution with redshift. The left panel shows the star
formation efficiency divided by its respective value at z = 0 obtained by
Pereira and Miranda (2010). Compare this result with the work of Scoville
et al. (2017), that is, see the corresponding red curve in the right-hand panel
(SF efficiency).
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tary between the CSFR and the SFR observed through the “SFR’s mimicry." In
particular, these results allow us to conclude that the relationsM versus z and 〈ε〉
versusM derived from our analysis are perfectly consistent with the unified model
here presented, in addition to representing well the physical processes that have been
discussed by different authors in recent works on the SFR.

4.3 Larson’s Relation

In the previous section, we saw how to use the local SFR to obtain the cosmic
evolution of the Mach number (with redshift or crossing time) and the relationM−
〈ε〉. Here we focus on how the cosmological model (CSFR) can provide information
to describe local parameters, more specifically the Larson’s relations. Remember that
we already introduced the scaling relations found in observations of MC (sub-section
1.2.2). Now we are trying to obtain these relations using the unified model.

4.3.1 Velocity-Size and Temperature

Before we start to find the values of the velocity dispersion 〈Vrms〉, we begin with
the contribution of the CSFR. As already mentioned in chapter 2, the PM model is
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based on the Press-Schechter-like formalism, so we can re-write the mass function
in order to give us the numerical density of the DMH as a function of redshift and
mass,

n(M, z)dM = f(σ, z) ρB

M2
d [lnσ(M, z)]

dlnM dM, (4.4)

where f(σ, z) is the mass function (see (JENKINS et al., 2001)), ρB(z) is the back-
ground density (dark matter component) at redshift z, and σ(M, z) is the variance
of the linear density field. It is the same equation described in chapter 2. Thus we
obtain the mean mass of the halos, given by

〈MH(z)〉 = ρB(z)∫∞
Mmin

n(M, z)dlnM . (4.5)

As we saw in section 2.1 the halo stops their expansion, start collapsing at a density
contrast δc ∼ 1.69 and then virialize at a density contrast δc ∼ 200. This defines a
radius that we call virial radius,

〈RV(z)〉 =
(

3 〈MH〉
800πρB

)1/3

. (4.6)

We consider that all the baryonic gas (ρg) that falls into these halos is distributed
within the radius (〈RV(z)〉). However, because the baryonic matter is dissipative,
part of this gas will collapse forming dense regions in the interior of these halos (we
use ρmol to represent the gas density in the innermost region of the halos). This
fraction of gas will turn into stars (ρ?) and will concentrate in a smaller radius R?,
that can be estimated by

〈R?(z)〉 = ρ?
ρg
〈RV(z)〉, (4.7)

Gribel et al. (2017) propose the equation (4.7) as a toy model to verify the Larson’s
first law. By the way, in the hierarchical model, there is a large number of mergers
of DMH of low mass that generates higher mass halos. So this proposed relation is
probably similar to what could emerge in this rich environment as a scale relation
between 〈RV〉 and 〈R?〉.
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So large-scale phenomena will eventually contribute to the gas inside these struc-
tures, that will be transferring kinetic energy to the star-forming gas (ρmol) that lies
in the innermost part of the halos. Eventually this fraction of gas that will become
stars will also have an effective radius 〈R?〉, whose density of stars formed will be
ρ? (converting from ρmol to ρ? on a characteristic time scale τs. In our case, this
large-scale is delimited by the virial radius 〈RV 〉).

Here once more we emphasise that the key point in this analyses is that the mapping
is given by the equation (4.2) must be valid in both directions. As we saw in the
last section, the SFR appropriately map the CSFR by allowing parameters such as
efficiency of the cosmological star formation (which is related to the redshift in the
cosmological context) be associated with the Mach number. Then, it must also be
possible that the CSFR can map the SFR through the characteristic scale 〈R?〉 in
which the formation of stars regulated by the turbulence occurs.

Following Hennebelle and Chabrier (2008), Hennebelle and Chabrier (2009), we
wrote for the gas velocity dispersion

〈V 2
rms〉 =M2c2

s , (4.8)

where cs represents the thermal sound speed2. Considering a polytropic equation of
state and that the gas behaves as a perfect gas we have

cs =
√

∂P

∂ρmol
=
(

Γ kB

µmH
ρ1−Γ

0 T0

)1/2

ρ
(Γ−1)/2
mol , (4.9)

where kB is the constant of Boltzmann,mH is the mass of the hydrogen atom, µ ∼ 0.5
is the average molecular weight of the gas, ρ0 and T0 correspond to the average values
for the gas (respectively, density and temperature). Only the temperature is a free
parameter (we will be choosing a value that agrees with the observational data, as
described below). However, the average density must be consistent with the others
parameters and will be different for each model.

To understand how to obtain ρ0 we argument a little. We know that the baryons
fall into gravitational potential of the halos, so that they will tend to distribute
within 〈RV〉, generating an average density ρ0. Each model is also characterised by

2The Mach number is calculated using the mapping of the CSFR with the local SFR.
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Figure 4.8 - Larson’s first relation for the model scrit = 2.
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the critical density, s = ln(ρg/ρ0), so assuming that the gas contained within 〈RV〉
has a density contrast of order scrit (〈s〉 ' scrit), where it is a characteristic value,
then we can express ρ0 as a function of ρg and ρmol.

Defining the value of the characteristic temperature, T0, we can calculate the thermal
sound speed as a function of redshift. As we have the solutionM versus z, for each
specific value of Γ, obtained from the mapping of the CSFR by the SFR, it is thus
possible to calculate 〈Vrms〉 in Equation (4.8).

The last step is to vary the parameter T0 in order to obtain the best possible ad-
justment of the 〈Vrms〉 − 〈R?〉 to the limits given by Larson’s law within the range
∼ 1− 50 pc. This best adjustment is made by using the observational data available
in the VizieR website (the name: J/ApJ/551/852 and (HEYER et al., 2001)). Of the
10156 spectra available in this catalogue, we have selected 5,400 spectra whose peak
line temperatures are greater than 3.5K. From this sample, we binned and calcu-
lated the median and error, which are also plotted together with our results. The
result of this analysis is shown in Figures 4.8, 4.9, 4.10 and 4.11.
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Figure 4.8 shows the velocity dispersion 〈Vrms〉 versus the radii of the star-forming
regions 〈R?〉. The solid blue line is the result of our unified model, and the dotted
red line corresponds to a fit of these data. The circles in light blue are the selected
data from Heyer et al. (2001), and each box has the median (cross point) and the
error bar (2σ). Looking at Figures 4.8-4.11 it is possible to infer that our model,
within 2σ, fits very well to the observational data in the range ∼ 0.1− 30 pc.

Some interesting and additional features from our model can be obtained by looking
at the red curves in the panels of Figure 4.8. The dotted red line represents an
adjustment of the type:

〈Vrms〉 = V0

(
R

1 pc

)η
(4.10)

Thus, equation (4.10) can well represent our results within the range of ∼ 1 up to 30
pc. As indicated in the panels of Figure 4.8, the model with scrit = 2 is well adjusted
by equation (4.10) with V0 = 0.71− 0.78 kms−1, η = 0.20− 0.25 and temperatures
∼ 12 − 48K (only considering the models that produce complete mapping of the
CSFR from the SFR).

On the other hand, Hennebelle and Chabrier (2008), Hennebelle and Chabrier (2009)
have shown that in their model, equation (4.10) well represents Larson’s law with
V0 ∼ 1 kms−1 and η within the range 0.40 − 0.50. However, Padoan et al. (2016)
using the same set of data, presented in this thesis, obtains η = 0.21− 0.27 showing
that our model can reproduce very well Larson’s first law (equation 4.10) in the
interval ∼ 1− 30 pc.

In Figure 4.9, we keep scrit = 2 and Γ = 1.0, note that to maintain the values of V0

and η the temperature has to increase with the higher value of driving mechanism,
again this is because of the Mach number evolution.

In Figure 4.10 we show the the velocity-size relation for scrit = 3. Here we see the
same pattern as the previous results, with values of V0 = 0.71−0.78, η = 0.21−0.25
and the temperature varying T0 = 2.1− 4.9K3.

For models with scrit = 4 only Γ = 1 completely maps the CSFR. The constants
V0 = 0.75, η = 0.23 and T0 = 2.1K.

3This range for scrit = 3, is valid for Γ = 1.0− 1.2
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Figure 4.9 - Larson’s first relation for the model scrit = 2 varying the driving mechanism.

 1

 10

 0.1  1  10

〈V
rm

s
〉(k

m
/s

)

〈R
★
〉(pc)

Heyer et. al (2001)

2σ
scrit=2; Γ= 1.0; b = 0.4; T0 = 12.0 K

f(x) = ax
b
; a=0.78; b = 0.20

 1

 10

 0.1  1  10

〈V
rm

s
〉(k

m
/s

)

〈R
★
〉(pc)

Heyer et. al (2001)

2σ
scrit=2; Γ= 1.0; b = 0.8; T0 = 48.0 K

f(x) = ax
b
; a=0.78; b = 0.20

Source: Gribel et al. (2017).

Figure 4.10 - Larson’s first relation for the model scrit = 3.
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Figure 4.11 - Larson’s first relation for the model scrit = 4.
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For the models that describe the CSFR, we summarised the interval in temperature
in Table 4.3. In each model low driving mechanism corresponds to the lower temper-
ature that each model can reach, and the maximum value for the driving mechanism
corresponds to maximum temperature.

Table 4.3 - The temperature of each model. Values are presented in Kelvin.

scrit = 2 scrit = 3 scrit = 4
Γ b = 0.4 b = 0.8 b = 0.4 b = 0.8 b = 0.4 b = 0.8
1.0 12.0 45.0 4.9 30.0 2.3 8.0
1.1 10.0 37.0 3.2 13.0 ... ...
1.2 8.0 32.0 2.2 8.9 ... ...
1.3 7.0 25.0 ... ... ... ...
1.4 5.0 20.0 ... ... ... ...

Note. We present a summary of each model in terms of the driving parameter. The
main role of b is to raise the value of the average temperature of the star formation
regions. As the forcing mechanisms change from purely solenoidal (b = 1/3) to
purely compressive (b = 1) the average gas temperature increases.

Before closing this section, it is important to mention the recent work of Tang et
al. (2017) who present measurements of kinetic temperature for six different regions
of star formation in the Large Magellanic Cloud (LMC). Because it is a nearby
galaxy in a low-metallicity environment, it is likely that the star-forming regions
studied by these authors may be more representative of the model we present in this
section. Using non-local thermodynamic equilibrium (NLTE) models, (TANG et al.,
2017) obtain kinetic temperatures within the interval ∼ 25− 80 K with 30 Dor the
source presenting the highest sample temperature. Similar results can be observed
in (TANG et al., 2017), who obtain kinetic temperatures ∼ 30 − 61 K, for massive
star-forming molecular clumps, from para – H2CO (321 − 220/303 − 202) lines ratio.
These results are compatible with the results achieved in our work.

4.3.2 Alpha Virial

As we saw in the introduction (section 1.2.2) the virial parameter is obtained joining
the two Larson’s scaling relation,

αvir = 5σ2
vR

GM
∼ 2Ek

Eg
(4.11)
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where σv is the velocity dispersion, R and M are the size and mass of the cloud. To
determine the virial parameter, we must have the information about the structure
of the MC; this is the so-called "classic way" to obtain that parameter.

The virial parameter is only suitable for clouds that have well-defined structures
(LI et al., 2015). However, the morphology of molecular clouds is, in general, quite
complicated. In many cases, it is not trivial to separate individual clouds from the
surrounding environment. Indeed, the fact that clouds are neither isolated, nor spher-
ical, nor of uniform density can lead to an order of magnitude difference in virial
parameter (see (FEDERRATH; KLESSEN, 2012)). Moreover, as the clouds are observed
projected on the plane of the sky, the morphology of these objects can be biased by
projection effects (see, e.g., (PICHARDO et al., 2000; DIB et al., 2006; SHETTY et al.,
2010; BEAUMONT et al., 2013)). Thus, there is significant uncertainty concerning the
estimated virial parameters in the literature (see, e.g., (ROSOLOWSKY et al., 2007;
HERNANDEZ; TAN, 2015)). In particular, Padoan et al. (2016), Padoan et al. (2017)
have analysed the SFR as a function of the cloud parameters, obtaining values within
the range ∼ 0.5 − 25 for the virial parameter. On the other hand, Hennebelle and
Chabrier (2011) have preferred not to set a threshold for star formation. In con-
trast, these authors consider that SFR continuously increases with gas density, thus
producing two different characteristic regimes.

Here we obtain αvir in a different way, somewhat by passing the problem of "having
to know" the structure of the MC to estimate αvir. First, we consider that the critical
density, scrit, is given by (FEDERRATH; KLESSEN, 2012),

scrit = αvirM2, (4.12)

where the Mach number depend on redshift, as a result of the unified model. To be
consistent, we must fix the value of scrit, and obtain the value of αvir that counter-
balance the Mach evolution so that we will have the virial parameter dependent on
the redshift. With this result, we return to equation (4.11) to obtain the average
mass associated with the gas fraction that forms stars, M?.

Figure 4.12 show us the behaviour of the αvir vs. M?, that can be described by the
following power law,
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Figure 4.12 - Alpha Virial. The blue solid line represents the result derived from our model.
The red dashed line represents the function that best adjusts our results.
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αvir = α0

(
〈M?〉
1M�

)−β
(4.13)

so analysing the models above we have αvir vs M? for scrit = 2 (top panels), varying
the Mach number for each value of Γ and keeping the driving mechanism as b = 0.4.
The fitting of the model (red dotted lines) give us the constants, α0 = 7.67 − 7.98
and β = 0.21 − 0.23. For scrit = 3 (bottom left) we have, α0 = 8.13 − 8.50 and
β = 0.21− 0.23. And for scrit = 4 (bottom right), α0 = 10.85 and β = 0.23.

If we fix two parameters, i.e. scrit and Γ (the left top panel with a driving mechanism
of b = 0.8), the virial parameter will depend on b and z. The behaviour of αvir versus
M? is very similar to the behaviour verified by other authors such as Padoan et al.
(2016) and Federrath and Banerjee (2015). For these latter authors, our results
are similar for times smaller than the crossing time. Remembering that small time
values correspond to high redshift, our results mirror the true evolution of αvir as
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Figure 4.13 - The mass 〈M?〉 vs the radius 〈R?〉. The solid blue line is the result of the
unified model. The dotted red line correspond to the fit of our model.
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determined by these authors.

4.3.3 Mass-size

The unified model cannot give us information about the average mass of the cloud,
as we discussed in the previous section. Thus, the mass-size scale relationship we
derive is not the total mass-size of the MCs. In contrast, what we can get from our
unified model, in the current stage, is a scale relation involving M?-R?, as can be
seen in Figure 4.13.

Considering the following power-law,

〈M?〉 = M0

(
〈R?〉
1 pc

)µ
(4.14)

We have M0 = 169 − 270M� and µ = 1.83 − 2.13 for scrit = 2. We obtain M0 =
199 − 258M� and µ = 1.84 − 2.10 for scrit = 3 and finally we have M0 = 175M�
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and µ = 1.96 for scrit = 4.

We must emphasise that we did not use observational data for the scaling relations
αvir-M? and M?-〈R?〉. The reason is that these data have much uncertainty. Thus,
it is more relevant, from a physical point of view, to derive Larson’s first law and
construct the other results consistently with it.

However, taking the recent work of Hennebelle (2012) in which the author also
studies the formation of stars within clusters, it is possible to affirm that our con-
siderations are physically well motivated and the scenario proposed in this thesis is
consistent. Hennebelle (2012) derives a relation similar to our equation (4.14) show-
ing that µ = 2 and M0 lies within the range 389-1555 M�. Our result for M0 is close
to the lower limit obtained by Hennebelle (2012).

It is worth mentioning that the hierarchical structure formation scenario predicts
the existence at z = 0 of a large number of low-mass halos that are not directly
observed. This can be explained in two different, non-exclusive ways. The first con-
siders the observational bias associated with the limit of detection of objects with
low luminosity in a given sample. The second possibility is associated with the fusion
of low-mass halos, or their incorporation by much more massive halos. In the second
case, massive halos could be composed of a number of low-mass mini-halos. From
the way we map the SFR to get Larson’s law, the hypothesis that mini-halos can be
embedded by halos of greater mass is implicit. In principle, these mini-halos would
contain a certain number of stars in a similar way to the one that is verified, mainly,
in the globular clusters (GCs).

In a recent study, Sollima et al. (2016) estimate the fraction and distribution of
dark matter in the innermost regions of two GCs of the Milky Way, namely NGC
6218 (M12) and NGC 288. The authors estimate that there is a large mass fraction
in these clusters that is compatible with concentrated non-luminous matter. More
recently, Penarrubia et al. (2017) have shown that encounters in the central regions
of GCs embedded in dark matter halos necessarily lead to the formation of an
equilibrium configuration that extends far beyond the stellar radius of the GCs.
In particular, with MDM ∼ 106M�, the authors find that the distribution of stars
could reach hundreds of parsecs while keeping their equilibrium configurations. In
addition, the presence of dark matter may lead to an increase in the line-of-sight
velocity dispersion of these systems.

Throughout section 4.3 and its subsections, we seek to show the contribution that
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cosmology (through the CSFR) can give a better understanding of the physics asso-
ciated with local star formation. This is done by obtaining Larson’s Laws from the
cosmological star formation. From the unique contributions that this work provided,
perhaps the most interesting, and disturbing, is related to this section. Galaxies in
general (including the Milky Way) would have part of their star formation contained
in minihalos of dark matter and forming structures like globular clusters. Larson’s
Law would thus emerge as a result of the incorporation of small halos into larger
structures. As a result of this dynamics, the so-called scale laws would emerge.
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5 CONCLUSIONS

Here we summarise the main results and conclusions obtained in this work. The
most of the following text is taken from our article "Connecting the Cosmic Star
Formation Rate with the Local Star Formation" published in The Astrophysical
Journal"(GRIBEL et al., 2017):

We present a unified model that allows us to describe both the cosmological star
formation represented by the CSFR and the local star formation represented by the
SFR. Due to its well-behaved characteristics, we use the formulation proposed by
(PEREIRA; MIRANDA, 2010) to describe the CSFR, while the SFR is described by
the formulation discussed in Hopkins (2013b) and (FEDERRATH; BANERJEE, 2015).
The central point of our analysis is synthesised in Equation (4.2), which in turn
allows, as an ansatz , that the variations of ρ̇?/〈ε〉 with the redshift can be mapped
by the Hopkins (general case) or isothermal PDFs through the Mach number (M).
Complete mappings from redshift ∼ 20 to the present can only be obtained for
certain combinations of scrit and Γ (keeping in mind that the connection between
Hopkins’ PDF and Γ 6= 1 was established by Federrath and Banerjee (2015)). Look-
ing at the results presented through Figures 4.1, 4.2 and 4.3 in addition to Table
4.2, we can conclude that the PDFs ordinarily used for studying the formation of
stars in our Galaxy and the near universe can effectively mimic the CSFR, which
in turn is constructed from the hierarchical structure formation scenario. Our main
conclusions are:

(i) Star formation begins at high redshifts (z ∼ 20), with gas presenting low Mach
numbers (subsonic scale M ∼ 0.5). The first stars of the universe are formed in
halos of dark matter with typical masses ∼ 106 − 107M�.

(ii) As the number of halos of higher mass increases, with the reduction of redshift,
more baryonic matter falls into the wells of gravitational potential generated by
these structures. The density of both the gas and the stars increases, causing the
degree of gas turbulence parameterised byM to increase as well. ForM . 3 − 4,
the results are little influenced by the value of the polytropic index (Γ).

(iii) Within the Pereira and Miranda (2010) formulation for the CSFR, ρ̇? reaches
its maximum value close to redshift ∼ 3.5 and the SFE (〈ε〉 = ρmol/ρg) varies little
within the z ∼ 3.5 − 20, being close to 〈ε〉 ∼ 0.3 in that interval. At z = 3.5, the
Mach number reaches a value for scrit = 2 given by the relation Mcrit ∼ 5.8 Γ1.2

(Γ ≤ 1.3), while Mcrit ∼ 5.8 Γ1.4 best describes the Mach number for Γ = 1.4.
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For scrit = 3, we find Mcrit ∼ 9.3 Γ2.65. The scrit = 4 model can map the two star
formation rates only to Γ = 1; in this case,Mcrit ∼ 16.6. ForM <Mcrit, the star
formation efficiency is high and almost constant. AboveMcrit, the efficiency drops
rapidly asM grows.

(iv) Because the CSFR provides 〈ε〉 versus z while the SFR provides the Mach
number, it is possible to construct the relations 〈ε〉 versusM andM versus z. In
particular, the identified behaviour of the relationshipM versus z, as a function of
different polytropic indices, is similar to that observed from Federrath and Banerjee
(2015) simulations and related to the volume-weighted Mach number versus time
(where time is parameterized as t/T , with T the turbulent crossing time).

(v) At z = 0, the typical values ofM lie between ∼ 7−13 for scrit = 2,M∼ 11−22
for scrit = 3 and ∼ 21 for scrit = 4. Considering M = 10 as the typical value for
the Milky Way (see (FEDERRATH; BANERJEE, 2015) and references therein), our
results are close to this value, at z = 0, for most of the nine models analysed in
this work. Another point is that our results forM versus z for both z ∼ 1− 3 and
z = 0 typically correspond to the mean values obtained by Salim et al. (2015) for
disk galaxies (similar result for the sample of disk galaxies analysed by Renaud et
al. (2012). In addition, our results with scrit = 3 (Γ = 1.2) and scrit = 4 marginally
return the estimates for the Mach number from Renaud et al. (2012) to high-z
mergers.

(vi) The turbulence shows a dual character, inducing the star formation with high
values of 〈ε〉, until reaching Mcrit. For M > Mcrit, a strong decrease in the SFE
occurs. Thus, turbulence is a regulator of the star formation, playing the dual role
proposed by Klessen et al. (2010).

(vii) The ratio 〈ε(z)〉/〈ε(z = 0)〉 provided by PM-CSFR model is in good agreement
with that obtained by Scoville et al. (2017), within the redshift range 0− 3.5.

(viii) Pereira and Miranda (2010) in their work argue that τs ∼ 2 Gyr, with a Salpeter
exponent, provides good agreement with the observational data of the CSFR. With
this value for τs, we obtain 〈ε〉 = 0.021 at z = 0, which is comparable with εff ∼ 0.01
and τdep ∼ 1− 2.2 Gyr, as inferred by several authors for star-forming regions in our
Galaxy (see, e.g., (KRUMHOLZ; MCKEE, 2005)).

(ix) Using the CSFR as a map for the SFR, it is possible to obtain a relation for the
velocity dispersion of the gas that will be directly involved with the star formation
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within the dark matter halos. In this case, following the works of (HENNEBELLE;

CHABRIER, 2008; HENNEBELLE; CHABRIER, 2009), we show that Larson’s first law
can be consistently obtained. The inferred temperatures in our model are within the
range ∼ 2−50 K, which are values similar to those inferred by authors such as Tang
et al. (2017) for molecular clouds of our Galaxy and the LMC. We have obtained the
Larson’s first law, which describes 〈Vrms〉 versus 〈R?〉, consistent with the observa-
tional data of Heyer et al. (2001). Our models fit well to observational data within
the range ∼ 0.1− 30 pc. From the models we obtained the adjustment represented
by equation (4.10) and with parameters in agreement with those obtained by other
authors. The validity of fit (4.10) is restricted to the range 〈R?〉 ∼ 0.1− 30 pc.

(x) The formulation that allows obtaining the Larson’s law implicitly adds the hy-
pothesis that the halos of greater mass are composed of many halos with much
smaller masses. Thus, the cosmological star formation would be processed, in part,
in structures similar to globular clusters. The presence of non-baryonic dark matter
in globular clusters has recently been discussed by Sollima et al. (2016) and Penar-
rubia et al. (2017). Our work shows consistency with the results and analyses of
these authors.

Our study demonstrates that there is strong complementary between the formula-
tions used to derive the CSFR and the SFR so that it is possible to think of a unified
model that adequately describes both cosmological and Galactic star formation. Al-
though our model is semi-analytical, and therefore cannot provide rich details like
those obtained from computational simulations, it can provide several interesting
clues about the role of turbulence as a regulator of star formation, as well as the
existence of anMcrit from which the efficiency of star formation rapidly decreases.
Besides, our model identifies the role of Larson’s first law as a result of the very
formation of large-scale structures of the universe, which in turn would allow the
formation of galactic systems including our Galaxy.
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