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ABSTRACT

This thesis describes a research about the effects of perturbative forces over the
motion of a spacecraft around artificial equilibrium points and over measurements
of “integral indices”. In order to accomplish the task, an initial investigation about
how the artificial equilibrium points are located in the space is done, whose results
are applied to the Sun-Earth system and to a planar solar sail. Using this concept,
solutions are proposed for a communication problem between a spacecraft located
near the classical lagrangean point L3 and the Earth, due to the presence of the Sun.
Moreover, analytical solutions are proposed to describe the motion of a spacecraft
around artificial equilibrium points, whose results are applied to a spacecraft located
near L3 in the Sun-Earth system perturbed by the gravity of Jupiter and Venus,
to be compared with numerical integrations of the equations of motion. Such kind
of analytical solutions are extended to a spacecraft located above/below a massive
body that rotates with another massive body around their barycenter, perturbed by
a general moon. This last kind of solution involves periodic corrections of the thrust
applied over the spacecraft. The results show that the analytical solution comes
closer to the numerical integration of the equations of motion when the frequency of
the corrections is higher. The influence of perturbative forces over “integral indices”
is also investigated in this thesis. Initially, they are defined analogously to the ones
known in the literature and they are evaluated using the driven harmonic, Duffing,
and Van der Pol oscillators, which may represent perturbative models of the simple
harmonic oscillator. Thus, this research is extended to a more realistic astrodynamic
case of a spacecraft moving around a massive body (the Earth) subjected to a thrust
in the tangential and radial directions. New indices are defined and evaluated using
a perturbative solution for a low, constant and radial thrust. Thus, an index is
identified as capable of describe interesting perturbative effects over the motion.

Keywords: artificial equilibrium points. analytical solutions. perturbative solutions.
integral indices. solar sail.
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INFLUÊNCIA DE FORÇAS PERTURBATIVAS NO MOVIMENTO
DE UMA ESPAÇONAVE: EM TORNO DE PONTOS DE

EQUILÍBRIO ARTIFICIAIS E EM MEDIDAS DE ÍNDICES

RESUMO

Nesta tese, são estudados os efeitos de forças perturbativas sobre o movimento de
um veículo espacial em torno de pontos de equilíbrio artificiais e sobre medições
de “índices de integrais”. Para tanto, uma investigação inicial sobre a relação de
pontos de equilíbrio artificiais no espaço é realizada, cujos resultados são aplicados
para o sistema Sol-Terra, incluindo aplicações para uma vela solar plana. Usando
tal conceito, soluções são propostas para um problema de comunicação entre um
veículo espacial localizado próxima ao ponto lagrangeano L3 e a Terra. Na sequência,
soluções analíticas são propostas para descrever o movimento de um veículo espacial
em torno de pontos de equilíbrio artificiais, cujos resultados são aplicados para um
veículo espacial localizado próxima ao L3 no sistema Sol-Terra perturbada pela
gravidade de Júpiter e Vênus, para serem comparadas com integrações numéricas
das equações de movimento. Tais tipos de soluções analíticas são estendidas para
um veículo espacial localizado acima/abaixo de um corpo massivo que gira com
outro corpo massivo em torno de um centro de massa comum perturbada por uma
lua genérica. Este último tipo de solução envolve correções periódicas do propulsor
do veículo espacial e os resultados mostram que a solução analítica se aproxima da
integração numérica das equações do movimento quando a frequência das correções é
mais alta. A influência das forças perturbativas sobre “índices de integrais” também é
investigada nesta tese. Inicialmente, tais índices são definidos de maneira análoga aos
conhecidos na literatura e são calculados usando os osciladores forçado, de Duffing e
de Van der Pol, que podem representar modelos perturbados do oscilador harmônico
simples. Na sequência, tal pesquisa é estendida para um caso mais realístico da
astrodinâmica de um veículo espacial movendo-se em torno de um corpo massivo
(a Terra) sujeita a propulsão nas direções tangencial e radial. Novos índices são
definidos e calculados usando uma solução perturbativa para uma propulsão pequena
e constante na direção radial. Em seguida, um índice é identificado como capaz de
descrever efeitos perturbativos interessantes sobre o movimento.

Palavras-chave: Pontos de equilíbrio artificiais. Soluções analíticas. Soluções pertur-
bativas. Índices de integral. Vela solar.
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1 INTRODUCTION

A system may be defined as a small part of the universe. This part is isolated from
the rest such that it can be independently investigated, studied, and understood.
Mathematical solutions may be found for a system, turning it predictable. The prob-
lem is that, in the real world, a system usually cannot be isolated from the rest of
the universe, due to the perturbation that the rest of the universe imposes over it.
However, a mathematical solution known for a system may be used as an approx-
imation to describe it under the influence of their surroundings in the universe. In
this sense, a small perturbation may be interpreted as the influence that only the
surroundings of the system exert over it. Then, some of the small perturbations over
a system may be taken into account such that the mathematical solution obtained
for this perturbed system is a better approximation to mathematically describe it
in the real world than the solution obtained for the unperturbed and more isolated
system.

In this thesis, the main system to be studied is the circular restricted three body
problem, which is constituted of two massive main bodies, e.g. the Sun and the
Earth, rotating in a circular trajectory around a point, their common center of
mass, and a third body with a comparative very small mass, e.g. the spacecraft.
However, other systems will also be studied in this thesis, like a satellite rotating
around a massive body (the Earth) or a simple harmonic oscillator. We will take the
advantage of the fact that there are known solutions in the literature for the systems
described above. In order to take this advantage, these systems will be perturbed by
a force (usually a small one), which we call as a perturbative force, and the solutions
of the perturbed system will be found if they do not exist in the literature or will
be used to solve further problems in the case they already exist in the literature.

In this scenario, using a spacecraft under the system described by the circular re-
stricted three body problem, some regions of the space will be considered as observa-
tion spots, e.g. the momentary opposite side of the Sun, or particular and uncommon
locations relative to other objects, e.g. poles of asteroids, satellites or planets. The
study of these points is not a trivial task, it requires the integration of many strate-
gies, from the geometry and dynamic of the involved bodies, the estimative of a
stability parameter to, finally, the fuel cost involved in a spatial mission.

A fundamental condition to achieve success in this type of observation of particular
regions or hidden side is that the spacecraft must be positioned and stabilized in
strategic points such that the costs are minimized. It will be shown that these points
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can be dynamically “created” in an artificial way through the use of external forces,
via thrusts that may be provided using propellant or not, like the ones generated
by the solar radiation pressure. These are the so called Artificial Equilibrium Points
(AEP) and once they are created, the problem of to stabilize the spacecraft around
them using a thrust arises. This stabilization generates cost, which is related to the
fuel consumption of the spacecraft. Thus, a previous analyze of these costs must be
done. In order to accomplish this task, an important tool is analyzed, developed,
and improved - the “integral indices” - to allow to establish regions of low costs to
create the AEP.

Several important topics are involved in this thesis and it will be seen at the end of
the process that they are fully integrated. In order to facilitate the comprehension
of this integration, three objectives are established. Hence, the perturbative forces
are used in the investigations on three main objectives of this thesis:

a) “Integral indices”: to analyze the influence of the perturbative forces
over the trajectory and velocity of a spacecraft through the use of “integral
indices”;

b) Artificial equilibrium points: to use perturbative forces as thrusts to
generate AEP that can be useful for many missions and different purposes;

c) Spacecraft motion around artificial equilibrium points: to investi-
gate the influence of the perturbative forces on the motion of a spacecraft
around an AEP.

These three objectives are respectively related to three subjects, which are catego-
rized as “Integral indices”, “Artificial equilibrium points”, and “Spacecraft motion
around artificial equilibrium points”. Each of these subjects is divided into two chap-
ters, which has been investigated separately. As a result, each chapter is self-sufficient
in the sense that it contains its own notation and description of the mathematical
models used during the respective stage of the research. Introductions that relate
the subject with previous work available in the literature and results are also shown
independently in every respective chapter, as well as brief conclusions in its last
section. The description of each subject is detailed below, including links to the
chapters related to the respective stage of the research.
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1.1 “Integral indices”

In order to study regions with low costs, i.e. low fuel consumption, to place and
maintain a spacecraft, an efficient estimator can be used, which requires low com-
putational cost. This estimator is called “integral index” and its investigation is
the first objective of the thesis, where its presentation, definition, and development
are exhaustively discussed. In general, such kind of index can be used to differen-
tiate regular and smooth regions from others highly perturbed and unpredictable.
This differentiation becomes important, since it allows us to determine regions that
demand low fuel consumption.

Thus, in order to reach the first of the three main objectives, “integral indices”
available in the literature will be investigated using several systems and some other
new “integral indices” will be defined and investigated too. As said before, these
indices should help to describe the behavior of a perturbed system, but in order to
evaluate them analytically, the investigation requires that an analytical solution of
the system under consideration must be known. In general, analytical solutions of
the satellite problem are scarce. Hence, the first stage of the research on this subject
is to analyze the indices considering well known systems, which solutions are already
known in the literature. They will be evaluated using the simple harmonic oscillator
perturbed by several forms of perturbations, which becomes the driven harmonic,
Duffing, and Van der Pol oscillators. This first stage is written in chapter 2 and
already published (DE ALMEIDA JUNIOR et al., 2017b). Once the results of the first
stage of the research are analyzed, we should be able to discard “bad indices”,
to create new ones, and to evaluate them in a more realistic system, a satellite
problem. This will be done in the second stage of the research. The chosen system is
a spacecraft orbiting a massive body under the influence of a thrust applied in the
tangential and a radial directions. This system is known as the Tsien problem (TSIEN,
1953). Although it has solutions available in the literature, they are written in terms
of elliptic integrals. Hence, we will find several alternatives analytical solutions to
this problem, including one that requires the use of perturbative methods. Several
“Integral indices” will then be defined, evaluated, and analyzed. This will be done
in the second stage of the research, written in chapter 3. Introductory details about
each of these two stages are written in the initial part of the respective chapter, in
sections 2.1 and 3.1, respectively.
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1.2 Artificial equilibrium points

The second of the three main objectives is to use a perturbative force as a thrust
to generate AEP that can be useful for many missions and purposes. By restricting
our system to the circular restricted three body problem, a spacecraft can be parked
at five possible location from the point of view of the rotating frame of reference,
i.e. if its initial velocity is null, then it will be find in a stationary condition. They
are the well known lagrangian points. On the other hand, in the case this space-
craft can be thrusted, then it can be parked anywhere in the whole space. The only
requirement is that its thrust balances the gravitational forces plus the centrifugal
force. In that case, the spacecraft will be parked in the rotating frame of reference,
i.e. it will rotate with the same angular velocity of the two massive bodies around
their barycenter. Note that from the point of view of the Earth, fixed spots relative
to its translational motion around the Sun may be useful for many missions. Some
advantages of these points are the predictability of the location and the fixed dis-
tance relative to the Earth and to the Sun, that could be used to permanent monitor
the Sun or the Earth, but also taking the advantage of the trip through the travel
space to observe other bodies during this motion. The thrust may be generated by
several kinds of sources, like electric, solar, or magnetic sails, as will be explained
later, ionic thrusts, or even by a source that uses propellant. In any case, it generates
costs, like the fuel consumption, the size of the sail or its capacity to carry mass, the
technology available, etc. By lowering these costs, a mission may become feasible or
even affordable, or its duration can be extended. Thus, investigations on these costs
are useful in order to offer essential information to a mission designer. Moreover,
sometimes, depending on the kind of the mission and the spacecraft, the thrust
may be constrained in some directions of the motion, like in the case of a spherical
spacecraft subjected to the force generated by the solar rays. Given this constraint,
the equilibrium points where the spacecraft can be parked in the space is not any-
more unlimited, quite on contrary, they are restricted to some specific regions of the
space. Thus, the first stage to reach the second main objective is to find the places
in the space where a spacecraft can be parked in the case the thrust is restricted to
a single or two directions. These places will be determined by the solutions of the
equations generated by balancing the thrust, gravitational, and centrifugal forces in
the rotating frame of reference. This process will be done for several directions of
the thrust. Note that some specific kinds of solutions already exist in the literature,
like solutions in the x-y or x-z planes (MCINNES, 2004), however, the approach used
in this thesis is a new one. The second stage to reach the second main objective
is to use the AEP to solve a problem. A satellite near the lagrangean L3 is able
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to permanent contact the instantaneous hidden side of the Sun from the point of
view of the Earth. Given the period of the rotation of the Sun, which is about 25
days in the equator, the observation of its hidden side may offer us the opportunity
to predict coronal mass ejection weeks in advance. One of the problems to place a
spacecraft in such a position is that the Sun is placed between the lagrangean L3

and the Earth, hence there can be no direct communication between the spacecraft
and the Earth. This problem will be solved by displacing the equilibrium position
of one or two spacecraft equipped with a planar solar sail using three types of dif-
ferent strategies. This is the subject of the second stage of the research, which is
already published (DE ALMEIDA JUNIOR et al., 2017a). These first and second stages
are written in chapters 4 and 5, respectively. Detailed introductory information on
both stages connected with previous works available in the literature is given in
subsections 4.1 and 5.1.

1.3 Spacecraft motion around artificial equilibrium points

The first model used to reach the second main objective (Artificial equilibrium
points) in the research done in chapters 4 and 5 is a simplified one, since other ex-
ternal perturbations are not taken into consideration. In the real world, a spacecraft
parked in the AEP is always perturbed by its surroundings, that is, the gravitational
effects of other planets, moons or asteroids, the solar rays, albedo, solar wind, etc.
Due to these perturbations, the spacecraft will be displaced from its equilibrium
point, and this displacement will generate an extra force1 that will be combined
with the perturbation to define its motion. Thus, the third of the three main objec-
tives of this thesis is to investigate the influence of external perturbative forces on
the motion of a spacecraft around an AEP. In order to accomplish this task, several
considerations that do not exist so far in the literature will be done. Note that it is
important to know to where the spacecraft is initially going, e.g. this information can
be used to adapt some kind of control to turn it back. Moreover, once the solution
for the motion is analytically developed, the thrust or even the perturbation can
used to maintain the spacecraft around the AEP for long periods of time. A method
will be created to use the thrust combined with the perturbation to maintain the
spacecraft around the AEP, independently of its linearly stability. Note that only
specific and small regions in the space are linearly stable, thus this kind of motion
is very useful for a mission designer.

1A force is defined in an inertial frame of reference, not a rotating one, but an analogous concept
can be used taken into account extra terms (pseudo-forces).
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In the first stage of the research, the thrust will be assumed to balance the gravita-
tional and the centrifugal forces, but not the perturbation force. This is an important
assumption, since it simplifies the equations of motion. Then, some general types
of perturbative forces will be proposed and the equations of motion in the rotating
frame will be analytically solved for these given perturbations. Then, analyses on
the validity of the model will be made by comparing the proposed and developed
new analytical solutions for several forms of the perturbation with a solution of the
coupled and linearized equations of motion and with a numerical solution obtained
via a Runge Kutta method. This first stage of the research is written in chapter 6 and
already available in the literature (DE ALMEIDA JUNIOR et al., 2018). Introductory
information about this research is given in section 6.1.

The second stage to reach the third main objective (Spacecraft motion around ar-
tificial equilibrium points) is to apply this idea using a perturbation force directly
related with some astrodynamic case. At this moment, we can investigate more com-
plex problems with more elaborated geometry, like to observe the poles of asteroids,
planets or natural satellites, in dynamically very rich scenario, full of details. Thus,
we will assume a moon in a circular orbit around one of the primaries in the circular
restricted three body problem. The gravitational effect generated by this moon over
the spacecraft will be considered as the perturbing force. The equations of motion
will be solved analytically. The validity of the solution obtained in the first stage
(in chapter 6) is restricted for short periods of time. This happens mainly due to
the assumption that the thrust balances the gravitational and the centrifugal forces,
which is true at the AEP, but not far from it. The main innovation in this stage is
that the thrust will be updated each period of time such that the analytical solution
will be valid again for the next period. In order to check the results, a comparison
of the analytical solutions with a numerical one will show that the higher is the
frequency of the updating of the thrust, the closer the analytical solution is to the
numerical one and vice-versa, since the numerical solution is also a function of this
frequency. This second stage is written in chapter 7, with introductory information
written in section 7.1.

1.4 Considerations

The final conclusions of the thesis are shown in chapter 8, which describes how the
main objectives are reached by the collections of the results obtained in the several
stages of the research.

As can be noted by the perusal so far, the subject integral indices is self-sufficient,
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studied in chapters 2 and 3, which present their own introductory definitions, math-
ematical models, results and considerations of their researches. Otherwise, although
chapters 4-7 are also written to be self-sufficient in an isolated form, the subjects ar-
tificial equilibrium points (chapters 4 and 5) and spacecraft motion around artificial
equilibrium points (chapters 6 and 7) are complementary in the sense of a hierar-
chy of knowledge - the second subject cannot be completely understood without
the understanding of the first one. The complementarity between the first and the
other two subjects is not explicit in this thesis, but it is included in the conclusions
(chapter 8), where the respective crossing is left as idea for an open new subject to
be studied in further investigations.

Summarizing this introduction, the chapters of this thesis are organized as follows:

a) First main objective: To analyze the influence of perturbative forces on the
trajectory and velocity of a spacecraft through the use of “integral indices”.

– First stage - chapter 2: Analyses over “integral indices” are made
based on small perturbations of the driven harmonic, Duffing, and
Van der Pol oscillators.

– Second stage - chapter 3: Analyses of several kinds of “integral indices”
are made using astrodynamics systems.

b) Second main objective: To use perturbative forces as thrusts to generate
AEP that can be useful for many missions and purposes.

– First stage - chapter 4: The AEP are defined and the regions in the
space where they can or cannot be generated are investigated as func-
tion of several types of thrusts. Additionally, the results are applied
to a planar solar sail.

– Second stage - chapter 5: Three different solutions are proposed to
a problem of communication between a spacecraft located near the
traditional Lagrangian point L3 and the Earth using the concept of
the AEP.

c) Third main objective: To investigate the influence of perturbative forces
on the motion of a spacecraft around AEP.

– First stage - chapter 6: Analytical solutions to the motion of a space-
craft around AEP are proposed for general and specific forms of the
perturbations.
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– Second stage - chapter 7: An extended form of the analytical solution
obtained in chapter 6 is used to maintain a spacecraft for long time
above or below the poles of a massive body that rotates around a com-
mon center of mass of another massive body using the perturbative
gravitational force of a moon.

d) A final conclusion is made in chapter 8 explaining how the three main
objectives are reached and the contributions of this thesis to the knowledge.
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2 ANALYZING “INTEGRAL INDICES” TO QUANTIFY THE EF-
FECTS OF A PERTURBING FORCE IN THE DRIVEN HARMONIC,
DUFFING, AND VAN DER POL OSCILLATORS

The goal in the present chapter is to study the use of “integral indices” to quantify
the effects of a perturbing force in the driven harmonic, Duffing, and Van der Pol
oscillators. The main idea is to define a scalar index that can represent the cumula-
tive effects over time that a perturbing force causes in a dynamical system. An index
of this type can help to prepare “perturbation maps”, which can identify situations
of larger or smaller effects. This idea appeared in the astrodynamics literature with
the goal of finding less perturbed orbits for a spacecraft, but it is applied here to the
driven harmonic and Duffing oscillators. The reason for those applications is that
those problems have analytical solutions, which allows a better comparison of the
indices. In particular, the effects of calculating this index using a perturbed and a
non-perturbed trajectory are evaluated with the goal of better understanding these
effects. The results show that the difference between both indices depends on the
frequency and amplitude of the perturbing force.

2.1 Introduction

A good choice for the orbit of a spacecraft is a major step for the success of the
mission, usually allowing a reduction in the costs of the orbital maneuvers and/or
increasing the duration of the mission (QIAN et al., 2016).

The study of the effects of perturbation forces acting in a spacecraft is a very impor-
tant problem in orbital dynamics. They modify the trajectory of the spacecraft in
the short, medium and long timescales. In some cases, the perturbations are forces
that need to be avoided or compensated with the use of propulsion systems but,
sometimes, they are forces that can help the spacecraft to complete the desired mis-
sion (MORTARI et al., 2014). In any case, it is necessary to know the relation between
perturbation, trajectory and velocity with some degree of accuracy to perform the
mission analysis phase of the project.

In that sense, maps that can show the perturbation level of orbits can help to
choose the best location to place a spacecraft. To elaborate this type of map it is
necessary to find an adequate definition for the “perturbation level” of a particular
orbit, which means to define a scalar number that can quantify the strength of the
perturbations affecting the orbit. After that, it is possible to build “perturbation
maps” (using the denomination given by Sanchez et al. (2016)), which are plots that
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show the perturbation level of a given region in a grid of initial conditions to the
orbit. Those maps can be used to find orbits with minimum perturbations, which
can be used for practical applications. Such orbits are important because they may
have less oscillations with respect to the Keplerian equivalent orbits and because
they are good candidates to have a smaller number of station-keeping maneuvers,
so reducing the costs involved in keeping the spacecraft near the desired orbit.

This type of problem has been under consideration for a long time. In particular,
in recent years, the astrodynamics literature show some different forms to define
the “perturbation level” of an orbit. The main point of those researches is to find
a scalar number that can represent the perturbation received by a spacecraft along
one orbital period, to allow the construction of the “perturbation maps”.

Having this goal in mind, it is natural to consider integrals to generate this scalar
quantity, because the integration is a process that relates effects occurring during
one given time, like a full orbital period of a spacecraft, in one scalar number.

A first definition of this type of “integral index” is shown by Prado (2013), where
orbits around the Earth perturbed by the Sun and the Moon are mapped based in
“integrals”. The index is defined as the integral of the magnitude of the perturbing
forces acting on the spacecraft during one orbital period. The reason of using the
magnitude of the forces is to take into account perturbations that modify the orbit
of the spacecraft during one orbital period, but has a zero or near-zero net result
after a full revolution. The goal of using this index is to find orbits with smaller
oscillations with respect to a Keplerian (non-perturbed) orbit over short time scale
of the order of one orbital period. To obtain this index it is assumed that the
trajectory of the spacecraft is Keplerian, not taking into account the real trajectory
the spacecraft describes under the effects of the perturbing forces. The consequences
of this assumption depends on the deviation of the real trajectory of the spacecraft
with respect to the Keplerian one, which depends on the magnitude of the disturbing
forces and other factors. It means that this assumption may limit the accuracy and
applicability of this index in the form proposed. In particular, terms coming from
the difference between the Keplerian term of the gravity field of the Earth applied
to the real trajectory and to the Keplerian one are not included in the integral.
Then, a next step in the search for an index that can represent better the level of
perturbation of an orbit is to remove this assumption, so measuring the integral of
the perturbing forces over the real trajectory of the spacecraft and considering this
difference in the Keplerian term of the gravity field.
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This same index was used in some other applications, like mapping orbits around a
triple asteroid (PRADO, 2014), with the goal of comparing the levels of the differ-
ent perturbations acting in trajectories in that system. Another study verified the
possibility of using solar radiation pressure to control the effects of the other per-
turbations (OLIVEIRA et al., 2014). The application of those maps for constellations
of satellites was also considered by Oliveira and Prado (2014). The search for less
perturbed orbits in the Pluto-Charon (SANCHEZ et al., 2014) and Haumea system
(SANCHEZ et al., 2016) was also made using this index. Frozen orbits around Europa
were also searched with the help of this integral, by Carvalho et al. (2014) and Santos
et al. (2015). “Perturbation maps” were made for orbits around cubes (VENDITTI;

PRADO, 2014). This same definition of the “integral index” was used to measure the
effects of each term of the gravity field of the Earth in the trajectory of a spacecraft
(SANCHEZ et al., 2014). These indices are summarized by Sanchez and Prado (2018)
and studied for a spacecraft around the near-Earth asteroid (153591) 2001 SN263.
The indices to be defined and studied in this thesis will be different from these ones
described above in the sense that the real trajectory will be taken into account in
their evaluation, obtained by considering the effects of the perturbing terms in the
dynamics.

In the simpler case of the J2 problem - a conservative model in which the Geopo-
tential is truncated to the second zonal harmonic - it has been recently shown that
mapping the dynamics by means of the integral of the perturbing acceleration alone
may be representative of the perturbation problem only with respect to the dynamics
in the orbital plane (LARA, 2016).

To get a deeper insight in the integral of the perturbing acceleration and the utility of
integral indices based on this approach, the present research has the goal of studying
the importance of considering the perturbed trajectories in the definition of integral
indices. Although these indices appeared in the literature related to applications to
spacecraft trajectories, a different problem is used here. Indeed, the driven harmonic
oscillator and the Duffing and Van der Pol equations are taken as perturbations of
the simple harmonic oscillator. The reason to choose these systems is that they are
integrable problems for small perturbations and their analytical solutions can be
used for a better understanding of the integral indices. In that sense, it is crucial to
show the situations in which different integral indices provide analogous or divergent
results. This study will not answer this question for other systems, like the ones
related to spacecraft trajectories. To understand those problems, it is necessary to
perform specific studies for each case, which is a required step for all the researches
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published up to now. Therefore, the scope of the investigation in the initial stage
of the thesis is limited to make a first study that reveals the differences in the
perturbation level that is obtained when using different integral indices when dealing
with perturbed motion. The method and the results of this research are shown in
this chapter, including a brief discussion in section 2.6.

2.2 Preliminary definitions

In Newtonian mechanics, the motion of a particle of mass m is described by its
position ~r and velocity ~v = d~r/dt vectors, where t is time. Then, the equations of
motion are

m
d2~r

dt2 = ~F (2.1)

where, in general, the force ~F depends on position, velocity, and time, viz. ~F ≡
~F (~r,~v; t). The impulse per unit of mass exerted by ~F between the initial time t = t1

and the final time t = t2 is

~J =
∫ t2

t1

~F

m
dt =

∫ t2

t1

d2~r

dt2 dt = ~v(t2)− ~v(t1). (2.2)

Let a force ~α be defined such that its magnitude is much smaller than the magnitude
of ~F , that is, ‖~α‖ � ‖~F‖, and a force ~f be defined as the difference between ~F and ~α.
Hence, the resultant force can be decomposed into two forces, as follows: ~F = ~f + ~α.
In this case, when

m
d2~r

dt2 = ~f, (2.3)

is integrable, that is
~r = ~ξ(t;~r0, ~v0),

then, Eq. (2.1) is called a perturbation problem (NAYFEH, 2004). It is commonly
written as

m
d2~r

dt2 = ~f + ε ~α, (2.4)

where ε is a small parameter, either physical or formal, which is used to unambigu-
ously manifest the perturbative nature of the problem. Hence,

~J = 1
m

∫ t2

t1
(~f + ε ~α) dt. (2.5)

To compute the impulse ~J , the solution ~r = ~r(t) of Eq. (2.4) must be known, so that
~f = ~f(~r,~v, t) and ~α = ~α(~r,~v, t) can be expressed as functions of time. In general,
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Eq. (2.4) will be non-integrable. However, perturbation solutions of the form

~r = ~ξ(t;~r0, ~v0) +
∑
i≥1

εi ~Ri(t;~r0, ~v0), (2.6)

can be obtained in some cases, like the ones studied in this chapter, i.e. the driven
harmonic, Duffing and Van der Pol oscillators up to the first order (i = 1). Corre-
spondingly,

~v = ~η(t;~r0, ~v0) +
∑
i≥1

εi~Vi(t;~r0, ~v0), (2.7)

where ~η = d~ξ/dt.

Using Eqs. (2.6) and (2.7), ~f = ~f(~r,~v, t) becomes

~f = ~f(~ξ(t;~r0, ~v0) +
∑
i≥1

εi ~Ri(t;~r0, ~v0), ~η(t;~r0, ~v0) +
∑
i≥1

εi~Vi(t;~r0, ~v0), t). (2.8)

Expanding Eq. (2.8) about ε = 0, it becomes

~f = ~f(~ξ, ~η, t) + ε

~R1
∂ ~f

∂~r

∣∣∣∣
ε=0

+ ~V1
∂ ~f

∂~v

∣∣∣∣
ε=0

+O(ε2). (2.9)

Analogously, expanding ~α = ~α(~r,~v, t) about ε = 0, it becomes

ε~α(~r,~v, t) = ε~α(~ξ, ~η, t) +O(ε2). (2.10)

Using Eqs. (2.9) and (2.10), Eq. (2.4) becomes

m
d2~r

dt2 = ~f(~ξ, ~η, t) + ε

~α(~ξ, ~η, t) + ~R1
∂ ~f

∂~r
+ ~V1

∂ ~f

∂~v

+O(ε2), (2.11)

where the partial derivatives of ~f must be evaluated at ~r = ~ξ and ~v = ~η. Due
to the perturbative nature of the problem, terms of second or higher orders in the
small parameter ε can be neglected. Using Eq. (2.11), the specific impulse given by
Eq. (2.2) as

~J =
∫ t2

t1

d2~r

dt2 dt

can be written in the form
~J = ~J0 + ~Π + ~∆,
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where
~J0 = ~η(t2)− ~η(t1), (2.12)

is the specific impulse of the unperturbed problem in Eq. (2.3), which may be zero
for periodic solutions (ESMAILZADEH et al., 1996) if t2 − t1 = period multiple,

~Π = ε

m

∫ t2

t1
~α(~ξ, ~η, t) dt, (2.13)

is the integral of the disturbing acceleration measured along the unperturbed path,
which is called the “perturbation integral”, and

~∆ = ~J − (~Π + ~J0) = ε

m

∫ t2

t1

~R1
∂ ~f

∂~r
+ ~V1

∂ ~f

∂~v

 dt+O(ε2). (2.14)

Note that ~J0 and ~Π can always be computed, either analytically or numerically, from
the solution of Eq. (2.3) — the integrable part of the perturbation problem. On the
contrary, to compute ~∆ one must know, at least, a first order approximation to
the solution of Eq. (2.4). Disregarding ~∆ may be valid in some particular instances
(LARA, 2016), but this is not a general result: quite on the contrary, the contributions
of ~∆ and ~Π to the total impulse are of the same order.

The importance of ~∆ is explored in three particular problems: the driven harmonic,
the Duffing, and the Van der Pol oscillators. These problems are integrable at least
for small values of the perturbation, yet, for particular values of the problem pa-
rameters they can be viewed as perturbations of a simpler integrable problem: the
simple harmonic oscillator

d2x

dt2 + x = 0 ⇒ x = A sin(t+ φ) (2.15)

where A and φ are arbitrary integration constants, the amplitude of the oscillations
and the initial phase. Note that mass and time units are chosen such that both
the mass and the oscillation frequency are equal to one. Then, advantage of the
integrability of the “perturbed” problems is taken to compute ~∆ analytically.

The three perturbed oscillators are systems of one degree of freedom. Therefore, the
total impulse and associated quantities are scalars and can take the role of integral
indices.
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2.3 The Driven Harmonic Oscillator

The driven harmonic oscillator can be described by the ordinary differential equation
(LANDAU; LIFSHITZ, 1976)

d2x

dt2 + x = ε(1− ω2) cosωt, (2.16)

where, in our time units, ω is the non-dimensional frequency and ε(1 − ω2) is the
amplitude of the forcing term, respectively. The driven harmonic oscillator is an
integrable problem whose solution is obtained by adding a particular solution of
Eq. (2.16) to the general solution of the homogeneous part, Eq. (2.15). Hence, the
general solution to the driven harmonic oscillator is

x = A sin(t+ φ) + ε cosω t (2.17)

If ε is small, it can be assumed that Eq. (2.17) is a perturbation solution of the form
of Eq. (2.6) in which terms O(ε2) and higher are neglected. Then,

x = ξ(t) + εX1(t) +O(ε2)

with ξ = A sin(t+ φ), and X1 = cosω t,

v = dx
dt = η(t) + ε V1(t) +O(ε2),

with η = A cos(t+ φ), and Y1 = −ω sinω t, and

d2x

dt2 = f + ε α. (2.18)

Comparing Eq. (2.18) with Eq. (2.16), we get f = −x, α = (1 − ω2) cosωt. Hence,
from Eq. (2.12), we get

J0 = η(t2)− η(t1) = A [cos(t2 + φ)− cos(t1 + φ)] ; (2.19)

from Eq. (2.13), we get

Π = ε
∫ t2

t1
(1− ω2) cosωt dt = ε

1− ω2

ω
(sinω t2 − sinω t1); (2.20)

15



and from Eq. (2.5), we get

J =
∫ t2

t1

[
−x(t) + ε (1− ω2) cosωt

]
dt, (2.21)

where x(t) must be replaced by the solution in Eq. (2.17). Hence,

J = J0 − ε ω(sinωt2 − sinωt1). (2.22)

Finally, ∆ is computed from Eq. (2.14), either by subtracting J and J0 + Π, or by
direct solution of the quadrature. We get

∆ = − ε
ω

(sinω t2 − sinω t1), (2.23)

which allows, for the driven harmonic oscillator, to establish the relations

Π = (ω2 − 1)∆ = ω2 − 1
ω2 (J − J0). (2.24)

Equation (2.24) clearly disclose the physics of the problem. Indeed, Π → 0 when
ω → 1, a case in which the problem converts into the simple harmonic oscillator,
cf. Eq. (2.16). On the other hand, high values of ω make ∆ less relevant and J ≈
J0 + Π, but in this case the amplitude of the forcing term ε(1 − ω2) will be high
and the driven harmonic oscillator can no longer being considered a perturbation
problem. As a consequence, talking about perturbation integrals does not seem to
make much sense. Finally, for small values of ω, and assuming that t2 − t1 is not
too big, the impulse in Eq. (2.22) can be expanded in power series of ω. Thus,
J = J0 − ε(t2 − t1)ω2 [1 +O(ω2)], which, after replaced in Eq. (2.24) leads to Π =
−∆ = ε (t2−t1). Therefore, in the case of the driven harmonic oscillator, the integral
∆ keeps an important part of the dynamics and cannot be neglected.

Let three new functions R1, R2, and R3 be defined as

R1 = ∆
Π = 1

ω2 − 1 ,

R2 = Π
(J − J0) = 1− 1

ω2 ,

R3 = ∆
(J − J0) = 1

ω2 .

Thus, the behavior of the indices is illustrated in Fig. 2.1, where the relative impor-
tance of each integral - when compared to the difference between the perturbed and
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unperturbed problems - as well as the ratio ∆/Π are presented. In particular, we
note that the curve ∆/Π has a vertical asymptote in ω = 1. Some relevant values
of the ratios are shown in Table 2.1, which highlights some values of ω2 showed
in the vertical gridlines of Fig. 2.1 and the respective values of R1, R2 and R3 as
functions of ω2 in the horizontal gridlines of Fig. 2.1. For the first value of ω2 showed
in Table 2.1, the curves R1 and R2 of Fig. 2.1 are coincident. For the second value
of ω2, R1 and R3 are symmetrically opposite. For the third value of ω2, R1 equals
±infinity, R2 equals zero and R3 equals unity. For the fourth value of ω2, R1 equals
unity and R2 and R3 are coincident. For the fifth value of ω2, R1 and R2 are also
coincident.

Figure 2.1 - The curve R1 in gray is the ratio ∆/Π, the dashed curve R2 is the ratio
Π/(J − J0) and the curve R3 in black is the ratio ∆/(J − J0), in Eqs. (2.22-
2.24). The gridlines highlight the particular values in Table 2.1.
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SOURCE: Author’s production.
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Table 2.1 - Relevant particular values in Fig. 2.1, where R1 = 1
ω2−1 , R2 = 1 − 1

ω2 and
R3 = 1

ω2

ω2 R1 R2 R3
1
2(3−

√
5) −1

2(
√

5 + 1) −1
2(
√

5 + 1) 1
2(3 +

√
5)

1
2 −2 −1 2
1 ±∞ 0 1
2 1 1

2
1
2

1
2(3 +

√
5) 1

2(
√

5− 1) 1
2(
√

5− 1) 1
2(3−

√
5)

In the specific case in which the impulse is measured in the interval t2 − t1 = 2π,
which is the period of the simple harmonic oscillator (the unperturbed problem), J0

vanishes. Then J = ∆ + Π and Eq. (2.24) is rewritten as

Π = (ω2 − 1)∆ = ω2 − 1
ω2 J. (2.25)

In the particular case where t1 = 0 and t2 = 2π, a comparative plot of the ratios ∆
ε

and Π
ε
is shown in Fig. 2.2. This figure exhibits, for any given ε, that the absolute

values of ∆ and Π are of the same order of magnitude for the most relevant values of
ω in which Eq. (2.16) represents a perturbation problem - i.e., the value of ω is not
too large. Thus, both their contributions to J are equally significant and ∆ cannot
be neglected.

Of course other similar forms to the perturbation of the driven harmonic oscillator
could be used instead of the one shown in Eq. (2.16). For example, if the perturbation
of this equation is given by ε cosωt instead of ε(1 − ω2) cosωt, similar results can
be obtained, but the second option offers a better analytical solution that is more
compatible to the preliminary definitions given in Section 2.2.

2.4 Duffing equation

Another case of integrable forced oscillators is the Duffing equation, which we write

d2x

dt2 + x = −ε x3. (2.26)

For ε small, a perturbation solution to Eq. (2.26) can be written as (NAYFEH, 2004)

x = x0 cos t+ 1
32ε x

3
0 [−12t sin t+ cos 3t− cos t] , (2.27)
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Figure 2.2 - Comparative plot of the ratios ∆
ε and Π

ε as functions of ω in the particular
case where t1 = 0 and t2 = 2π.
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where x0 = x(0).

Proceeding as before, f ≡ −x, α ≡ −x3, ξ ≡ x0 cos t, η ≡ −x0 sin t, and

X1 ≡
1
32 x

3
0 [−12t sin t+ cos 3t− cos t] .

Then
J0 = −x0 (sin t2 − sin t1)

and, for a small enough interval t2 − t1 in which the quadratures are evaluated,

Π = −ε
∫ t2

t1
x3(t) dt = −3x3

0
12 ε

[1
3(sin 3t2 − sin 3t1) + 3(sin t2 − sin t1)

]
+O(ε2),

∆ = −ε
∫ t2

t1
X1(t) dt+O(ε2)

= x3
0

32ε
[1
3(sin 3t2 − sin 3t1) + 13(sin t2 − sin t1) + 12(t2 cos t2 − t1 cos t1)

]
+O(ε2),

J = J0 + Π + ∆
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When the impulse and related integrals are evaluated along the interval t2 = t1 +2π,
we find J0 = 0, Π = O(ε2), and

J = ∆ = 3
4εx

3
0π cos t1 +O(ε2),

which clearly shows that, for the Duffing equation, the perturbation integral Π is
irrelevant in the study of the perturbed dynamics.

If now we compute the integrals in a slightly different interval t2− t1 = 2π+ δ, both
Π and ∆ remain unaltered up to the order of ε, but J0 no longer vanishes. Indeed,
assuming that δ and ε are of the same order,

J0 = −δ x0 cos t1 +O(ε2).

Hence,

J = J0 + ∆ = ε

(
3
4x

2
0π −

δ

ε

)
x0 cos t1 +O(ε2),

and the total impulse along the perturbed trajectory will vanish when the evaluation
interval is varied a small quantity

δ = 3
4εx

2
0π.

In the specific case where t1 = 0 and x0 = 1, the values of J as a function of δ
and ε are shown in a gray scale in Fig. 2.3, from where it is possible to observe
the contributions of J0 and ∆ to J . Either if δ equals zero or not, ∆ has a linear
dependence on ε, which means that its contribution to J cannot not be neglected.

The solution of Eq. (2.26) given by Eq. (2.27) is valid for the initial condition
v(0) = 0, where v(t) = dx(t)

dt
and it is not valid for too large values of time, because

of the secular term t sin(t). Despite these restrictions, this solution is written in a
good manipulable form, which allowed us to calculate J , J0, Π and ∆ analytically.

2.5 Van der Pol equation

The Van der Pol equation can be written as

d2x

dt2
= −x+ ε(1− x2)dx

dt
. (2.28)
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Figure 2.3 - Gray scale exhibits the value of J as a function of δ and ε for t1 = 0 and
x0 = 1. J equals zero over the black straight line, which means ε = 4δ

3π .

SOURCE: Author’s production.

A solution for the above equation in the case where ε is a small parameter and t is
not too large is (ABBASI, 2017)

x(t) = − 1
32x0ε sin(t)

(
5v2

0 − 7x2
0 + 16

)
+ 1

2tv0ε sin(t)
(1

4
(
x2

0 − v2
0

)
+ 1

)
+ 1

32x0ε sin(3t)
(
3v2

0 − x2
0

)
+ ε cos(t)

(
1
32v0x

2
0 −

v3
0

32 + v0

8

)

+1
2tx0ε cos(t)

(1
4
(
−v2

0 − x2
0

)
+ 1

)
+ 1

8v0ε cos(3t)
(1

4
(
v2

0 − x2
0

)
− 1

)
+v0 sin(t) + x0 cos(t), (2.29)

where x0 = x(0), v0 = v(0) and v(t) = dx
dt
.

Using the solution of the Simple Harmonic Oscillator, we can write

ξ(t, x0, v0) = v0 sin t+ x0 cos t (2.30)

and
η(t, x0, v0) = v0 cos t− x0 sin t. (2.31)
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We will assume the first period of the Simple Harmonic Oscillator plus a small time
δ, thus t1 = 0 and t2 = 2π + δ. According to Eq. (2.12), J0 is evaluated as

J0 = η(2π + δ)− η(0) = v0 cos δ − x0 sin δ − v0. (2.32)

Using Eq. (2.28) and the definition of ~α(~ξ, ~η, t) given in Eq. (2.4), we can find that

α(ξ, η, t) = (1− ξ2)η. (2.33)

Hence, using Eq. (2.13), the function Π can be written as

Π = ε

12

(
− 3v0 sin(δ)

(
v2

0 + x2
0 − 4

)
+ v0 sin(3δ)

(
v2

0 − 3x2
0

)
−3x0 cos(δ)

(
v2

0 + x2
0 − 4

)
− x0 cos(3δ)

(
x2

0 − 3v2
0

)
+ 4

(
x2

0 − 3
)
x0

)
. (2.34)

Using Eq. (2.2), the total impulse per unit of mass can be written as

J =
∫ 2π+δ

0

d2x

dt2
dt = v(2π + δ)− v(0), (2.35)

where x is the solution of the Van der Pol equation and v = dx
dt
. Hence, for the Van

der Pol equation, the total impulse is written as

J = 1
32

(
3v0ε sin(3δ)

(
−v2

0 + x2
0 + 4

)
+ sin(δ)

(
ε
(
4(δ + 2π)v2

0x0 + 3v0
(
x2

0 + 4
)
− 3v3

0 + 4(δ + 2π)
(
x2

0 − 4
)
x0
)
− 32x0

)
+ cos(δ)

(
−4(δ + 2π)v3

0ε+ 4v0
(
(δ + 2π)

(
x2

0 + 4
)
ε+ 8

)
− 9v2

0x0ε+ 3x3
0ε
)

−3x0ε cos(3δ)
(
x2

0 − 3v2
0

)
− 32v0

)
. (2.36)

Now we are able to evaluate the ∆ function. According to Eq. (2.14), this evaluation
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gives

∆ = 1
96ε

(
v0 sin(3δ)

(
−17v2

0 + 33x2
0 + 36

)
+3 sin(δ)

(
4(δ + 2π)

(
v2

0 − 4
)
x0 + 11v0x

2
0 + 5

(
v2

0 − 4
)
v0 + 4(δ + 2π)x3

0

)
−x0 cos(3δ)

(
x2

0 − 3v2
0

)
−3 cos(δ)

(
4(δ + 2π)

(
v2

0 − 4
)
v0 − 4(δ + 2π)v0x

2
0 +

(
v2

0 + 32
)
x0 − 11x3

0

)
−32x0

(
x2

0 − 3
))

. (2.37)

One can note directly from Eq. (2.37) that the ∆ function has a linear relation with
ε. Either if δ equals zero or not, ∆ has a linear dependence on ε, as well as Π, which
means that both their contribution to J are of the same order in ε. Thus, ∆ cannot
be neglected, which is the same result as it was obtained before for the Duffing
Oscillator in the section 2.4.

Supposing a specific case where ε = 0.01, x0 = 1, and v0 = 1, the ∆ can be ploted
as a function of δ. This plot can be seen in Fig. 2.4. Note from this figure that ∆
has an approximate linear relation with δ too.
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Figure 2.4 - ∆ as a function of δ (given by Eq. (2.37)) in the specific case where ε = 0.01,
x0 = 1, and v0 = 1. The absolute value of Π (given by Eq. (2.34)) is less than
10−6 in this specific case for the same interval of δ.

SOURCE: Author’s production.

2.6 Considerations

The present chapter developed an analytical study of the application of “integral
indices” to quantify the effects of a perturbing force in the harmonic, Duffing, and
Van der Pol oscillators. Two scalar indices were defined with the goal of measuring
the cumulative effects over the time that a perturbing force causes in those three
dynamical systems. The main difference between the indices used is that one of
them is calculated using a trajectory obtained from the non-perturbed system, so
assuming that the perturbation is not large enough to make larger modifications in
the trajectory during the integration time. The second index does not make that
assumption, and, therefore, uses a more realistic approach.

The results showed that the differences between both indices may depend on some
specific parameters of the dynamical system under study, which for the driven har-
monic oscillator is the frequency of the disturbing force. Therefore, a similar study to
the one presented here should be made before applying some specific integral index
in the search for less perturbed orbits by means of perturbation maps. In particu-
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lar, the construction of such perturbation maps in the case of perturbed Keplerian
motion would require to know a first order, approximate solution to evaluate the
quadratures that define the integral index. This research is done in the next chapter.
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3 ANALYZING “INTEGRAL INDICES” TO QUANTIFY THE EF-
FECTS OF A PERTURBING FORCE OVER SATELLITES

Integral indices are useful tools that can be used to identify intrinsic characteristics
of an orbit. Using analytical solutions for a perturbative (low, constant, and radial
thrust) version of the Tsien problem, several indices are defined and evaluated. The
utility of the indices is discussed. Based on the influence of the perturbation over
the relative displacement between the trajectory and the Keplerian orbit, the results
showed that an index is able to reveal some perturbative characteristics of the orbit.
Using this index, it is possible to make a complete map of the orbits disturbed by
the radial thrust, not only indicating the less perturbed ones, but also quantifying
the level of perturbations of those orbits. The index found in this thesis can be used
as useful tool in several other more practical problems in astrodynamics, including
systems of asteroids, small bodies, or to guide the choice of an orbit for a mission
such that the fuel consumption for station-keeping is minimized.

3.1 Introduction

The associated errors of the indices were studied in chapter 2, but only for one di-
mensional oscillators, not yet for astrodynamics cases. Thus, the second stage of this
research is to make similar investigations in more practical and applied astrodynam-
ics cases, which is also done in this thesis. A primary investigation (LARA, 2016) and
the results of the research presented in chapter 2 and published in the literature (DE

ALMEIDA JUNIOR et al., 2017b) show that the index could carry intrinsic errors that
would inhibit it to be representative in order to map the effects of the perturbation
in orbits in the most general cases. Although the index could be representative in
some particular cases (LARA, 2016), these results suggest that more investigations
should be done.

In general, the lack of analytical solutions of the satellite problem is an obstacle
to identify the utility of general indices that could allow to produce perturbation
maps and to evaluate the delta-v per orbit. On the other hand, there are few par-
ticular cases in which the satellite problem accepts an exact solution (TSIEN, 1953;
JEZEWSKI, 1983). We deal with the Tsien problem where the gravitational attrac-
tion exerted over a satellite is disturbed by a constant thrust in the radial direction
(TSIEN, 1953). Different approaches provide the solution to the Tsien problem in
terms of elliptic integrals (AKELLA; BROUCKE, 2002; SAN-JUAN et al., 2012), but,
alternatively, approximate analytical solutions have also been proposed that avoid
the use of special functions and may be of practical application (QUARTA; MENGALI,
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2012; BATTIN, 1999). In this stage, in order to continue the analyses and the search
for indices, we assume that the constant thrust acting in the opposite direction of
the central gravitational attraction is low, equivalent to a small fraction of the ra-
dial acceleration due to the gravity of the central body, and develop a perturbation
solution to the Tsien problem in terms of trigonometric functions. This solution is
used in the analyses and the search for indices that could quantify the effects of the
perturbation in the delta-v impulse equivalent index.

Then, the goal in this stage of the research is to search for an adequate integral index
that can be used to map orbits, trying to identify which ones are the more and the
less perturbed by the assumed radial thrust. It is also developed an index that has
the goal of measuring how much an orbit is deviated from the Keplerian equivalent
one due to this thrust introduced. In this way, it is possible to compare the two
different indices: an index that measures the element that generates a perturbation
with an index that measures the consequence of this perturbation, which is the
deviation of the real orbit compared to the Keplerian equivalent orbit. Thus, it is
possible to validate the index based on the integral of the accelerations in terms of
selecting orbits that are less perturbed.

After those calculations, the final goal is to find an index that indicates which orbit
is less perturbed just by applying an integral index based in one orbital period of
the spacecraft, without the need of longer numerical integrations. These types of
indices can be used in a large variety of problems and, in some cases, depending
on the type of the perturbation, they can be obtained analytically. This research is
written in this chapter. The frame of reference and the Tsien problem are defined in
section 3.2, together with some results of the evaluations of some previously defined
indices. A thrust purely given in the tangential direction of the frame of reference is
proposed in section 3.3, which analytical solutions are obtained, but not used. A low
and constant thrust given in the radial direction is proposed in section 3.4. Several
kinds of solutions are obtained, but the chosen one is the perturbation solution,
which is analyzed in detail in subsection 3.4.4. Four different indices are defined
and evaluated in section 3.5 using the solution obtained in subsection 3.4.4, which
results are briefly discussed in section 3.6.

3.2 Introductory definitions

A polar reference inertial system (r, θ) can be defined from the standard rectangular
reference system (x, y), according to Fig. 3.1, both with the Earth in their centers.
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The position vector is written in the rectangular coordinate system as

~r = x~i+ y~j. (3.1)

Figure 3.1 - Polar coordinates (r, θ).

SOURCE: (MATH INSIGHT, 2018)

Using the polar frame of reference, two unit vectors are defined as

~̂r = cos θ~i+ sin θ~j (3.2)

~̂θ = − sin θ~i+ cos θ~j. (3.3)

Hence, the position is
~r = r~̂r, (3.4)

the velocity is
~̇r = ṙ~̂r + rθ̇~̂θ, (3.5)

and the acceleration is

~̈r =
(
r̈ − rθ̇2

)
~̂r +

(
1
r

d
dt
(
r2θ̇

))
~̂θ, (3.6)

where the dots represent the derivative with respect to time.

3.2.1 Unperturbed (Keplerian) system

Suppose a spacecraft traveling under the gravitational influence of a planet. In an
inertial frame of reference which center is coincident with the center of the planet,
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the equations of motion of such a spacecraft are

R̈−Rθ̇2 = − µ

R2 , (3.7)

where µ is the gravitational parameter, and

1
R

d
dt
(
R2θ̇

)
= 0. (3.8)

3.2.2 Earlier definitions of integral indices

In the case where the system given by Eqs. (3.7) and (3.8) is perturbed by an
acceleration ~α, the total impulse per unit of mass of the motion evolved from the
time t = t1 to t = t2 is defined as

~J =
∫ t2

t1
~̈r dt = ~̇r

∣∣∣∣t2
t1

. (3.9)

In order to evaluate ~J the solution of ~̇r must be known. The “perturbation integral”
~Π has been defined in the chapter 2 as

~Π =
∫ t2

t1
~α dt. (3.10)

This perturbation is written as function of its components in the radial and tangen-
tial directions as ~α = αr~̂r + αθ~̂θ, according to Fig. 3.2.
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Figure 3.2 - The components of the perturbation.
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SOURCE: Author’s production.

Hence, Eq. (3.10) becomes

~Π =
∫ t2

t1
αr~̂r dt+

∫ t2

t1
αθ~̂θ dt, (3.11)

Using Eqs. (3.2) and (3.3), Eq. (3.11) becomes

~Π =
∫ t2

t1
(αr cos θ − αθ sin θ) dt~i+

∫ t2

t1
(αr sin θ + αθ cos θ) dt~j, (3.12)

For unperturbed circular motion, the period of the motion is P = 2π
√
R3

0/µ, where
R0 is the radius of the orbit. Hence, the angular solution is θ = 2πt/P and Eq. (3.12)
becomes

~Π =
∫ t2

t1

(
αr cos

(2πt
P

)
− αθ sin

(2πt
P

))
dt~i+

∫ t2

t1

(
αr sin

(2πt
P

)
+ αθ cos

(2πt
P

))
dt~j.

(3.13)
Other definitions of indexes may involve the integral along one period of the unper-
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turbed motion of the modulus of the perturbing acceleration ‖~α‖, or each component
of it, or the variation ~α·~v or the kinetic energy. Namely, Π1 (PRADO, 2014; OLIVEIRA;

PRADO, 2014; SANCHEZ et al., 2014; VENDITTI; PRADO, 2014; SHORT et al., 2017),
Π2 (SANCHEZ et al., 2014; SHORT et al., 2017), and Π3 (SANCHEZ; PRADO, 2018):

Π1 = 1
P

∫ t2

t1
‖~α‖ dt, (3.14)

Π2 = 1
P

∫ t2

t1
~α · ~v dt, (3.15)

Π3 = 1
P

((∫ t2

t1
αx dt

)2
+
(∫ t2

t1
αy dt

)2
+
(∫ t2

t1
αz dt

)2) 1
2

, (3.16)

where ~v is the velocity vector of the spacecraft and αx, αy, and αz are the components
of ~α in the x, y, and z directions. In the case where the perturbation is a constant
on time and the integration is taken over a period (t2 = t1 + P ), the evaluation of
Eqs. (3.13)-(3.16) are shown in Table 3.1. The solution of the perturbed problem
~r(t) is unknown yet, so as the specific impulse ~J . Hence, the comparisons between
~J or ‖ ~J‖ and the other indices (~Π, Π1, Π2, and Π3) cannot be done yet. On the
other hand, an analysis of the evaluation of them shown in Table 3.1 can lead to the
following comments:

a) ~Π clearly leads to the conclusion that the spacecraft is not perturbed.

b) Π1 depends only on the intensity of the perturbation.

c) Π2 neglects the radial component of the perturbation.

d) Π3 also leads to the conclusion that the spacecraft is not perturbed.

The conclusion that any constant perturbation is not capable of change the trajec-
tory and velocity of the spacecraft at all is obviously wrong. It will be shown later
in this chapter that even non-eccentric orbits clearly may be perturbed. We see in
Table 3.1 that ~Π and Π3 may lead to wrong conclusions, hence they do not seem
good “indices”.

Note that the magnitude of the gravitational force decays with R0, since it is propor-
tional to the inverse of R2

0. If the perturbation is fixed, the ratio ( |perturbation|
|gravitationalforce|)

becomes stronger when R0 is increased. This relative perturbation (this ratio) is
stronger for larger values of R0, thus it is reasonable to expect that the orbit should
be affected in the same way. We also expect that a good “index” must represent the
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Table 3.1 - The evaluation of indices. ~0 is the null vector.

Perturbation ~Π Π1 Π2 Π3

~α = αr~̂r + αθ~̂θ ~0
√
α2
r + α2

θ

√
µ
R0
αθ 0

~α = αr~̂r ~0 αr 0 0

~α = αθ~̂θ ~0 αθ
√

µ
R0
αθ 0

influence of this relative perturbation over the orbit. This aspect can be seen later
in Fig. 3.17, which shows that the orbit is more perturbed for larger values of the
semi-major axis.

Table 3.1 shows that the “index” Π1 does not depend on the radius of the orbit or
any other parameter, except the intensity of the perturbation. Hence, Π1 also does
not seem a good “index”.

The evaluation of Π2 shown in Table 3.1 indicates that there is no influence of the
radial component of the perturbation, as expected by its definition. Moreover, Π2

is proportional to the inverse of the square root of R0, which means that if R0

increases, the “index” Π2 decreases. Thus, beside the fact that this “index” neglects
the influence of the radial component of the perturbation, it also does not represent
our expectation to increase as R0 increases, according to the relative perturbation.
Therefore, Π2 is not a good “index” too.

In conclusion, all of the “indices” described above are meaningless, at least in this
case, and they cannot be used to describe orbits that are less perturbed. Thus, our
effort will be now spent to find “indices” that are able to describe the influence of
the perturbation over the orbit, but taking into account the real trajectory of the
perturbed system over the integration required to obtain them.

3.3 Tangential Thrust

Suppose that the spacecraft under a thrust αθ in the tangential direction of its
motion. The equations of motion become

r̈ − rθ̇2 = − µ
r2 (3.17)

and
d

dt

(
r2θ̇

)
= rαθ (3.18)
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3.3.1 Constant perturbation

For very small values of the constant perturbation αθ, the radial acceleration is small
enough so that the centripetal acceleration is approximately balanced by gravity
(BATTIN, 1999). Hence, Eq. (3.17) becomes

θ̇ = ±
√
µ

r3 . (3.19)

The option with the negative signal of the above equation is disregarded because
the initial condition is such that the motion is counterclockwise. Substituting the
option with positive signal of Eq. (3.19) into Eq. (3.18), this last one is rewritten as

r−
3
2 ṙ = 2αθ√

µ
. (3.20)

The integration of Eq. (3.20) in dt gives the solution expressed as

r(t) = µ

v2
0

(
1− (t−t1)αθ

v0

)2 , (3.21)

where v0 = ‖~̇r(t1)‖ is the absolute value of the initial velocity. The derivative of
Eq. (3.21) is

ṙ(t) = 2µαθ
v3

0

(
1− (t−t1)αθ

v0

)
3
. (3.22)

Using Eq. (3.21), Eq. (3.19) becomes

θ̇(t) =
v3

0

√(
1− (t−t1)αθ

v0

)
6

µ
. (3.23)

The quadrature of Eq. (3.23) yields

θ(t) = 1
4µαθ

αθ
4θ0µ+ v3

0

t
√√√√(−tαθ + t1αθ + v0) 6

v6
0

−

t1

√√√√(−tαθ + t1αθ + v0) 6

v6
0

+ t1

√√√√(t1αθ + v0) 6

v6
0

+

v4
0


√√√√(t1αθ + v0) 6

v6
0

−

√√√√(−tαθ + t1αθ + v0) 6

v6
0

, (3.24)
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where θ0 = θ(0) is the initial value of θ.

According Eq. (3.9), the specific impulse is

~J = ~̇r
∣∣∣∣t2
t1

=
(
ṙr̂ + rθ̇θ̂

) ∣∣∣∣t2
t1

. (3.25)

Equations (3.21) - (3.24) can provide the solutions for r(t), ṙ(t), θ̇(t), and θ(t)
required to evaluate ~J . Note that the solution of the differential Eqs. (3.17) and (3.18)
of second order should provide 4 constants, to be defined by the initial conditions
of the motion. A problem is that Eq. (3.20) represents a constraint and all the
obtained solutions r(t), ṙ(t), and θ̇(t) depend only on a single constant v0. Due to
this problem, this solution will not be chosen to express the results.

3.4 The low, constant, radial thrust problem

Suppose a spacecraft perturbed by a thrust in the radial direction of its motion
(~α = αrr̂). The equations of motion become

r̈ − rθ̇2 = − µ
r2 + αr (3.26)

and
d

dt

(
r2θ̇

)
= 0, (3.27)

which can be integrated to give the following constant of motion:

r2θ̇ = √µr0. (3.28)

The constant radial thrust problem is obtained from the potential energy

V = −µ
r
− αrr, (3.29)

where r = ‖~r‖ is the distance from the central body’s center of mass, and αr is a
constant acceleration. Because Eq. (3.29) is a central potential, the constant, radial
thrust problem

~̈r =
(
− µ
r2 + αr

)
~̂r. (3.30)

is integrable, yet it requires the use of special functions (BROUCKE, 1980; TSIEN,
1953). Alternatively, for small thrust values, useful approximate solutions can be
expressed in trigonometric functions (QUARTA; MENGALI, 2012). We will find several
different analytical solutions for this problem in the next subsections. Then, we will
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choose the perturbation solution - to be obtained in subsection 3.4.4 - to evaluate
the “indices”. This choice is mainly due to the possibility of obtain similar solutions
(using perturbation methods) for other astrodynamics systems.

3.4.1 Quarta and Mengali solution for a constant perturbation

For a small perturbation ar, an approximated solution for r as a function of θ is
given by (QUARTA; MENGALI, 2012)

r = r0/(1− η)
1 + (η/(1− η)) cos(θ) , (3.31)

where η = arr
2
0/µ. Note that this equation represents the polar equation of an

ellipse with one of the focuses in the center of the coordinate system. The trajectory
is approximated by an ellipse through this solution.

Using Eq. (3.28) θ̇ is

θ̇ =
√
µr0

r2 =

(1− η)2√µr0
(
η cos(θ)

1−η + 1
)2

r2
0

 . (3.32)

Using Eqs. (3.31) and (3.32), the derivative of r with respect to time is

ṙ =
(
∂r

∂θ

)(
θ̇
)

=
η sin(θ)√µr0

r0
(3.33)

According Eq. (3.9), the specific impulse is ~J = ~̇r
∣∣∣∣t2
t1

=
(
ṙr̂ + rθ̇θ̂

) ∣∣∣∣t2
t1

, which requires
the solution θ(t). The evaluation of t(θ) can be obtained analytically by solving the
integration of Eq. (3.32) in time. The problem is that its respective inverse function
θ(t) could not be obtained.

3.4.2 First order series solution in r − r0 for a constant perturbation

Using Eq. (3.28), Eq. (3.26) becomes

r̈ = µr0

r3 −
µ

r2 + αr (3.34)

Defining a new variable s = r − r0, supposing that r varies in a small quantity
around r0, and using the first order Taylor expansion of r around r0, Eq. (3.34) can
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be written as

s̈ = − µ
r3

0
s+ αr, (3.35)

which solution is
s = A sin(ω0t) +B cos(ω0t) + αr

ω2
0
, (3.36)

where ω0 =
√
µ/r3

0.

Using the boundary conditions s(0) = 0 and ṡ(0) = 0, the solution becomes

s = −αr
ω2

0
cos(ω0t) + αr

ω2
0
. (3.37)

Hence, the solution r(t) is

r = r0 −
αr
ω2

0
cos(ω0t) + αr

ω2
0
, (3.38)

which derivative with respect to time is

ṙ = αr
ω0

sin(ω0t), (3.39)

Using Eq. (3.38), Eq. (3.28) can be written as

θ̇ =
√
µr0(

r0 − αr
ω2

0
cos(ω0t) + αr

ω2
0

)2 . (3.40)
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which integration yields

θ = 1
r

3/2
0 ω0

(
2αr
ω2

0
+ r0

)
3/2
(
αr
ω2

0
− αr cos(tω0)

ω2
0

+ r0
)

√r0

√
2αr
ω2

0
+ r0

θ0r0ω0

(
αr
ω2

0
+ r0

)(
2αr
ω2

0
+ r0

)
−

θ0r0αr
(

2αr
ω2

0
+ r0

)
cos (tω0)

ω0
+
αr
√
µr0 sin (tω0)
ω2

0

+

2√µr0

(
αr
ω2

0
+ r0

)(
αr
ω2

0
− αr cos (tω0)

ω2
0

+ r0

)

tan−1


√

2αr
ω2

0
+ r0 tan

(
tω0
2

)
√
r0


 (3.41)

The solution of θ(t) has been obtained, however comparisons with numerical solu-
tions for some values of the parameters shown that further studies on its range of
validity is required with special attention to the term related to the inverse of the
trigonometric function (tan−1).

3.4.3 Radial thrust proportional to θ̇

Suppose a thrust acting in the radial direction of motion of a spacecraft given by
~α = kf(θ)θ̇r̂, where k is a constant and f(θ) is a general function of θ. The vectorial
form of the equations of motion is

(
r̈ − rθ̇2

)
r̂ +

(
1
r

d

dt

(
r2θ̇

))
θ̂ =

(
− µ
r2 + kf(θ)θ̇

)
r̂ (3.42)

The θ component of this equation is

1
r

d

dt

(
r2θ̇

)
= 0, (3.43)

which may be integrated to give the following constant of motion:

r2θ̇ = √µr0. (3.44)

Equation (3.6) can be integrated on time to give

~̇r =
∫ (

r̈ − rθ̇2
)
r̂ dt+

∫ (
1
r

d

dt

(
r2dθ

dt

))
θ̂ dt. (3.45)
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Equation (3.42) can be integrated in dt. The result is

∫ (
r̈ − rθ̇2

)
r̂ dt+

∫ 1
r

d

dt

(
r2dθ

dt

)
θ̂ dt = −

∫ µ

r2 r̂ dt+
∫
kf(θ)θ̇r̂ dt. (3.46)

Using Eq. (3.46), Eq. (3.45) can be rewritten as

~̇r = −
∫ µ

r2 r̂ dt+
∫
kf(θ)θ̇r̂ dt. (3.47)

Using Eq. (3.44), Eq. (3.47) becomes

~̇r = −
√
µ

r0

∫
θ̇r̂ dt+ k

∫
f(θ)θ̇r̂ dt. (3.48)

Using Eq. (3.2), Eq. (3.48) becomes

~̇r =
√
µ

r0

(∫
cos θ dθ~i+

∫
sin θ dθ~j

)
+ k

(∫
f(θ) cos θ dθ~i+

∫
f(θ) sin θ dθ~j

)
.

(3.49)
or

~̇r =
√
µ

r0

(
sin θ~i− cos θ~j

)
+ k

(∫
f(θ) cos θ dθ~i+

∫
f(θ) sin θ dθ~j

)
. (3.50)

Using Eq. (3.3), Eq. (3.50) becomes

~̇r =
√
µ

r0
θ̂ + k

(∫
f(θ) cos θ dθ~i+

∫
f(θ) sin θ dθ~j

)
. (3.51)

Note that the first member of the right side of Eq. (3.51) is a constant vector in de
direction of θ̂, which means that its contribution to ~J is always zero. Hence, ~J can
be evaluated using Eq. (3.9), which gives

~J = k

(∫ θ(T )

θ(0)
f(θ) cos θ dθ~i+

∫ θ(T )

θ(0)
f(θ) sin θ dθ~j

)
. (3.52)

According Eq. (3.12), the evaluation of ~Π for this kind of thrust is
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~Π =
∫ t2

t1
kf(θ)θ̇ cos θ dt~i+

∫ t2

t1

(
kf(θ)θ̇ sin θ

)
dt~j, (3.53)

which can be written as

~Π = k
(∫ 2π

0
f(θ) cos θ dθ~i+

∫ 2π

0
f(θ) sin θ dθ~j

)
(3.54)

The period of the unperturbed system given by Eqs. (3.7) and (3.8) is T = 2π
√
r3

0/µ,
which means a complete evolution of the system. θ(t1) and θ(t2) represents the
integration limits of the perturbed system. In the case where the integration interval
of the perturbed system is also taken from 0 to 2π, then Eq. (3.52) and (3.54) can be
used to show that ~Π = ~J . Equation (3.52) shows that ~J (or ~Π) has a linear relation
with k. Table 3.2 shows the values of ~J (or ~Π) for some values of f(θ) in which
Eq. (3.52) is integrable.

Table 3.2 - Values of ~Π or ~J for some values of f(θ)

f(θ) ~Π or ~J
1 0~i+ 0~j
θ 0~i− 2πk~j
θ2 4πk~i− 4π2k~j

θ3 12π2k~i+ (12π − 8π3)k~j
sin θ 0~i+ πk~j

cos θ πk~i+ 0~j
eθ eπ sinh(π)k~i− eπ sinh(π)k~j

3.4.4 Perturbation solution

The constant radial thrust problem admits Hamiltonian formulation K = T + V

where T is the kinetic energy. Furthermore, for values of the thrust acceleration
αr much smaller than the central Keplerian acceleration αK = an2, where a is the
orbit semi-major axis and n the mean motion, the problem can be viewed as a
perturbation of the Keplerian motion

K = − µ

2a

(
1 + β

r

a

)
, β = 2 αr

αK
� 1. (3.55)
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Then, using the relation valid of an ellipse r = a(1−e cosu), where u is the eccentric
anomaly, we make the perturbative arrangement K = K0 +K1, with

K0 = − µ

2a = −1
2n

2a2, K1 = βK0(1− e cosu).

The eccentric anomaly can be written in terms of the mean anomaly M using stan-
dard expansions of the elliptic motion (BROUWER; CLEMENCE, 1961). In the case of
low eccentric orbits, terms of the order of e4 and higher can be neglected, yielding

K1 = βK0

[
1 + 1

2e
2 −

(
1− 3

8e
2
)
e cosM − 1

2e
2 cos 2M − 3

8e
3 cos 3M

]
(3.56)

Up to the first order of β, a perturbation solution (NAYFEH, 2004) is obtained by a
change of variables (M,ω, a, e)→ (M ′, ω′, a′, e′) given by

M = M ′ + β′δM, ω = ω′ + β′δω, a = a′ + β′δa, e = e′ + β′δe, (3.57)

with β′ = 2αr/(n′2a′) , n′ =
√
µ/a′3,

δM =
( 1

2e + 23
16e−

3
8e

3
)

sinM + 1
8(2 + 3e2) sin 2M (3.58)

+ 1
16e(3 + 2e2) sin 3M,

δω = −
( 1

2e −
13
16e+ 7

32e
3
)

sinM − 1
8(2− e2) sin 2M (3.59)

− 3
32e(2− e

2) sin 3M,

δa = −a
[(

1− 3
8e

2
)
e cosM + 1

2e
2 cos 2M + 3

8e
3 cos 3M

]
, (3.60)

δe = − 1
16(8− 11e2) cosM − 1

4(1− e2)e cos 2M − 3
16e

2 cos 3M, (3.61)

where the right members must be evaluated in prime variables, e′, a′, n′ and, there-
fore, β′ are constant, and

M ′ = M ′
0 + n′

(
1− 3

2β
′
)
t, ω′ = ω′0 + 1

4β
′n′(2− e′2)t. (3.62)

Without loose of generality, we assume M ′
0 = M ′(0) = 0. Hence,

t = M ′

n′(1− 3
2β
′) , (3.63)
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and
ω′ = ω′0 + 1

4β
′ (2− e′2)M ′ +O(β′2). (3.64)

The inverse transformation (M ′, ω′, a′, e′)→ (M,ω, a, e) is

M ′ = M − β δM, ω′ = ω − βδω, a′ = a− βδa, e′ = e− βδe, (3.65)

where Eqs. (3.58)–(3.61) are used again, but now with the right sides in original
variables.

Note that Eqs. (3.58) and (3.59) are singular for circular orbits. If needed, the
perturbation solution can be reformulated in non-singular variables (DEPRIT; ROM,
1970; LARA, 2008).

3.4.4.1 Acceleration

The acceleration given in Eq. (3.30) can be written using

µ

r2 = µ

a2

[
1 + 1

2e
2 + (2 + 3

4e
2)e cosM + 5

2e
2 cos 2M + 13

4 e
3 cos 3M

]
, (3.66)

and the components of the unit vector ~̂r, which are expressed in orbital elements as

cos θ = − 1
12e

3 cos(ω − 2M)− 1
8e

2 cos(ω −M)− e cosω (3.67)

+(1− e2) cos(ω +M) + (e− 5
4e

3) cos(ω + 2M)

+9
8e

2 cos(ω + 3M) + 4
3e

3 cos(ω + 4M) ,

sin θ = − 1
12e

3 sin(ω − 2M)− 1
8e

2 sin(ω −M)− e sinω (3.68)

+(1− e2) sin(ω +M) + (e− 5
4e

3) sin(ω + 2M)

+9
8e

2 sin(ω + 3M) + 4
3e

3 sin(ω + 4M) .

In order to compute the indices based on this solution, the acceleration must be
expressed as an explicit function of time. That is, first, the original variables must be
replaced by the prime ones, as given by Eq. (3.57). Then, the integrand is expanded
in power series of β′ and terms of O(β′2) are neglected, which is consistent with our
perturbation assumption that β is small. Finally, Eq. (3.62) can be used to show the
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explicit time dependence, which will allow to solve the quadrature analytically.

3.4.4.2 Range of validity of the perturbation solution

The validity of the perturbation solution could be stated by a direct comparison
with a Taylor series expansion of the exact solution. However, in view of the fact
that the exact solution depends on special functions and, besides that, it is given in
implicit forms, these kinds of expansions can be rather unwieldy (LARA; FERRER,
2015a) (see also the expanded version in (LARA; FERRER, 2015b)).

Alternatively, the range of the variables where the solution obtained is valid can
be investigated by comparing the analytical solution with a numerical integration
of the equations of motion. This is the approach taken here where the numerical
solution has been integrated with a Runge-Kutta method, and the comparisons
have been made as follows. An analytical solution rA(M ′) is obtained by isolating
r in Eq. (3.66), after the proper indicated transformation of variables to the prime
ones. The analytical solutions cos θA(M ′) and sin θA(M ′) can be obtained in a similar
way using Eqs. (3.67) and (3.68), where θ represents the angle between the vector
pointing from the origin of the frame of reference to the spacecraft and the x axis.
The analytical solution θA(M ′) can be obtained using the trigonometric inverse of
the solutions cos θA(M ′) and sin θA(M ′). Finally, using the transformation from M ′

to t given in Eq. (3.62), the complete vector solution ~rA(t) can be found.

The analytical solutions rA(M ′), cos θA(M ′) and sin θA(M ′) obtained using
Eqs. (3.66) - (3.68) contain singularities in the case where e is too small. These sin-
gularities are expected and they come from the term 1/e present in Eqs. (3.58) and
(3.59). As mentioned before, nonsingular variables such as, for instance, F = M+ω,
C = e cosω, and S = e sinω could be used to avoid singularities. On the other
hand, the following alternative approach is made. The solutions obtained rA(M ′),
cos θA(M ′), and sin θA(M ′) are now written in Taylor series for the variable β′ around
zero. Terms with second or higher orders in β′ are neglected. This result is written
in Taylor series once again, but now for the variable e′ and terms with fourth or
higher order in e′ are disregarded. The analytical solution neglects O(β2); on the
other hand, the expansions used neglect O(e4). So, in order to be consistent, we
must assume that O(β2) ∼ O(e4). That is, crossed terms of the order of βe2 and βe3

are also neglected from the analytical solution. The result of these approximations
are the new solutions cos θB, sin θB, and rB. These new solutions do not contain
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singularities and they are given by

rB = a′

1 + β′

2 + e′
[
−3

4β
′ cos (M ′)− cos (M ′)

]
+ (3.69)

(e′)2 [sin2 (M ′)
]

+ (e′)3
[3
2 sin2 (M ′) cos (M ′)

],
cos θB = cos (M ′ + ω′) + (3.70)

e′
[
−1

23β′ sin (M ′) sin (M ′ + ω′)− 2 sin (M ′) sin (M ′ + ω′)
]
−

(e′)2
[1
4 sin (M ′) (9 sin (2M ′ + ω′) + sin (ω′))

]
−

(e′)3
[1
6 sin (M ′) (− sin (M ′ − ω′) + sin (M ′ + ω′) + 16 sin (3M ′ + ω′))

]
,

sin θB = sin (M ′ + ω′) + (3.71)

e′
[3
2β
′ sin (M ′) cos (M ′ + ω′) + 2 sin (M ′) cos (M ′ + ω′)

]
+

(e′)2
[1
4 sin (M ′) (9 cos (2M ′ + ω′) + cos (ω′))

]
+

(e′)3
[1
6 sin (M ′) (cos (M ′ − ω′) + cos (M ′ + ω′) + 16 cos (3M ′ + ω′))

]
,

where M ′ = n′
(
1− 3

2β
′
)
t and ω′ = ω′0 + 1

2β
′n′t.

The Keplerian solution is exact, but it involves the solution of the Kepler equation.
On the other hand, for low eccentricity orbits, a time explicit approximation can be
obtained by making β′ = 0 in Eqs. (3.69)–(3.71). That is

rK = a
(3

2e
3 sin2(nt) cos(nt) + e2 sin2(nt)− e cos(nt) + 1

)
, (3.72)

cos θK = −2e sin(nt) sin (nt+ ω0) + cos (nt+ ω0)− (3.73)
e2

4 sin(nt) [9 sin (2nt+ ω0) + sin (ω0)]−

e3

6 sin(nt) [sin (nt+ ω0) + 16 sin (3nt+ ω0)− sin (nt− ω0)] ,

sin θK = 2e sin(nt) cos (nt+ ω0) + sin (nt+ ω0) + (3.74)
e2

4 sin(nt) [9 cos (2nt+ ω0) + cos (ω0)] +

e3

6 sin(nt) [cos (nt− ω0) + cos (nt+ ω0) + 16 cos (3nt+ ω0)] .
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Two new functions ∆r and ∆θ are defined as

∆r(t) = ‖~rN(t)− ~r(t)‖, (3.75)

∆θ(t) = |θN(t)− θ(t)|, (3.76)

where θN(t) and ~rN(t) are the numerical solutions for the angle and the position
vector, respectively, and ~r(t) and θ(t) are given by the “A" or “B" analytical solu-
tions. Two more new functions max(∆r) and max(∆θ) are defined as the maximum
absolute value that the functions ∆r(t) and ∆θ(t) reach during the interval of time
from 0 to T , where T = 2π/n. In the case where the “A" analytical solution is used
for ~r(t) and θ(t), the maximum absolute value that the functions ∆r(t) and ∆θ(t)
reach are called maxA(∆r) and maxA(∆θ) and in the case where the “B" analytical
solution is used, they are called maxB(∆r) and maxB(∆θ).

Two new parameters k and r0 are defined such that they express the magnitude of
the perturbation as

αr = k
µ

r2
0
. (3.77)

Note that, in the case where r0 is the initial value of the orbit semi major axis,
according Eq. (3.55), β = 2k.

The length and time units can be defined such that the initial value of the semi-
major axis and the gravitational parameter are both units (a = 1 and µ = 1). The
initial conditions are r0 = a; ω(0) = 0; and M(0) = 0. In this case, the evaluation of
maxA(∆r) and maxB(∆r) are shown in Fig. 3.3 for a range of the initial eccentricity
in the case where the parameter k is set to k = 0.01 and in Fig. 3.4 for a range of the
parameter k in the case where the initial eccentricity is e = 0.1. In a similar way, the
evaluation of maxA(∆θ) and maxB(∆θ) are shown in Fig. 3.5 for a range of initial
eccentricities in the case where the parameter k is set to k = 0.01 and in Fig. 3.6
for a range of the parameter k in the case where the initial eccentricity is e = 0.1.
Both figures (a) and (b) can be compared. Note that the method of the elimination
of the singular term through the Taylor expansion could improve the precision of
the solution for a considerable range of the eccentricity, which is 0 < e < 0.2.
Figures 3.7 - 3.10 allow us to quantify the dependence of the functions maxA(∆r),
maxB(∆r), maxA(∆θ), and maxB(∆θ) with both the initial eccentricity and the
parameter k. The results shown in these figures for the non-singular case measure
the expected behavior that the perturbation increase with both the eccentricity
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and with the parameter k. Two different evolutions are observed depending on the
values of k. For higher values (above 0.015) there is a nearly linear increase with
both parameters eccentricity and k. Below this limit, there is a critical value for
the eccentricity where the parameter k dominates the scenario and the impulse
has little dependency with the eccentricity. It is visible from the plots, by noting
that the border lines between two colors are nearly horizontal. Above this critical
value the situation is the opposite, the eccentricity has more effects compared to the
parameter k and the border lines between two adjacent colors are nearly vertical.
This transition of the evolutions generates the corners in the lines below k = 0.015.
The range of validity of the eccentricity for this solution can be set to 0 < e < 0.2. In
the solutions for rB and θB, terms of order 4 and higher orders of e′ are disregarded,
as well as terms with order 2 and higher orders of β′. Neglecting terms of order 4 in
the eccentricity means that terms with magnitude larger then (0.2)4 are neglected.
Due to the disregarding of terms or order 2 or more in β′, the range of validity
in this parameter is set to β < 0.04. Note that β ≈ 2k, which means k < 0.02.
The nonsingular expanded solution given by Eqs. (3.69)-(3.71) is the best choice.
It avoids the unexpected behavior of maxA(∆r) in the range 0 < e < 0.1, where
maxA(∆r) decreases with the eccentricity. This is due to the singularity. Figures
3.3 and 3.4 show the real behavior. Figures 3.5 and 3.6 show the same behavior for
the variation in θ, with the same unexpected pattern from 0 < e < 0.1 when using
singular elements. Figures 3.7 - 3.10 study the effects of k and the eccentricity of
the orbit. The necessity of using non-singular variables is very clear. Figures 3.8 and
3.10 show the expected behavior of increasing the perturbations with k and with
the eccentricity of the orbit. Besides confirming the expected behavior, this figure
quantifies the effects in an objective and clear form. This is also important in this
problem.
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Figure 3.3 - maxA(∆r) and maxB(∆r) as function of e. Maximum values reached by ∆r
in the interval of time from 0 to T = 2π

√
a3

0/µ evaluated for the “A" singular
solution given by Eqs. (3.66)-(3.68) in blue and for the “B" non singular
solution given by Eqs. (3.69)-(3.71) in red. The units, variables, parameters
and initial conditions are such that r0 = a = 1, µ = 1, ω(0) = 0, M(0) = 0,
and k = 0.01

maxA(Δr) maxB(Δr)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.01

0.02

0.03

0.04

eccentricity

SOURCE: Author’s production.

47



Figure 3.4 - maxA(∆r) and maxB(∆r) as function of k. Maximum values reached by ∆r
in the interval of time from 0 to T = 2π

√
a3

0/µ evaluated for the “A" singular
solution given by Eqs. (3.66)-(3.68) in blue and for the “B" non singular
solution given by Eqs. (3.69)-(3.71) in red. The units, variables, parameters
and initial conditions are such that r0 = a = 1, µ = 1, ω(0) = 0, M(0) = 0,
and e = 0.1 .
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Figure 3.5 - Maximum values reached by ∆θ in the interval of time from 0 to T = 2π
√
a3

0/µ

evaluated for the “A" singular solution given by Eqs. (3.66)-(3.68) in blue and
for the “B" nonsingular solution given by Eqs. (3.69)-(3.71) in red. The units,
variables, parameters and initial conditions are such that r0 = a = 1, µ = 1,
ω(0) = 0, M(0) = 0, and k = 0.01.
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Figure 3.6 - Maximum values reached by ∆θ in the interval of time from 0 to T = 2π
√
a3

0/µ

evaluated for the “A" singular solution given by Eqs. (3.66)-(3.68) in blue and
for the “B" nonsingular solution given by Eqs. (3.69)-(3.71) in red. The units,
variables, parameters and initial conditions are such that r0 = a = 1, µ = 1,
ω(0) = 0, M(0) = 0, and e = 0.1 .
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Figure 3.7 - singular solution given by Eqs. (3.66)-(3.68). Maximum values reached by
∆r in the interval of time from 0 to T = 2π

√
a3

0/µ evaluated for the “A"
solution given by Eqs. (3.66)-(3.68). The units, variables, parameters and
initial conditions are such that r0 = a = 1, µ = 1, ω(0) = 0, and M(0) = 0.
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Figure 3.8 - nonsingular solution given by Eqs. (3.69)-(3.71). Maximum values reached
by ∆r in the interval of time from 0 to T = 2π

√
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0/µ evaluated for the
“B" solution given by Eqs. (3.69)-(3.71). The units, variables, parameters and
initial conditions are such that r0 = a = 1, µ = 1, ω(0) = 0, and M(0) = 0.

0.00 0.05 0.10 0.15 0.20
0.000

0.005

0.010

0.015

0.020

eccentricity

k

maxB(Δr)

2.7×10-3

5.4×10-3

8.1×10-3

0.0108

0.0135

0.0162

0.0189

0.0216

0.0243

0.0270

SOURCE: Author’s production.

52



Figure 3.9 - singular solution given by Eqs. (3.66)-(3.68). Maximum values reached by
∆θ in the interval of time from 0 to T = 2π

√
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0/µ evaluated for the “A"
solution given by Eqs. (3.66)-(3.68). The units, variables, parameters and
initial conditions are such that r0 = a = 1, µ = 1, ω(0) = 0, and M(0) = 0.
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Figure 3.10 - nonsingular solution given by Eqs. (3.69)-(3.71). Maximum values reached
by ∆θ in the interval of time from 0 to T = 2π

√
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0/µ evaluated for the “B"
solution given by Eqs. (3.69)-(3.71). The units, variables, parameters and
initial conditions are such that r0 = a = 1, µ = 1, ω(0) = 0, and M(0) = 0.
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3.5 Results to the perturbation solution

In this section, different indices are defined and calculated based on the solutions
obtained in the section 3.4.4, with the goal of finding the most adequate ones to select
orbits that are less disturbed. The reason why the perturbation solution is chosen
in detriment of the Tsien or Quarta and Mengali solutions, or even in detriment
of the one developed in subsection 3.4.2 is that perturbation solutions can also be
obtained in cases where other astrodynamics systems are used.

3.5.1 Solution for ~J

The specific impulse ~J will be the first index studied. Using Eq. (3.30), the impulse
per unit of mass is formulated as

~J =
∫ t2

t1

(
− µ
r2 + αr

)
~̂rdt. (3.78)

The solutions given by Eqs. (3.66)-(3.68) are used into Eq. (3.78). The proper
changes of variables are made in order to turn all variables to the prime ones. Thus,
an expansion in Taylor series with terms up to the first order in β′ is made in the
integrand. Another expansion in Taylor series keeping terms up to the third order
in e′ is also made in the integrand. The quadrature is analytically evaluated. In the
case where ω0 = 0, the solutions for Ji and Jj are given by

Ji = a′n′

1
2 (β′ − 2) sin

(1
2 (β′ + 2)M ′

)
+ e′

(
−β

′

2 − 1
)

sin
(1

2 (β′ + 4)M ′
)

+ (3.79)

(e′)2
[
−1

8 sin
(
M ′ − β′M ′

2

)
+ 1

2 sin
(1

2 (β′ + 2)M ′
)
− 9

8 sin
(1

2 (β′ + 6)M ′
)]

+

(e′)3
[
− 17

32 sin
(
β′M ′

2

)
+ 1

12 sin
(1

2 (β′ − 4)M ′
)

+ 3
4 sin

(1
2 (β′ + 4)M ′

)
−

4
3 sin

(1
2 (β′ + 8)M ′

) ]
∣∣∣∣∣∣
M ′(t2)

M ′(t1)

,
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Jj = a′n′


(

1− β′

2

)
cos

(1
2 (β′ + 2)M ′

)
+ e′

1
2 (β′ + 2) cos

(1
2 (β′ + 4)M ′

)
+ (3.80)

(e′)2
[
−1

8 cos
(
M ′ − β′M ′

2

)
− 1

2 cos
(1

2 (β′ + 2)M ′
)

+ 9
8 cos

(1
2 (β′ + 6)M ′

)]
+

(e′)3
[

17
32 cos

(
β′M ′

2

)
− 1

12 cos
(1

2 (β′ − 4)M ′
)
− 3

4 cos
(1

2 (β′ + 4)M ′
)

+

4
3 cos

(1
2 (β′ + 8)M ′

) ]
∣∣∣∣∣∣
M ′(t2)

M ′(t1)

,

where the relation between M ′ and t is shown in Eq. (3.62).

The length and time units can be defined such that the initial value of the semi-
major axis and the gravitational parameter are both units (a = 1 and µ = 1). The
initial conditions are e = 0.1; ω(0) = 0; and M(0) = 0 and the parameters relative
to the perturbation are set to k = 0.01 and r0 = 1. The index ~J is evaluated between
two times, which we can call t1 = 0 and t2 = t. The values of the components Ji and
Jj of ~J and the absolute value J of ~J as functions of t are shown in Figs. 3.11 and
3.12, for different ranges of t. Note from these figures that neither ~J or its absolute
value may be good indices to be related with the perturbation, because their values
are oscillatory over time and the net effect of the perturbation over these values is
not cumulative, quite on contrary, these effects are canceled in time and the choice
of t2 to evaluate these indices is arbitrary in this sense.
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Figure 3.11 - The components Ji (in red) and Jj (in blue) of ~J and its absolute value J
(in green) evaluated from t1 = 0 to t2 = t. The vertical black straight line
represents t = 2π (the period of the respective unperturbed system) and the
horizontal black straight line is drawn to guide the eyes. The units, variables,
parameters and initial conditions are such that r0 = a = 1; µ = 1; ω(0) = 0;
M(0) = 0; k = 0.01; and e = 0.1.
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Figure 3.12 - The components Ji (in red) and Jj (in blue) of ~J and its absolute value J
(in green) evaluated from t1 = 0 to t2 = t. The vertical black straight lines
represent the values of t that are multiples of 2π (the period of the respective
unperturbed system) and the horizontal black straight line is drawn to guide
the eyes. The units, variables, parameters and initial conditions are such that
r0 = a = 1; µ = 1; ω(0) = 0; M(0) = 0; k = 0.01; and e = 0.1.
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The results show that the impulse makes cycles, always returning to zero. So, the
impulse disturbs the orbit and makes it to oscillate around the Keplerian one, but
they return to the same point after one period of oscillation. Based in those results,
a first conclusion is that the best way to measure the degree of the perturbation
received by the spacecraft depends on the goal of the study:

a) In the case of integration times in the order of one orbital period, with small
oscillations, it is important to consider the variations during this time.
A better index could be the maximum value reached by the magnitude
J or, even better, the integral of J with respect to time divided by the
integration time. In that way, compensations of the perturbing effects are
not computed. Allowing the compensations would give a zero result for the
integral for an orbit that is really perturbed. So, for a study in this time
range, ~J is not a good choice for an index.

b) In the case of longer times, these compensations should be allowed, or it
will give integral indices that are too high. In the long range, indices that
allow compensations like ~J are more appropriate.

3.5.2 Integral of the square of the absolute value of the acceleration

A new index Js is defined as

Js = 1
(t2 − t1)(µ/a2)2

∫ t2

t1
‖~̈r‖2 dt = 1

(t2 − t1)(µ/a2)2

∫ t2

t1
‖
(
− µ
r2 + αr

)
~̂r‖2dt.(3.81)

The idea of this index is to avoid compensations of negative and positive contribu-
tions to the integral, to create an index that is adequate for short periods of time, in
the order of one orbital period. The factor [(t2− t1)(µ/a2)2]−1 is used both to make
Js a non-dimensional index and to avoid some cumulative effects of the operations.
Using the same procedure used to calculate ~J , the solution of Eq. (3.81) is

Js = (a′)2(n′)3

(t2 − t1)(µ/a2)2


(

1− 3β′
2

)
M ′ + e′ [(4− 3β′) sin (M ′)] + (3.82)

(e′)2
[
3M ′ + 7

2 sin (2M ′)
]

+ (e′)3
[

17 sin (M ′)
2 + 23

6 sin (3M ′)
]

∣∣∣∣∣∣
M ′(t2)

M ′(t1)

.
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The units of time and distance are defined such that µ = 1 and an arbitrary a0 = 1.
The parameters are set to k = 0.01; r0 = 1; t1 = 0; and t2 = 2π

√
a3/µ, which

is the orbital period of the respective unperturbed system. The initial condition is
ω(0) = 0 and the initial values of the semi-major axis and the eccentricity are varied
according to the range given in Fig. 3.13. In this figure, the evaluation of Js is shown
in the color scale, from blue to red. The same index Js as a function of k is shown in
Fig. 3.14 for the case where the initial eccentricity is fixed in e = 0.1, the semi-major
axis is a = 1, t1 = 0 and t2 = 2π

√
a3/µ. The index Js decreases as k increases for

the fixed interval of integration. This happens due to the term αr associated to the
perturbation in the integrand of Eq. (3.81). It decreases the absolute value of the
integrand. It happens because perturbation and gravity have opposite directions.
This is a very weak point of this index that makes it not useful.

Figure 3.13 - Js is integrated for different initial conditions of the eccentricity (e) and the
semi-major axis (a) over the interval of time from t1 = 0 to t2 = 2π

√
a3/µ.

The parameters with respect to the intensity of the perturbation are k = 0.01
and r0 = 1 and the initial condition is such that ω(0) = 0.
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Figure 3.14 - Js as a function of k evaluated in the interval of time integration from t1 = 0
to t2 = 2π

√
a3/µ. The initial conditions and the parameters are ω(0) = 0,

e = 0.1, a = 1, and r0 = 1.
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In order to obtain the results, the parameter r0 was set to r0 = 1. In the case where
the parameter r0 equals the initial value of the semi-major axis (r0 = a), then the
index Js becomes totally independent of the initial value of the semi-major axis a.

3.5.3 Integral of the square of the absolute value of the difference of the
accelerations

The differences between the perturbed and the Keplerian accelerations has been
used in some variations of the PI index (PRADO, 2013), as attempts to identify
more perturbed orbits (SANCHEZ, 2017). Thus, a new index Ja is defined here us-
ing the absolute value of the difference between the perturbed and the Keplerian
accelerations vectors as

Ja =
(

(t2 − t1)
(
µ

a2

)2
)−1 ∫ t2

t1
‖~aB − ~aK‖2 dt (3.83)

= 1
(t2 − t1)(µ/a2)2

∫ t2

t1
‖
(
− µ

r2
B

+ αr

)
~̂rB −

(
− µ

r2
K

)
~̂rK‖2 dt,

where a is the initial value of the semi-major axis, ~rB is the position vector of the
perturbed system given by Eqs. (3.69)-(3.71) and ~rK is the position vector of the
unperturbed (Keplerian) system given by Eqs. (3.72)-(3.74).

The idea is to take into account the perturbing acceleration and the indirect effects
of disturbing the Keplerian orbit. The factor [(t2−t1)(µ/a2)2]−1 is used both to make
Ja a non-dimensional index and to avoid some cumulative effects of the operations
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as to the integration time. The quadrature of Eq. (3.83) is numerically evaluated.
The length and time units can be defined such that an arbitrary initial value of the
semi-major axis and the gravitational parameter are both units (a0 = 1 and µ = 1).
The initial condition is ω(0) = 0 and the parameters relative to the perturbation are
set to k = 0.01 and r0 = 1. The integration is taken over the interval from t1 = 0
and t2 = T , where T = 2π

√
a3/µ is the orbital period of the respective unperturbed

system. In this case, the index Ja as a function of the initial conditions a and e is
shown in Fig. 3.15. This index increases with the eccentricity and with the semi-
major axis. This index is also shown in Fig. 3.16 as a function of k for the same
conditions with e = 0.1.

Figure 3.15 - Ja calculated in the interval of time integration from t1 = 0 to t2 = 2π
√
a3/µ

as a function of the initial variables a and e. The parameters with respect
to the intensity of the perturbation are r0 = 1 and k = 0.01 and the initial
condition is such that ω(0) = 0.
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Figure 3.16 - Ja as a function of k evaluated in the interval of time integration from t1 = 0
to t2 = 2π

√
a3/µ. The initial conditions and the parameters are ω(0) = 0;

e = 0.1; a = 1; and r0 = 1.
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The integration is over the magnitude of the perturbation, so it does not allow
compensations that reduces the perturbation level to zero or near zero in situations
where the orbit is perturbed. It also addresses the problem of taking into account
the perturbations coming from the gravity of the central body due to the fact that
the orbit is not Keplerian. The results shown indicate that it is a good index, giving
expected results. The index quantifies the increase with the eccentricity, as expected.
It also quantifies an increase with the orbit semi-major axis, which is expected,
because the gravity field of the central body decreases with the square of the distance,
so the perturbation is proportionally higher. It also has an expected result as a
function of k, with an increase of the index with k. The trajectories shown in Fig.
3.17 corroborate with the results obtained using the index Ja. It can be checked,
from the plots of this figure, that the deviation from the Keplerian orbit is larger
for trajectories with higher values for a, e, and k.
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Figure 3.17 - Trajectories evolved for the interval of integration time from t1 = 0 to
t2 = 20T . In the upper-left figure, the eccentricities are e = 0.1 and e = 0.01
for the black and red trajectories, respectively. In the upper-right figure, the
semi-major axes are a = 1.3 and a = 1 for the black and red trajectories, re-
spectively. In the down-left figure, the parameters k relative to the intensity
of the perturbation are k = 0.01 and k = 0.001 for the black and red tra-
jectories, respectively. In the down-right figure, the Keplerian orbit is shown
(k = 0). The blue circle represents the initial position of the motion. The
gray and red circles represent the final position of the black and red trajec-
tories, respectively. The initial conditions and the parameters are ω(0) = 0;
k = 0.01; e = 0.1; a = 1; and r0 = 1, except the modified parameter for the
respective plot.
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Now, a longer-term analysis is performed. The definition of the mean value of a func-
tion f(t) in the interval [t1, t2] is 1

t2−t1

∫ t2
t1
f(t) dt. The index Ja defined in Eq. (3.83)

is the mean value of the function κ‖~aB −~aK‖2, where κ = (µ/a2)−2. An integration
over small values of the interval time [t1, t2] usually offers a good estimate for the
value of the index Ja, which in turn can offer valuable information about the influ-
ence of the perturbation on the motion of the spacecraft placed in this orbit, due
to the form of its definition. In the case where e = 0.1 and k = 0.01, the function
κ‖~aB − ~aK‖2 of t is shown in Fig. 3.18 for the interval from t = 0 to t = 250T . In
the case where t1 = 0 and t2 = 250T , the value of the index is Ja = 1.30. In the
case where the integration is taken over the interval from t1 = 0 to t2 = 2500T , the
value of the index is Ja = 1.28. Note that, in the case of the Tsien problem, the
index Ja (or the mean value of κ‖~aB −~aK‖2) slightly changes for high values of the
interval [t1, t2]. Thus, a short numerical calculation is able to give a result that is
an estimate of the behavior of the index Ja, which in turn can predict the influence
of the perturbation on the motion of the spacecraft for longer times. This result
shows that the perturbation has a constant mean effect over the perturbed motion
relative to the keplerian orbit. The fact that this index does not change over large
values of time means that the motion is bounded. Moreover, the fact that the mean
value over time is constant also means that the perturbed orbit is approximately
periodic around the Keplerian one. These conclusions can be checked through the
trajectories of the perturbed orbit and the Keplerian one shown in Fig. 3.19 in red
and blue, respectively. The argument of perihelion is changed over time, but the
orbit is bounded.
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Figure 3.18 - κ‖~aB − ~aK‖2 as a function of t for the interval 0 < t < 250T . The initial
conditions and the parameters are ω(0) = 0; e = 0.1; k = 0.01, a = 1; and
r0 = 1. The horizontal blue line represents the value of Ja = 1.30, which is
equivalent to the mean value of κ‖~aB − ~aK‖2.
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Figure 3.19 - The trajectory of the perturbed orbit is shown in red, evolved from t1 = 0 to
t2 = 250T . The keplerian trajectory is shown in blue. The initial conditions
and the parameters are ω(0) = 0; e = 0.1; k = 0.01, a = 1; and r0 = 1.
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In order to obtain the results, the parameter r0 was also set to r0 = 1. In the case
where the parameter r0 equals the initial value of the semi-major axis (r0 = a), then
the index Ja becomes totally independent of the initial value of the semi-major axis
a.

3.5.4 Integral of the square of the absolute value of the difference vector
positions

A new index Jr is defined as

Jr = 1
(t2 − t1)a2

∫ t2

t1
‖~rB − ~rK‖2 dt, (3.84)

where a is the initial value of the semi-major axis, ~rB is the position vector of the
perturbed system given by Eqs. (3.69)-(3.71) and ~rK is the position vector of the
unperturbed (Keplerian) system given by Eqs. (3.72)-(3.74).

The factor [(t2−t1)a2]−1 is also used both to make Jr a non-dimensional index and to
avoid some cumulative effects of the operations due to possible different integration
times used for different orbits. The quadrature of Eq. (3.84) is numerically evaluated.
The index Jr as a function of the initial conditions a and e is shown in Fig. 3.20 in
the case where µ = 1; t1 = 0; t2 = 2π

√
a3/µ; k = 0.01; r0 = 1; and ω(0) = 0. Note

that this index increases with the eccentricity and with the semi-major axis. The
index Jr is shown in Fig. 3.21 as a function of k for the same conditions and with
e = 0.1.

67



Figure 3.20 - Jr calculated in the interval of time integration from t1 = 0 to t2 = 2π
√
a3/µ

as a function of the initial variables a and e. The parameters with respect
to the intensity of the perturbation are k = 0.01 and r0 = 1 and the initial
condition is such that ω(0) = 0.
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Figure 3.21 - Jr as a function of k evaluated in the interval of time integration from t1 = 0
to t2 = 2π

√
a3/µ. The initial conditions and the parameters are ω(0) = 0;

e = 0.1; a = 1; and r0 = 1.
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This index complements the integral of the difference of the accelerations Ja as
it measures how much an orbit is deviated from a Keplerian one due to the per-
turbation. The ideal scenario would be to have a correspondence between higher
accelerations and higher deviations.

The same initial condition r0 = 1 is used here. If r0 = a, then the index Jr also
becomes independent of the initial value of the semi-major axis a.

3.6 Considerations

The main goal of this chapter was to search for indices based in the integral of
a perturbing acceleration that is able to predict the level of disturbance in the
perturbed trajectory compared with the equivalent Keplerian orbit. In order to reach
this goal, we studied three indices based in the integral of the accelerations: ~J , given
by Eq. (3.78), Js, given by Eq. (3.81), and Ja, given by Eq. (3.83). A detailed study
showed that the indices ~J and Js have weak points and they are not adequate to
measure the perturbation level of an orbit. On the opposite side, Ja showed to be
very adequate. This index is able to predict the orbits that are more disturbed.

We also studied indices to measure the consequence of the perturbations. In par-
ticular, Jr, given by Eq. (3.84), which results are in agreement with the index Ja.
The idea behind the Jr index is that it can measure the deviation of an orbit from
a Keplerian one directly from the trajectories.

So, the main conclusion of this chapter is that Ja is the best integral index for
astrodynamics problems and can be used for other perturbations. Of course indices
∆r, ∆θ, and Jr can also be used to compare the results, so giving a more detailed
verification. This combination of indices can be used to select better orbits in many
problems, just by adding more perturbations.
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4 DETERMINATION OF THRUSTS TO GENERATE ARTIFICIAL
EQUILIBRIUM POINTS IN BINARY SYSTEMS WITH APPLICA-
TIONS TO A PLANAR SOLAR SAIL

It is well known the existence of five equilibrium points in the Circular Restricted
Three Body Problem, as well as the fact that they are good options to place a space-
craft to make observations of the surrounding regions. They have several practical
applications in astronautics. Following this idea, the literature shows several studies
related to artificial equilibrium points, where an extra force is added to the system
to give new equilibrium points. In that sense, the idea of the present chapter is to
map the space around a binary system to show the magnitude and direction that
a continuous thrust needs to have to generate artificial equilibrium points around
the binary system. In this way a mission designer can evaluate the cost/benefit for
the mission of different locations to place the spacecraft in a stationary position. In
particular, applications using a planar solar sail are considered, showing the regions
of possible solutions, as well as the area-to-mass ratios involved. The importance of
this type of force is that it is a natural component of the dynamics, so requiring low
fuel consumption for station-keeping when small extra perturbations are taken into
account.

4.1 Introduction

The stationary condition in the rotating frame of reference was firstly referred as
an artificial equilibrium point (AEP) in Dusek (1966). Among other possibilities,
solar reflectors can take advantage of the solar radiation pressure in order to gen-
erate thrust in a spacecraft (TSIOLKOVSKY, 1936; TSANDER, 1967). Using the solar
radiation pressure, a spacecraft equipped with a solar sail is able to generate the
thrust required to achieve the AEP without the use of propellant. Robert L. Forward
patented an idea of a “statite” spacecraft equipped with a solar sail that could main-
tain permanent contact with both poles of the Earth, above and below the Ecliptic
(FORWARD, 1991). Thus, the solar sail becomes an attractive source of thrust to gen-
erate AEP in the CRTBP (SIMMONS et al., 1985; MCINNES et al., 1994). Since then,
the searching for families of AEP has been the subject of several researches using the
CRTBP, including, as particular cases, the use of general thrusts (MCINNES, 1998),
AEP around asteroids systems (BROSCHART; SCHEERES, 2005; BU et al., 2017), sta-
bility studies using constant thrusts (BOMBARDELLI; PELAEZ, 2011), the study of
situations where the primary body is an oblate spheroid (RANJANA; KUMAR, 2013),
a thrust purely given in the radial direction (ALIASI et al., 2011), etc. There is also
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research considering the elliptical restricted three body problem for a thrust purely
given in the radial direction (ALIASI et al., 2012). AEP can be used to solve practical
problems where the traditional libration points could not, like to place a stationary
spacecraft equipped with a solar sail in a permanent contact with the Earth near
the traditional lagrangian point L3 (DE ALMEIDA JUNIOR et al., 2017a). Regardless
of the requirement of a suitable control system to maintain the spacecraft at an
unstable AEP, orbits around these points are capable of maintaining the spacecraft
near the desired point for the duration of the mission (BAOYING; MCINNES, 2006;
WATERS; MCINNES, 2007; BAIG; MCINNES, 2009). Besides Lindstedt-Poincare third
order approximation method, a new analytical solution can also be used to describe
orbits around AEP (DE ALMEIDA JUNIOR et al., 2018). The solar sail parameters and
its dynamics around AEP can also be seen in Farrés and Jorba (2014).

From the point of view of a mission using a spacecraft with limited resources, in
particular in the intensity and direction of the thrust, also with constrained objec-
tives relative to its position in space, it is important to know the options available
to park such a spacecraft. The conditions that spend too many resources should
be avoided in a real mission. These conditions are represented by regions with high
values for the magnitude of the thrust required to maintain the equilibrium. Al-
though individual numerical calculations are not being presented, we exhibit several
detailed maps from which it is clearly possible to choose the best cost-benefit re-
gions to be considered in a spacecraft mission. Moreover, this is done for several
different kinds of thrusts. Nevertheless, the regions where the parking is impossible
are also important to be known. The objective in this chapter is then to investigate
possible and impossible solutions to place a spacecraft in a stationary condition
near a binary system in the rotating frame of reference. The traditional circular
restricted three body problem is used to model the system, with an extra force due
to the thrust applied to the spacecraft, which can be generated from several sources
that requires propellant, like ion engines (GOEBEL; KATZ, 2008), or not, like solar
sails (MCINNES, 2004), magnetic sails (UENO et al., 2009; ZUBRIN; ANDREWS, 1991),
electric sails (MENGALI; QUARTA, 2009; JANHUNEN, 2004; JANHUNEN; SANDROOS,
2007), or magneto-plasma sails (YAMAKAWA et al., 2006).

The first objective while studying AEP in this thesis is then to investigate possible
and non-possible solutions to place a spacecraft in a stationary condition near a
binary system in the rotating frame of reference. The traditional circular restricted
three body problem is used to model the system, with an extra force due to the thrust
applied to the spacecraft. In order to give a good view of the solutions, symmetries
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are explored and the equations are solved analytically for a general system of two
main bodies. Moreover, the Sun-Earth system is used in the examples. This research
is written in this chapter, whose sections are organized as shown in Table 4.1 and
described as follows. In section 4.2, the equilibrium condition is investigated through
the use of a general thrust in the restricted circular three body problem. In section
4.3, the equilibrium conditions are studied for several directions of the thrusts: thrust
in the direction of the ~r1 vector, in subsection 4.3.1; combination of thrusts in the
directions of the ~r1 and ~r2 vectors, in subsection 4.3.2; thrust in the direction of the x,
y, and z axes, in subsections 4.3.3, 4.3.4, and 4.3.5, respectively; and in the general
directions of the x-z and x-y planes, in subsections 4.3.6 and 4.3.7, respectively.
In section 4.4, the equilibrium conditions are investigated in the case of the Sun-
Earth system with applications to a planar solar sail. Firstly, the regions where
the equilibrium is possible and non-possible are identified. Then, these regions are
shown combined with the direction and norm of the thrust required to satisfy the
equilibrium condition. Finally, instead of the norm of the thrust, these regions are
also studied as functions of the ratio area-to-mass in the case where a planar solar
sail is used to generate the thrust. These results are shown in subsections 4.4.1 - 4.4.7
for each type of thrust, among the ones investigated in section 4.3. The conclusions
are written in section 4.5.
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Table 4.1 - The organization of the cases in the paper.

System / Subsection
The studied case General Sun-Earth

binary system
Thrust in the direction of the ~r1 vector 4.3.1 4.4.1
Solution out of the ecliptic 4.3.1.1
Solution on the x axis 4.3.1.2
Solution in the ecliptic 4.3.1.3

Combination of thrusts in the directions of the ~r1 and ~r2 vectors 4.3.2 4.4.2
Solution out of the ecliptic 4.3.2.1
Solution in the ecliptic 4.3.2.2

Thrust in the direction of the x axis 4.3.3 4.4.3
Solution in the ecliptic 4.3.3.1
Solution on the x axis 4.3.3.2

Thrust in the direction of y axis 4.3.4 4.4.4
Thrust in the direction of z axis 4.3.5 4.4.5
Solution in the x-z plane 4.3.5.1
Solution out of the x-z plane 4.3.5.2

Thrust in the x-z plane 4.3.6 4.4.6
Solution out of the x-z plane 4.3.6.1
Solution in the x-z plane 4.3.6.2

Thrust in the x-y plane 4.3.7 4.4.7

4.2 Formulation of the problem and description of the mathematical
models used

Let two massive primary bodies (M1 and M2) moving under their mutual gravita-
tional attraction evolve in circular orbits around the center of mass of the respective
system. A rotating frame of reference is defined such that the two primaries are con-
nected along its x axis, which center is located in the barycenter of the primaries.
The z axis is oriented as perpendicular to the ecliptic and the y axis arises according
to the right hand rule. This frame rotates with constant angular velocity ω along
the z axis. The equation of motion of a spacecraft subjected to the gravitational
interaction of the two primaries and also subjected to an extra force ~fp is given by
(SYMON, 1971)

d2~r

dt2
+ 2~ω × d~r

dt
+ ~ω × (~ω × ~r) + d~ω

dt
× ~r = −µ1

r3
1
~r1 −

µ2

r3
2
~r2 + 1

m
~fp, (4.1)

where: ~r = (x, y, z) denotes the position of the spacecraft; ~ω is the angular velocity
of the rotating frame of reference; ~r1 is the position of the spacecraft with respect
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to the body M1; r1 is the norm of ~r1; ~r2 locates the spacecraft from the body M2;
r2 is the norm of ~r2; µ1 is the gravitational parameter of M1; µ2 is the gravitational
parameter of M2; ~fp is a force acting over the spacecraft; and m is the mass of such
spacecraft.

The distances of the bodies M1 and M2 from their barycenter are d1 and d2, respec-
tively. According to the classic definition of center of mass (SYMON, 1971), these
values are given by

d1 = Rµ2

µ1 + µ2
and d2 = Rµ1

µ1 + µ2
, (4.2)

where R = d1 + d2 is the total distance that separates the two bodies. Using the ~i,
~j, ~k unitary vectors along the x, y, z axes, respectively, the vectors ~r1 and ~r2 can be
written as

~r1 = ~r + d1~i (4.3)

~r2 = ~r − d2~i.

Figure 4.1 - The rotating frame of reference

The rotating frame of reference and the relative positions of the bodies involved
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are shown in Fig. 4.1. The motion is circular, therefore the ~ω vector can be written
as ~ω = ω~k, where ω is a constant given by ω =

√
(µ1 + µ2)/R3. Hence, Eq. (4.1)

becomes
d2~r

dt2
+ 2~ω × d~r

dt
− ω2

(
~r − z~k

)
= −µ1

r3
1
~r1 −

µ2

r3
2
~r2 + 1

m
~fp. (4.4)

The equilibrium condition of Eq. (4.4) is given by

1
m
~fp = −ω2

(
~r − z~k

)
+ µ1

r3
1
~r1 + µ2

r3
2
~r2. (4.5)

In the case where ~fp = 0, the solutions of Eq. (4.5) are the five lagrangian points,
otherwise the solutions of Eq. (4.5) are the so called artificial equilibrium points
(AEP). Equation (4.5) can be rewritten as

1
m
~fp =

(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
~r +

(
µ1d1

r3
1
− µ2d2

r3
2

)
~i+ ω2z~k. (4.6)

Hence, the components of the acceleration ~fp
m

= fx~i+ fy~j + fz~k are evaluated using
Eq. (4.6).

In order to know the fuel consumed by the spacecraft, an important quantity index
to be known is the variation of the velocity given by the extra force applied to
the spacecraft ∆v, which in this case may be defined by simply the value of the
acceleration ‖ 1

m
~fp‖ times the time that the spacecraft is kept in the equilibrium

point, that is ∆v =
∫ tf
ti ‖

~fp
m
‖dt, where ti and tf are the initial and final times of

integration. Note that, according to Eq. (4.5), the ratio ~fp
m

depends only on the
position, not on the time. Hence, we get ∆v = ‖~fp‖T/m, where T = tf − ti is
the total time that the spacecraft is subjected to the thrust. Once the period of
the mission T is a known parameter, this quantity is easily evaluated, since the
magnitude of the ratio ~fp/m is shown in this paper.

Applications to a planar solar sail: in order to consider the possibility of using
a solar sail, it is possible to assume a perfect reflection in its surface. Thus, the force
over a planar solar sail is given by (MCINNES, 2004)

~fs = kA cos2 γ

r2
1

~n, (4.7)

where k is a parameter that depends on the luminosity of the body; r1 is the vector
that locates the sail, measured from the source of photons (the primary M1); A is
the total area of the flat solar sail; ~n is the normal vector to the solar sail; and
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γ is the angle between ~n and ~r1, which must be constrained to |γ| < 90◦ (the
vector ~n cannot be directed towards the Sun). In the case where M1 is the Sun,
the parameter k is given by k = 2peR2, where pe is the solar radiation pressure
at a distance R from the Sun. According to the definition of γ, the term cos2 γ in
Eq. (4.7) is cos2 γ = (~r1 · ~n/r1)2. The components of the thrust required to satisfy
the equilibrium condition [Eq. 4.6] are ~fp = m

(
fx~i+ fy~j + fz~k

)
. In the case where

this equilibrium condition is satisfied by the use of a solar sail, then ~fp = ~fs, hence
the vector normal to the solar sail is written as ~n = ~fp/‖~fp‖. Therefore, in this case,
the ratio area-to-mass required to maintain the equilibrium condition is given by

A

m
=

(
f 2
x + f 2

y + f 2
z

) 3
2 r4

1

k ((x+ d1)fx + yfy + zfz)2 . (4.8)

Note that this model uses a perfect reflective surface for the sail, which is not
true for real materials. Gravitational perturbations coming from other planets are
also not taken into account. The real low eccentricity of the orbit of the Earth is
not considered. In the case of AEP very close to the Sun, other effects should be
taken into consideration, like the solar wind. Thus, it is important to note that a
mathematical approach to the problem is done in this research, i.e. the results of
this paper can be used to decide (or to ignore) an initial strategy for a mission
designer, to be used together with station-keeping strategies to compensate extra
perturbations.

4.3 Equilibrium conditions

Using the models described in the previous section, the equilibrium conditions are
analytically and independently found for several directions of the thrust in this
section.

4.3.1 Thrust in the direction of the ~r1 vector

A general study of the artificial equilibrium points is presented in (ALIASI et al.,
2011) in the case of a general, continuous, and purely radial thrust using a synodic
reference system. In this subsection, we present a different approach to the same
problem, which objective is to better visualize the possibilities (locations) and costs
(norms of the thrusts) to park a spacecraft in the space, which results are easily
applied to the Sun-Earth system and a planar solar sail.
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Let a spacecraft be subjected to a force ~fp given by

~fp = mf(x, y, z)~r1, (4.9)

where f(x, y, z) is a scalar function of the coordinates to be found. Hence, the three
components of Eq. (4.6) can be separated as

(
−f(x, y, z)− ω2 + µ1

r3
1

+ µ2

r3
2

)
x− f(x, y, z)d1 + µ1d1

r3
1
− µ2d2

r3
2

= 0, (4.10)

(
−f(x, y, z)− ω2 + µ1

r3
1

+ µ2

r3
2

)
y = 0, (4.11)

(
−f(x, y, z) + µ1

r3
1

+ µ2

r3
2

)
z = 0. (4.12)

4.3.1.1 Solution out of the ecliptic

In the case where z 6= 0, Eq. 4.12 becomes

f(x, y, z) = µ1

r3
1

+ µ2

r3
2
. (4.13)

Using Eq. (4.13), Eq. (4.11) becomes

y = 0. (4.14)

Using Eq. (4.14) and Eq. (4.13), Eq. (4.10) becomes

r3
2 = − µ2R

4

x(µ1 + µ2) . (4.15)

The x coordinate must be negative in order to satisfy the positive characteristic of
r2 in Eq. (4.15). Thus, Eq. (4.13) constrains the function f(x, y, z), while Eq. (4.14)
shows that the solution must lie in the x-z plane. Moreover, the equilibrium points
are given by the solution of Eq. (4.15).

4.3.1.2 Solution on the x axis

In the case where z = 0, according to Eq. (4.11), there are two options: y = 0 or
y 6= 0. In the case where y = 0, the solutions are found at any point along the x
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axis. According to Eq. (4.10), the function f(x, y, z) must be given by

f(x) = 1
x+ d1

[
−ω2x+ µ1(x+ d1)

|x+ d1|3
+ µ2(x− d2)
|x− d2|3

]
. (4.16)

Applications to a planar solar sail: in the case where a planar solar sail is
subjected to the photons coming from the primary body M1, Eq. (4.8) becomes

A

m
= f(x) |x+ d1|3

k
. (4.17)

Thus, the ratio area to mass required to satisfy the equilibrium is given by Eq. (4.17),
where f(x) is given by Eq. (4.16). The vector ~n is pointed in the same direction of ~r1.
Due to the solar sail constraint, the vector ~n cannot be pointed in a direction opposite
to ~r1, hence the solution is allowed where the function f(x) given by Eq. (4.16) is
positive.

4.3.1.3 Solution in the ecliptic

In the case where z = 0 and y 6= 0, Eq. (4.11) becomes

f(x, y, z) = −ω2 + µ1

r3
1

+ µ2

r3
2
, (4.18)

Using Eq. (4.18), Eq. (4.10) becomes r2 = R. Therefore, for a radial thrust, the
solutions in the x-y plane are given in a circle of radius R around the secondary
body. Using the relation r2 = R, Eq. (4.11) is rewritten as

f(x, y, z) = µ1

(
1
r3

1
− 1
R3

)
. (4.19)

Applications to a planar solar sail: again, in the case of a planar solar sail,
if the primary body is the source of the radiation pressure, the vector ~n cannot be
pointed in a direction opposite to ~r1, hence the function f(x, y, z) must be positive,
which means that, according to Eq. (4.19), only the regions where r1 < R are
available to place such a solar sail. The solution in the x-y plane is then given in the
circle r2 = R combined with the region r1 < R. In this case, the ratio area to mass
is given by

A

m
=
(

1
r3

1
− 1
R3

)
µ1r

3
1

k
. (4.20)

79



4.3.2 Combination of thrusts in the directions of the ~r1 and ~r2 vectors

A combination of thrusts in the directions of ~r1 and ~r2 may be a good choice from
the point of view of a mission designer, because it can be directly generated by the
combination of two sources of photons, one coming fromM1 (e.g. the solar rays) and
another one coming from M2 (e.g. a laser beam) over a symmetrical sail relative to
these two sources (e.g. a spherical sail).

Let the extra force over the spacecraft be written as

~fp = mf1(x, y, z)~r1 +mf2(x, y, z)~r2, (4.21)

where f1(x, y, z) and f2(x, y, z) are scalar functions of the coordinates to be found.
Hence, the three components of Eq. (4.6) are written as

(f1 + f2)x+ f1d1 − f2d2 =
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
x+ µ1d1

r3
1
− µ2d2

r3
2
, (4.22)

(f1 + f2)y =
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
y, (4.23)

(f1 + f2)z =
(
µ1

r3
1

+ µ2

r3
2

)
z. (4.24)

4.3.2.1 Solution out of the ecliptic

In the case where z 6= 0, Eq. (4.24) becomes

f1 + f2 =
(
µ1

r3
1

+ µ2

r3
2

)
. (4.25)

Using Eq. (4.25), Eq. (4.23) becomes y = 0. Hence, the solutions lie in the x-z plane.
Using Eq. (4.25), Eq. (4.22) becomes

f1d1 − f2d2 = −ω2x+ µ1d1

r3
1
− µ2d2

r3
2
, (4.26)

Equations (4.25) and (4.26) can be solved for f1 and f2, which results are given by

f1 = µ1

r3
1
− ω2x

R
(4.27)

f2 = µ2

r3
2

+ ω2x

R
(4.28)
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Applications to a planar solar sail: in the case wheremf1(x, y, z)~r1 (the thrust
in the direction of ~r1) is given by a sail which normal vector is pointed in the same
direction of ~r1, Eq. (4.7) becomes

mf1(x, y, z)~r1 = kA

r3
1
~r1. (4.29)

Using Eq. (4.27), Eq. (4.29) becomes

r3
1 = R

xω2

(
µ1 −

A

m
k
)
. (4.30)

Note from the term of the right side of Eq. (4.30) that the solution requires a positive
value of x for a ratio area-to-mass less than µ1/k or a negative value of x otherwise.

4.3.2.2 Solution in the ecliptic

In the case where z = 0, there are two cases left: either y = 0 or y 6= 0. The first
case leads to simpler solutions on the x axis. On the other side, in the second case,
where y 6= 0, Eq. (4.23) becomes

f1 + f2 =
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
. (4.31)

Using Eq. (4.31), Eq. (4.22) becomes

f1d1 − f2d2 = µ1d1

r3
1
− µ2d2

r3
2
. (4.32)

The solutions of Eqs. (4.31) and (4.32) for f1 and f2 are given by

f1 = µ1

r3
1
− ω2d2

R
, (4.33)

f2 = µ2

r3
2
− ω2

(
1− d2

R

)
. (4.34)

Applications to a planar solar sail: analogously to what was done in subsection
4.3.2.1, in the case where mf1(x, y, z)~r1 is given by a solar sail which normal vector
is pointed in the direction of ~r1, Eq. (4.7) becomes f1(x, y, z)~r1 = A

m
k
r3

1
~r1. Hence,

Eq. (4.33) becomes

r1 =
[
R

ω2d2

(
µ1 −

A

m
k
)] 1

3
. (4.35)
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Therefore, the solutions lie in a circle in the x-y plane centered in the primary M1,
which radius is given by Eq. (4.35). Moreover, due to the positive characteristic of
r1, the solutions only exist for ratios area-to-mass that satisfy A/m < µ1/k.

4.3.3 Thrust in the direction of the x axis

Equilibrium solutions for a solar sail in the x-z and x-y planes have been shown by
McInnes (MCINNES, 2004), encompassing bothM1 andM2 or close toM2. Otherwise,
in this and the subsequent subsections, the equilibrium solutions are studied as
functions of the directions of the thrusts. These solutions reveal the possible and
forbidden locations and the magnitude of the thrust required to park a spacecraft
in the rotating frame of reference. The first case to be investigated is the thrust in
the direction of the x axis.

The extra force over the spacecraft is assumed to be in the form

~fp = mf(x, y, z)~i, (4.36)

where f(x, y, z) is any scalar function of the coordinates. Using Eq.(4.36), Eq.(4.6)
is rewritten as(

−ω2 + µ1

r3
1

+ µ2

r3
2

)
~r +

(
−f(x, y, z) + µ1d1

r3
1
− µ2d2

r3
2

)
~i+ ω2z~k = 0. (4.37)

The z component of Eq.(4.37) can be written as
(
µ1

r3
1

+ µ2

r3
2

)
z = 0, (4.38)

which means z = 0. The y component of Eq. (4.37) is
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
y = 0. (4.39)

Therefore, there are two situations, either y = 0 or y 6= 0.

4.3.3.1 Solution in the ecliptic

In the case where y 6= 0, Eq. (4.39) becomes
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
= 0 (4.40)
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and the ~i component of Eq. (4.37) is given by

f(x, y, z) = µ1d1

r3
1
− µ2d2

r3
2
. (4.41)

Both Eqs. (4.40) and (4.41) satisfy the equilibrium condition. The first one constrains
the points in the space where the equilibrium condition is possible, while the last
one constrains the function f(x, y, z). The points given by Eq. (4.40) belong to the
x-y plane.

4.3.3.2 Solution on the x axis

Using y = z = 0, the component of Eq.(4.37) along the x axis can be written as

f(x) = −ω2x+ µ1(x+ d1)
|x+ d1|3

+ µ2(x− d2)
|x− d2|3

. (4.42)

The solutions must be along the x axis, and the equilibrium condition is satisfied by
the function f(x, y, z) given by Eq.(4.42).

4.3.4 Thrust in the direction of y axis

The extra force over the spacecraft is assumed to be in the form

~fp = mf(x, y, z)~j, (4.43)

where f(x, y, z) is any scalar function of the coordinates. Using Eq.(4.43), Eq.(4.6)
is rewritten as(

−ω2 + µ1

r3
1

+ µ2

r3
2

)
~r +

(
µ1d1

r3
1
− µ2d2

r3
2

)
~i− f(x, y, z)~j + ω2z~k = 0. (4.44)

The z component of Eq.(4.44) can be written as
(
µ1

r3
1

+ µ2

r3
2

)
z = 0, (4.45)

which means z = 0. Hence, the x and y components of Eq. (4.44) are, respectively,
given by (

−ω2 + µ1

r3
1

+ µ2

r3
2

)
x+

(
µ1d1

r3
1
− µ2d2

r3
2

)
= 0 (4.46)

f(x, y, z) =
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
y. (4.47)
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Using Eqs. (4.46) and (4.47), the function f(x, y, z) can be rewritten as

f(x, y, z) =
(
−µ1d1

r3
1

+ µ2d2

r3
2

)
y

x
. (4.48)

In the case where y = 0, Eq. (4.47) becomes f(x, y, z) = 0, and the solutions of
Eq. (4.46) represent the traditional collinear lagrangian points along the x axis.
Otherwise, for a general value of y, the possible equilibrium points are given by the
solution of Eq.(4.46), while the norm of the acceleration required to maintain this
equilibrium as a function of x and y is given by Eq.(4.48).

4.3.5 Thrust in the direction of z axis

The extra force over the spacecraft is now assumed to be in the form

~fp = mf(x, y, z)~k, (4.49)

where f(x, y, z) is any scalar function of the coordinates. Using Eq.(4.49), Eq.(4.6)
is rewritten as(

−ω2 + µ1

r3
1

+ µ2

r3
2

)
~r +

(
µ1d1

r3
1
− µ2d2

r3
2

)
~i+ (ω2z − f(x, y, z))~k = 0 (4.50)

The x component of Eq. (4.50) is given by
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
x+

(
µ1d1

r3
1
− µ2d2

r3
2

)
= 0. (4.51)

The y component of Eq. (4.50) is given by
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
y = 0. (4.52)

The z component of Eq.(4.50) can be written as

f(x, y, z) =
(
µ1

r3
1

+ µ2

r3
2

)
z. (4.53)

4.3.5.1 Solution in the x-z plane

In the case where y = 0, the value of f is given by Eq. (4.53), while the equilibrium
points in the x-z plane is purely given by the solution of Eq. (4.51). In this case,
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the form of Eq. (4.51) becomes exactly the same as Eq. (4.46), except for a change
of variables from z to y (and vice-versa) inside the variables r1 and r2. It means
that the set of solutions to Eq. (4.46) for x and y are the same set of solutions of
Eq. (4.51) for x and z, just changing y by z.

4.3.5.2 Solution out of the x-z plane

In the case where y 6= 0, Eq. (4.52) is rewritten as
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
= 0. (4.54)

Hence, Eq. (4.51) becomes
(
µ1d1

r3
1
− µ2d2

r3
2

)
= 0. (4.55)

Using the relations of d1, d2, r1, and r2 given in Eqs. (4.2) and (4.3), Eq. (4.55)
becomes

r1 = r2, (4.56)

which solution is
x = R(µ1 − µ2)

2(µ1 + µ2) . (4.57)

Using Eq. (4.56), Eq. (4.57), and the relation ω2 = (µ1 + µ2)/R3 that comes from
the two body problem (M1 and M2), Eq. (4.54) can be rewritten as

y2 + z2 = 3
4R

2. (4.58)

In the three dimensional space, Eq. (4.58) is a circle of radius
√

3R/2 in the plane
given by Eq. (4.57), which center is located at the x axis. Note that this circle
passes through the traditional lagrangian points L4 and L5 located at the plane
z = 0. Using Eqs. (4.57) and (4.58), Eq. (4.53) becomes

f(x, y, z) = αz, (4.59)

where α is a constant defined as α =
(
µ1
r3

1
+ µ2

r3
2

)
. The physics of the problem is

disclosed, the solution is the circle shown in Fig. 4.2 and the magnitude of the
specific thrust required to maintain the equilibrium has a linear relation with the
z coordinate of the spacecraft. In the Sun-Earth system, the α constant has a very
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small value around α ≈ 4× 10−14/s2.

Figure 4.2 - Thrust in the direction of the z axis. The circle is composed by the points
where the equilibrium condition is possible. These points satisfy Eqs. (4.57)
and (4.58). The two primaries are represented in red and blue. L4 and L5 are
the traditional triangular lagrangian points at z = 0.

4.3.6 Thrust in the x-z plane

The extra force over the spacecraft is now assumed to be in the form

~fp = m(fx~i+ fz~k), (4.60)

where fx and fz are the components of the acceleration in the x and z axis, respec-
tively. Thus, the components of Eq.(4.6) are

fx =
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
x+ µ1d1

r3
1
− µ2d2

r3
2
, (4.61)
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(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
y = 0, (4.62)

fz =
(
µ1

r3
1

+ µ2

r3
2

)
z. (4.63)

4.3.6.1 Solution out of the x-z plane

In the case where y 6= 0, Eq. (4.62) becomes
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
= 0, (4.64)

Hence, Eq. (4.61) becomes
fx = µ1d1

r3
1
− µ2d2

r3
2

(4.65)

while Eq. (4.63) becomes
fz = ω2z. (4.66)

In order to satisfy the equilibrium condition, the values of the parameters fx and
fz must satisfy Eqs. (4.65) and (4.66), respectively. Moreover, the condition given
by Eq. (4.64) must also be satisfied. This condition constrains the region in space
where the equilibrium is possible. In the case where ω2 6= µ2/r

3
2 and ω2 6= µ1/r

3
1,

Eq. (4.64) can be written as

r1 = R

(
1 + µ2

µ1

(
1− R3

r3
2

))− 1
3

(4.67)

r2 = R

(
1 + µ1

µ2

(
1− R3

r3
1

))− 1
3

(4.68)

respectively. The geometrical configuration of r1 and r2 in the space requires that
r1 < r2 + R and r2 < r1 + R. The parameters and variables µ1, µ2, R, r1 and r2

are all positive, hence the right sides of Eqs. (4.67) and (4.68) must be positive.
Therefore, the solutions are constrained in the regions of space where

(
µ2

µ1 + µ2

) 1
3

R < r2 < r1 +R (4.69)

(
µ1

µ1 + µ2

) 1
3

R < r1 < r2 +R. (4.70)

In the case where µ2 � µ1 (the Sun-Earth system), the first of these two restrictions
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forbids solutions in regions very close to M2, while the second one forbids solutions
in regions closer to M1 than M2. The analytical solution of Eq. (4.67) is shown in
Fig. 4.3.

Figure 4.3 - Analytical solution forms for the situation given in subsection 4.3.6.1. This
solution must obey the black curve and must be located between the two
orange straight lines.
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Figure 4.4 - Situation given in subsection 4.3.6.1. Analytical solution forms in the three
dimensional space, which are the circle in black. The angles θ′ and α′ are also
shown.

Note that the constraints given by Eqs. (4.69) and (4.70) are shown as the vertical
and the horizontal lines of this figure, respectively. Others two geometrical con-
straints are r1 < r2 + R and r2 < r1 + R. These constraints mean that only the
solutions between the two orange straight lines of Fig. 4.3 are possible. For each
value of r2, there is a correspondent r1, hence, this symmetry in the three dimen-
sional space is represented by the black circle of Fig. 4.4, in which the x coordinate
is a constant. In order to find this coordinate, the angles α′ and θ′ are defined as
the angles between ~r1 and the x axis and between ~r2 and the x axis, respectively,
according to Fig. 4.4. Using these two angles, the following relations can be written:

r1 sin θ′ = r2 sinα′ (4.71)

r1 cos θ′ + r2 cosα′ = R (4.72)

Using these angles, the x coordinate of the solution can be written as x + d1 =
r1 cos θ′. The square of the radius of the circle shown in Fig. 4.4 is y2+z2 = (r1 sin θ′)2.
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Hence, using Eqs. (4.71), (4.72), (4.67) and (4.2), the final solution for x, y, z can be
parametrized as functions of the variable r2 as

x = 1
2R

R2 − r2
2 +

R(1 + µ2

µ1

(
1− R3

r3
2

))− 1
3
2− Rµ2

µ1 + µ2
(4.73)

y2 + z2 = r2
2 −

1
4R2

R2 + r2
2 −

R(1 + µ2

µ1

(
1− R3

r3
2

))− 1
3
2

2

(4.74)

Note the particular case where r2 = r1 = R, that satisfies Eq. (4.64), with fx = 0.
This is the case given in the subsection 4.3.5.2, which results are shown in Fig. 4.2.
Indeed, the whole section 4.3.5 can be seen as a particular case of this one, with
fx = 0, as well as section 4.3.3, with fz = 0.

4.3.6.2 Solution in the x-z plane

In this situation, y = 0 is the only constraint, hence the solution can be any point
in the x-z plane. The fx and fz components of the acceleration required to main-
tain the equilibrium are given by Eqs. (4.61) and (4.63), respectively. Let two new
variables f and θ be defined such that the equations fx = f cos θ and fz = f sin θ
are simultaneously satisfied. Note that this is the classic polar coordinates, where
f =

√
f 2
x + f 2

z is the intensity of the total acceleration required to maintain the
equilibrium condition, while θ is the angle between the total force ~fp and the x
axis. These two quantities related to polar coordinates disclose the physics of the
problem.

4.3.7 Thrust in the x-y plane

The extra force over the spacecraft is assumed to be in the form

~fp = m(fx~i+ fy~j), , (4.75)

where fx and fy are the components of the acceleration in the x and y axis, respec-
tively. Thus, the components of Eq.(4.6) are

fx =
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
x+ µ1d1

r3
1
− µ2d2

r3
2

(4.76)

fy =
(
−ω2 + µ1

r3
1

+ µ2

r3
2

)
y, (4.77)
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0 =
(
µ1

r3
1

+ µ2

r3
2

)
z. (4.78)

The main conclusion of this kind of thrust can be obtained from Eq. (4.78), which
is z = 0. Hence, Eqs. (4.76)-(4.78) accept solutions at any point of the x-y plane.
The components of the acceleration are given by Eqs. (4.76) and (4.77).

4.4 Results for the Sun-Earth system

In this section, the results of the development obtained in section 4.3 are shown for
the Sun-Earth system, where M1 is the Sun and M2 is the Earth. They are also
applied for a planar solar sail, which redirects the photons coming from M1. The
values of the parameters are given in Table 4.2. Note that small variations in these
parameters (specially in pe) from these values may lead to small displacements in
the positions of the equilibrium points. The numerical solutions of the respective
equations satisfy them with an accuracy of the order of 10−10 in optimized units,
which means 10−13 in the international system of units.

Table 4.2 - Values of the parameters for the Sun-Earth system.

R 1.495978707× 1011 m = 1 au
µ1 1.32712440041× 1020 m3/s2 (LUZUM et al., 2011)
µ2 4.03503235267× 1014 m3/s2 (LUZUM et al., 2011)
pe 4.56× 10−6 (ms2)−1

4.4.1 Thrust in the direction of the ~r1 vector

According to subsection 4.3.1.1, the equilibrium points out of the ecliptic lie in the
x-z plane. In the case of the Sun-Earth system, these points are shown in Fig. 4.5.
This figure shows the only possible solutions to place a stationary spacecraft outside
the x-y plane for the given z interval. A solution valid for a general system and
thrust is presented in (ALIASI et al., 2011), which is in agreement with the one shown
in Fig. 4.5 in the case of the Sun-Earth system.
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Figure 4.5 - The only possible solutions are drawn in black for the given z interval, out of
the Ecliptic and for a thrust in the direction of ~r1.
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Applications to a planar solar sail: the force given by Eq. (4.9) can model a
force due to the solar radiation pressure over a solar planar sail which normal vector
to the planar solar sail is parallel to the rays of the Sun. This force can also model
the force due to the solar radiation pressure over a spherical or other symmetrical
form of a spacecraft by simply reducing the total reflection. As an example, let a
spacecraft be equipped with a planar solar sail which normal vector to its sail is
pointing in the same direction of the r1 vector, that is

~n = ~r1

r1
. (4.79)

Hence, the angle between ~n and ~r1 is γ = 0. Using Eqs. (4.79), (4.13) and (4.7), the
ratio area-to-mass required to maintain the equilibrium condition can be written as

A

m
=
(
µ1

r3
1

+ µ2

r3
2

)
r3

1
2peR2 . (4.80)

According to Fig. 4.5, the solutions are closer to the Sun than to the Earth,
which means that µ1/r

3
1 � µ2/r

3
2 and Eq. (4.80) can be approximated as A/m ≈

µ1/(2peR2) = 650.22 m2/kg. Thus, in the case where the thrust is in the direction
of ~r1, the solutions to place this spacecraft in a stationary condition is given by the
black curve in Fig. 4.5, with y = 0. The results show that there is no other option
to place a spacecraft in a stationary condition outside the ecliptic plane. Moreover,
a high ratio area-to-mass (A/m) is required to satisfy the points of Fig. 4.5 (about
650 m2/kg). The ratio area to mass given by Eq. (4.17) must be positive. Hence, the
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equilibrium points for a solar sail on the x axis exist when the function f(x) given
by Eq. (4.16) is positive. Let xL1, xL2, and xL3 be the x coordinates of the collinear
lagrangian points L1, L2, and L3, respectively. In the case of the Sun-Earth system,
the function f(x) is positive in the region xL3 < x < xL1 and d2 < x < xL2, but note
that this last region is located in the shadow of the Earth. The ratio area to mass
required to satisfy the equilibrium condition as a function of x is shown in Fig. 4.6
for the interval xL3 < x < xL1. Note that, in the case where the planar solar sail is
too close to the Sun, i.e. x ≈ 0, other effects like solar winds should be taken into
account.

Figure 4.6 - Thrust in the direction of the ~r1 vector for the Sun-Earth system. The ratio
area to mass required to satisfy the equilibrium condition [Eq. (4.17)] as a
function of x.
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According to subsection 4.3.1.3, the equilibrium points in the ecliptic lie in a circle
of radius R around the primary body M2 and are constrained to r1 < R for a planar
solar sail. In the case of the Sun-Earth system, these equilibrium points are shown
in upper side of Fig. 4.7 for a planar solar sail. The ratio area to mass given by
Eq. (4.20) required to satisfy the solution of the upper side is shown in the bottom
of Fig. 4.7, as a function of x. The solution shown in Fig. 4.7 is in agreement with
a more general one presented in (ALIASI et al., 2011).
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Figure 4.7 - Thrust in the direction of the ~r1 vector. In the upper panel, points in black
are the ones where the equilibrium condition is possible. These points satisfy
r2 = R and r1 < R. The red, blue, and green dots represent the position of
the Sun, Earth, and the traditional lagrangian points, respectively. The ratio
area to mass required to satisfy the equilibrium condition [Eq. (4.20)] as a
function of x for the points given in the upper side is shown in the bottom
side.
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4.4.2 Thrusts in the directions of the ~r1 and ~r2 vectors

Applications to a planar solar sail: according to subsection 4.3.2.1, in the case
where the solutions are out of the ecliptic (z 6= 0), the solution of Eq. (4.30) is drawn
in Fig. 4.8 for several values of the ratio area-to-mass (A/m). Note that, according
to Eq. (4.21), two terms of the respective acceleration are required to satisfy the
equilibrium condition: f1(x, y, z)~r1 and f2(x, y, z)~r2. The first one comes from the
solar sail described above and the second one may come from other different source,
as electric or magnetic sails, from a laser in the Earth pointed towards the satellite,
or even from a source of thrust that consumes propellant. The norm of this second
acceleration is shown in the color scales in Fig. 4.8. In the upper panel, solutions in
a large region in the x-z plane can be seen for different values of the ratio area-to-
mass. In the lower panel, the solutions are shown for a region closer to the Earth.
A minimum value for the norm of the second acceleration (in the direction of ~r2)
is represented by the region in black, which may be useful for a mission. Note that
the solutions are shown for several values of the ratio A/m available with actual
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technologies. These points can be used to observe the poles of the Earth, since they
are positioned in regions above/below them.
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Figure 4.8 - Solutions of Eq. (4.30) for a planar sail in the Sun-Earth system are shown
in cyan, red and gray for several ratios A/m. The magnitude of the second
thrust in the ~r2 direction is show in the color scale.
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In the case where the solutions lie in the ecliptic (z = 0), considering that the
acceleration relative to the first term of Eq. (4.21) is given for a solar sail, as described
in subsection 4.3.2.2, the solutions are shown in Fig. 4.9 for several different values
of the ratio area-to-mass. A larger region is shown in the upper panel, while a zoom
closer to the Earth is shown in the bottom panel. The norm of the acceleration
relative to the second term is represented in color scale in this same figure. Note
that these values are of the order of 10−5m/s2 or less around the Earth and of the
order of 10−8m/s2 or less far from the Earth.
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Figure 4.9 - Solutions of Eq. (4.35) for a planar sail in the Ecliptic are shown in cyan,
red and gray for several ratios A/m. The norm of the second thrust in the ~r2
direction is show in the color scale.
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This kind of thrust could also be achieved by the use of a symmetrical sail, like
a spherical reflective spacecraft, where the thrust in the direction of ~r1 could be
generated by the photons coming from the Sun and the second thrust in the direction
of ~r2 could be generated by a laser or a mirror located in the Earth redirecting the
photons to the spacecraft.

4.4.3 Thrust in the direction of the x axis

In the case of this kind of thrust, according to subsection 4.3.3, the possible equi-
librium points must lie in the ecliptic plane. In the case where y 6= 0, these points
are given by the solution of Eq. (4.40), and this solution is shown in the upper
panel of Fig. 4.10 for the Sun-Earth system. The value of f required to main-
tain the equilibrium is also shown in the bottom panel of Fig. 4.10, according
to Eq. (4.41). The x coordinates of the triangular lagrangian points are given by
xL4/L5 = R(µ1 − µ2)/(2(µ1 + µ2)). The value of f represents the direction of the
thrust, which must be positive for x < xL4/L5. The function f has a root at xL4/L5,
which means that the traditional libration points L4 and L5 belong to the solution
set given by Eq. (4.40). The value of f decreases fast as x comes closer to x = d2,
due to the gravitational interaction with the Earth, which means that to apply the
thrust in the x direction is not effective for AEP near the Earth.
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Figure 4.10 - Thrust in the direction of x axis for the Sun-Earth system. In the upper
panel, points in black are the ones where the equilibrium condition is possible.
These points satisfy Eq. (4.40). The red dot represents the position of the
Sun, while the blue dot represents the position of the Earth. The vertical and
horizontal gray straight lines are drawn to guide the eyes. The force required
to maintain the equilibrium [Eq. (4.41)] is shown in the plot of bottom side,
as a function of x, for the points shown in the upper side.
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4.4.4 Thrust in the direction of y axis

According to subsection 4.3.4, the possible equilibrium points for this kind of thrust
must lie in the ecliptic and they are represented by the solutions of Eq.(4.46). In
the case of the Sun-Earth system, these solutions are shown in the upper panel
of Fig. 4.11. There are some families of solutions around the Earth. The norm of
the specific thrust required to maintain the equilibrium - i.e. norm of f given by
Eq. (4.48) - is shown in the bottom part of Fig. 4.11. This value is high for solutions
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near x = d1. There are minimums (|f | = 0) at all the traditional lagrangian points.
Locations with high values for the magnitude of the acceleration required to maintain
the equilibrium should be avoided in a real mission. A zoom in an interesting region
around the Earth is shown in Fig. 4.12, where the possible region to place a spacecraft
is drawn in blue, combined with the acceleration required to satisfy Eq. (4.48) as
functions of x and y.

Figure 4.11 - Thrust in the direction of the y axis for the Sun-Earth system. Points in
black are the ones where the equilibrium condition is possible. These points
satisfy Eq. (4.46) combined with z = 0. The red dot represents the position
of the Sun, while the blue dot represents the position of the Earth. The
absolute value of f [Eq. (4.48))] is shown in the bottom side of the plot as a
function of x.
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Figure 4.12 - Thrust in the direction of the y axis for the Sun-Earth system. Points in
blue are the ones where the equilibrium condition is possible. These points
satisfy Eq. (4.46) combined with z = 0. The absolute value of f [Eq. (4.48))]
is shown in the color scale as a function of x and y.
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4.4.5 Thrust in the direction of z axis

According to subsection 4.3.5.2, the possible equilibrium points for this kind of thrust
out of the x-z plane must be along the circle that crosses the traditional lagrangian
points L4 and L5, as shown in Fig. 4.2.

According to subsection 4.3.5.1, the equilibrium points in the x-z plane are given by
the solution of Eq. (4.51). They are shown in Fig. 4.13 for the case of the Sun-Earth
system.
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Figure 4.13 - Thrust in the direction of the z axis for the Sun-Earth system. The black
curve represents the solutions of Eq. (4.51) with y = 0, which corresponds
to the equilibrium condition. The red dot represents the position of the Sun,
while the blue dot represents the position of the Earth.
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These same equilibrium points in a region closer to the Earth are better shown in Fig.
4.14. In this figure, the points in black are solutions of Eq. (4.51). The specific thrust
required to satisfy the absolute value of f given by Eq (4.53) is represented in Fig.
4.14 in the color scale, from blue (low values) to red (high values). Any black point in
this figure can be chosen for a mission to park a spacecraft in the Sun-Earth system.
Moreover, the respective acceleration required to satisfy the equilibrium condition
is shown in the color scale. Note that, in general, the lower the acceleration required
to maintain the equilibrium, the better it is for a mission. But there are other
constraints. As an example, a spacecraft could park in a position such that it can
permanently contact the polar regions of the Earth. Figure 4.14 shows plenty of
points that satisfy this demand.

103



Figure 4.14 - Situation given in subsection 4.3.5.1. The blue dots represent the AEP in the
x-z plane for the region around the Earth. These points satisfy Eq. (4.51)
with y = 0. The color scale represents the magnitude of the acceleration
required to maintain the equilibrium condition, according to Eq. (4.53). The
Earth and the traditional L1 and L2 lagrangian points are also shown as a
central blue and green disks, respectively.
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4.4.6 Thrust in the x-z plane

The possible equilibrium points out of the x-z plane is detailed in subsection 4.3.6.1.

The equilibrium in the x-z plane is discussed in subsection 4.3.6.2. In this case,
for the Sun-Earth system, the specific thrust f = ~fp/m =

√
f 2
x + f 2

z required to
reach the equilibrium condition as a function of the (x, z) coordinates is shown in
the color scale of Fig. 4.15. The arrows in this figure represent the direction of the
thrust ~fp required to maintain the equilibrium condition. Note that the acceleration
f is relatively weak in the region near the traditional lagrangian point L3 and also
near the Earth. Outside these regions, Fig. 4.15 shows that the cost to maintain
the equilibrium condition is increased. Note that the cost near the Earth does not
seem as high as it should be in order to compensate its gravitational effect. In order
to explore this result, the same acceleration f and also the direction of the thrust
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required to maintain the equilibrium condition are shown in Fig. 4.16. Now the
gravitational effect of the Earth can be seen. Note that the value of f decreases
with |z| above and below the Earth and highly decreases in the regions near the
traditional L1 and L2, as expected given the dynamical nature of these points. The
direction of the thrusts can be seen looking at the arrows of Figs. 4.15 and 4.16 as
functions of the x and z coordinates. Note that the opposite directions of the arrows
represent the direction of the net acceleration (in the rotating frame) in the case
where the thrust is null. In this case, the acceleration in the z direction tends to
restore the body to the natural lagrangian points L1, L2, and L3 in the case of small
displacements around these points, otherwise, the acceleration in the x direction
tends to carry the body far from these points. This type of plot is very important
in mapping costs of AEP, so giving choices for the mission designer.

Figure 4.15 - Solutions for the situation given in subsection 4.3.6.2. The magnitude of the
specific thrust is shown in the color scale. The direction of the thrust required
to satisfy the equilibrium is tangent to the streamlines. The red central disk
represents the position of the Sun. The blue disk represents the position of the
Earth. The green disk represents the position of the traditional lagrangian
point L3.
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Figure 4.16 - Situation given in subsection 4.3.6.2 for solutions in the x-z plane around
the Earth. The color scale represents the magnitude of the specific thrust.
The tangent to the streamlines represents the direction of the thrust. The
blue central disk represents the position of the Earth. The two green disks
represent the position of the traditional L1 and L2.

Applications to a planar solar sail: as a practical example using a planar solar
sail, suppose that there is a spacecraft located in an AEP in the x-z plane, equipped
with a solar sail, which normal vector to the sail is also in the x-z plane. The thrust
generated by this solar sail is given by Eq. (4.7). The normal vector to the solar sail
can not be partially directed towards the Sun rays, hence the maximum value of |γ|
is π/2. This constraint is taken into account in Fig. 4.17, which “forbidden region"
describes the regions where

∣∣∣arccos
(
~r1·~n
r1

)∣∣∣ > π
2 . The arrows represent the direction

that the normal vector of the solar sail must be directed to. The color scale shows
the ratio area to mass required to reach the equilibrium condition, according to
Eq. (4.8). Note, by comparing Figs. 4.16 and 4.17, that there are many regions
where the required thrust is small and the ratio area-to-mass is large. This happens
due to the term cos2 γ in Eq. (4.7). The best exploitation of the thrust generated by
the planar solar sail is in the case where the normal vector to the sail is in the same
direction of r1, which means γ = 0, or, as an approximation, when the absolute
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value of the z component of the normal vector is minimum.

Figure 4.17 - Situation given in subsection 4.3.6.2 for a planar solar sail in the Sun-Earth
system. The color scale represents the absolute ratio area-to-mass required
to satisfy the equilibrium condition, given by Eq. (4.8). The tangent to the
streamlines represents the direction of the thrust. There is no possible solu-
tion for the solar sail inside the light blue forbidden region, which satisfies∣∣∣arccos

(
~r1·~n
r1

)∣∣∣ > π
2 . The blue central disk represents the position of the

Earth. The two green disks represent the position of the traditional L1 and
L2.

Due to the fact that the Sun is far from the Earth, the tangent of the streamlines in
the borders of the forbidden region is approximately pointed along the z axis. Note
that this border approximately matches with the solutions in black shown in Fig.
4.14 for the case given in subsection 4.3.5, which can also be seen as a particular
case of this one, where fx = 0 and the thrust is in the direction of the z axis.

4.4.7 Thrust in the x-y plane

According to subsection 4.3.7, the equilibrium points must lie in the x-y plane. Let
the acceleration f be defined as f =

√
f 2
x + f 2

y , which is a function of (x, y). This
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acceleration is shown in Fig. 4.18 in a color scale for the case of the Sun-Earth
system. The directions of the arrows in Fig. 4.18 represent the directions of the
thrusts required to maintain the equilibrium. The region where the cost is minimum
is around r ≈ R. The direction of the thrust is changed to the opposite way for
values of r greater than R in comparison of r less than R. The same quantities of
Fig. 4.18 is better visualized in Fig. 4.19 for values of (x, y) near the Earth. Note
that there are four regions of low cost to keep a stationary spacecraft: along the
x axis with y = 0 near the traditional L1 and L2, and for regions where r ≈ R.
Moreover, there are several other low cost possibilities for a mission between these
regions.

Figure 4.18 - The Sun-Earth system. The color scale represents the acceleration f =√
f2
x + f2

y as a function of (x, y). The streamlines represent the direction
of the thrust required to maintain the equilibrium condition. The red, blue
and green disks represent the position of the Sun, Earth and traditional
lagrangian L3, respectively.
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Figure 4.19 - The norm and the direction of the acceleration are shown in a color scale and
in streamlines, respectively, for the Sun-Earth system. The blue and green
disks represent the position of the Earth and the traditional lagrangians L1
and L2, respectively.
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Applications to a planar solar sail: in the case of a spacecraft equipped with
a solar sail, the ratio area-to-mass required to maintain the equilibrium condition
is given by Eq. (4.7). The direction of the normal vector to the solar sail must be
the same of the thrust required to maintain the equilibrium condition. Using the
same representation used in the figures previously presented, these two quantities
are shown as functions of (x, y) in Fig. 4.20 for the Sun-Earth system. For values
of (x, y) close to the Earth, these quantities are shown in Fig. 4.21. The forbidden
regions are the ones where the absolute value of the angle between ~r1 and ~n is
greater than π/2. Note, from Fig. 4.20, that the possible regions to park a solar sail
is approximately for r < R. The maximum value for the ratio area-to-mass is close
to the Sun, where the gravitational force balances the force due to the solar sail,
which happens when the ratio is A/m ≈ 650 m2/kg.

The direction and the norm of the thrust are shown in Fig. 4.21 for the regions in the
x-y plane close to the Earth. There are four main alternatives to park a spacecraft
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with the ratio area-to-mass less than 10 m2/kg. The regions where the parking is
impossible are also shown in this figure.

Figure 4.20 - Solar sail in the Sun-Earth system. The streamlines and the color scale rep-
resent the direction of the normal vector to the solar sail and the ratio
area-to-mass, respectively, required by the solar sail to reach the equilibrium
condition. The forbidden region is the one where the thrust must be pointed
outward the Sun. The red central disk represents the position of the Sun.
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Figure 4.21 - Solar sail nearby the Earth in the Sun-Earth system. The normal vector to
the solar sail must be pointed in the direction of the streamlines. The ratio
area-to-mass is shown in the color scale of the figure. The forbidden region
is the one where |γ| > π/2. The position of the Earth and the L1 and L2
traditional points are represented by the blue and green color, respectively.

forbidden region

EarthL1 L2

forbidden
region

0.985 0.990 0.995 1.000 1.005 1.010 1.015
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

x(au)

y
(a
u
)

A/m (m2/kg)

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

Note that this kind of force depends on the square of the cosine of the angle between
the normal vector to the solar sail and ~r1, which means that this force is optimized
only in certain regions where both ~rs and ~n are aligned. On the other hand, an
option that does not consume fuel is generally a very attractive option for mission
designers.

4.5 Considerations

For all kinds of thrusts studied in this chapter, analytical solutions to the AEP were
found in section 4.3 in the ecliptic, in the x-z plane, on the x axis, or in the general
three dimensional space. These solutions clearly expose where the AEP can or can
not be generated, as a function of the direction of the thrust, for several directions,
as explained next:

• In subsection 4.3.1, we showed that the solutions out of the ecliptic must
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lie in the x-z plane, in the points where Eq. (4.15) is satisfied. In the
ecliptic, the solutions are given in a circle around M2. These solutions in
both planes are shown in Figs. 4.5 and 4.7 for the Sun-Earth system;

• In subsection 4.3.2, a combination of thrusts in the directions of the ~r1 and
~r2 vectors is proposed. Assuming that the thrust in the same direction of
~r1 is generated by a planar solar sail, solutions are found in the x-z and
ecliptic planes. Solutions in the x-z plane must satisfy Eq. (4.30). Note
from this equation that the coordinate x must be positive for ratios area-
to-mass below µ1/k or x must be negative for area-to-mass above µ1/k. In
the case of the Sun-Earth system, µ1/k ≈ 650 m2/kg and the solutions are
shown in Fig. 4.8 for several values of the ratio. Solutions in the ecliptic
only exist for a ratio area-to-mass below µ1/k and they are placed on a
circle around M1. These solutions are shown in Fig. 4.9 for several values
of the ratio;

• In subsection 4.3.3, we studied the case of a thrust in the direction of the
x axis. There is only solutions in the ecliptic, which are shown in Fig. 4.10
for the Sun-Earth system;

• A thrust in the y direction is studied in subsection 4.3.4. The solutions are
also in the ecliptic, must satisfy Eq. (4.46), and are shown in Figs. 4.11
and 4.12 for the Sun-Earth system;

• In subsection 4.3.5, the solutions were studied for a thrust in the z direc-
tion. The solutions in the space out of the x-z plane must be in the circle
of radius 3R2/4 that passes through the traditional lagrangian points L4

and L5. These possible AEP are shown in Fig. 4.2 for a general system.
The solutions in the x-z plane must satisfy Eq. (4.51) and they are shown
in Figs. 4.13 and 4.14 for the Sun-Earth system. Note that this solution
is exactly the same of Eq. (4.46), just interchanging two variables. Hence,
the solutions shown in these Figs. are similar to the ones shown in Figs.
4.11 and 4.12, but the magnitude of the thrust as a function of x and z is
different. This can be checked by comparing Figs. 4.14 and 4.12.

• In subsection 4.3.6, the AEP were studied for a thrust in the x-z plane.
The solutions in the three dimensional space out of the x-z plane must be
in the circle parallel to the y-z plane shown in Fig. 4.4. The x coordinate of
this circle and the square of its radius are given by Eqs. (4.73) and (4.74),
respectively, parametrized with the value of r2. The solutions obtained in
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the space for a thrust in the z direction is a particular case of this one,
in which r2 = r1 = R. The solutions may also lie at any point in the x-z
plane. In this case, they are shown in Figs. 4.15 and 4.16 for the Sun-
Earth system. These Figs. show the magnitude and direction of the thrust
required to satisfy the equilibrium condition. In the case where a planar
solar sail is used to generate the thrust, the ratio area-to-mass required
to satisfy the AEP is shown in Fig. 4.17 as function of x and z for values
encompassing the Earth and the traditional lagrangian L1 and L2.

• In the case of a thrust in the x-y plane, studied in subsection 4.4.7, the
solutions lie at any point of the ecliptic. For the Sun-Earth system, the
magnitude and direction of the thrust as functions of x and y are shown in
Figs. 4.18 and 4.19. The ratios area-to-mass required to satisfy the AEP are
shown in Figs. 4.20 and 4.21 as functions of x and y as well. The forbidden
regions in which the parking is impossible are also shown.

Thus, the present chapter studied the problem of determining the locations of AEP
in a binary system of celestial bodies. The main goal is to add several forms of an
extra generic continuous thrust to the system to generate new equilibrium points.
Those points can be useful to place a spacecraft that benefits from the equilibrium
condition to reduce fuel consumption in station-keeping maneuvers. Several types of
particular cases are considered, as forces acting in specific directions, like the main
axis or planes of the coordinate system. Regions with minimum costs, in terms of
fuel consumption, are determined and shown for all the hypothesis considered for
the thrust.

In particular, applications using the extra force coming from a planar solar sail was
considered, identifying the regions of possible solutions, as well as the area-to-mass
ratio involved in each location. This type of force is very important, since it is a
natural component of the dynamics, not based in fuel consumption, which reduces
the cost of a mission. The results identify AEP located everywhere in space, including
positions out of the orbital plane of the binary system, which makes possible the
observation of the poles of the components of the binary system. The Sun-Earth
system is used in the examples in the simulations made in the present chapter.

The results shown here can help mission designers to evaluate the cost/benefit for the
mission in using different locations to place the spacecraft in a stationary position,
helping to define the best strategy to observe the bodies. The results also show the
magnitude and direction that this continuous thrust should have as a function of
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the location of the AEP to keep the equilibrium condition.
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5 SEARCHING FOR ARTIFICIAL EQUILIBRIUM POINTS TO
PLACE SATELLITES “ABOVE AND BELOW” L3 IN THE SUN-
EARTH SYSTEM

Regarding practical applications of L3 of the Sun-Earth system, there are few studies
with the goal of placing a spacecraft at this point, or in orbit around it. One of the
main problems in placing a spacecraft near this equilibrium point is the fact that it is
located behind the Sun, with respect to the Earth. The Sun would be blocking direct
communication between the spacecraft and the Earth. The present research gives
several options to solve this problem by using solar sail to place one or two spacecraft
above and/or below the Ecliptic plane. This sail could also be used for the mission
itself, to collect energy or particles. By using an adequate size, location and attitude
of the solar sail, the equilibrium point can be moved from its original location to
allow communications between the spacecraft and the Earth. A preliminary study
of the solar sail that uses this strategy is shown here.

5.1 Introduction

Once the regions where the parking is possible and not possible were properly studied
in chapter 4, including the case where the main primary body (the Sun) is the source
of photons, the interpretation of AEP becomes consistent and the tools are now
available to solve further related problems, as explained next.

The L3 lagrangian equilibrium point of the Sun-Earth system is a strategic point of
view to observe the Sun. From there, it is possible to observe the momentary oppo-
site face of the Sun with respect to the Earth. Due to the rotation of the Sun, the
observation of solar activities of this opposite side of the Sun could provide data to
predict coronal mass ejections weeks in advance. Predictions of this kind would be
very important in many applications. Other types of physics and astrophysics obser-
vations could also be done from this point (TANTARDINI et al., 2010). Despite that,
there are few researches done looking for the exploration of the lagrangian point
L3. The reasons may be the natural instability of the point for long time duration
missions, the perturbations coming from other planets and also the communication
problem mentioned before, due to the location of the Sun, which is exactly between
the Earth and the point L3. The instability exists for the point itself, as well as
for orbits around this point. But it is important to remember that this same type
of instability also occurs for the other two collinear equilibrium points, L1 and L2.
Despite of this fact, many missions were planned for those two points (GOMEZ et al.,
1993; JORBA; MASDEMONT, 1999; GOMEZ et al., 1998; KOON et al., 2000; LLIBRE et
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al., 1985). Stable points are usually better places to locate spacecraft, but unstable
points are also an option. In most of the cases, unstable equilibrium points are bet-
ter places to locate a spacecraft, compared to a point with no equilibrium at all. Of
course it is necessary to take care of the instability of the point, and an adequate
station-keeping strategy needs to be found to control this natural instability, as well
as the other perturbations coming from other forces (TANTARDINI et al., 2010). Due
to these reasons, there are some previous researches considering orbits near those
points (BARRABES; OLLE, 2006), and even transfer orbits to those points (PRADO,
1995; HOU et al., 2007). The perturbations coming from the other planets, in partic-
ular Venus, may be reduced using an adequate choice of the date for the mission (if
it is not too long) or by using control techniques.

In that frame, the research related to the thesis at this stage aims to find some
simple alternatives to solve the communication problem for a satellite equipped
with a solar sail by shifting the location of the equilibrium point from the Ecliptic
plane. Solutions are found in the plane that is perpendicular to the Ecliptic plane of
the Sun-Earth system and contains the collinear lagrangean points. This is done by
considering not only the Sun and Earth gravitational interactions with the satellite,
but also the force due to the solar radiation pressure. Under this more complete
model, new equilibrium points appear. Their locations are not the same of the ones
obtained using only the gravitational forces. It means that a proper choice of the
parameters of the solar sail, like its size, attitude, reflectance properties, etc., can
generate a location of the point that is not in the orbital plane of the Earth. This
out-of-plane component can shift the point such that there is direct visibility from
the point to the Earth. This idea could also be used to make measurements related
to the relativity theory, by verifying the distortion of the light passing near the
border of the solar disk. Basically, there is an appearance of useful AEP obtained
with the inclusion of the non-gravitational force given by the solar sail. This concept
was already used to study the possibility of placing a mirror around the Earth to
increase the temperature of our planet (SALAZAR et al., 2016), and also to decrease
the temperature of our planet (MCINNES, 2010). Some other references using this
concept in different equilibrium points are proposed in Morimoto et al. (2007) and
McInnes et al. (1994). Research in attitude and trajectory stability of solar sails is
done in Li et al. (2015). An alternative is to place a second satellite, also equipped
with a solar sail, at a new artificial equilibrium point near L1. Another alternative
is to place a spacecraft “below” the traditional equilibrium point L3 with respect to
the ecliptic plane. Out-of-plane displacements of these points can also help the link
between the satellite near L3 and the Earth, as shown in detail later in this chapter.

116



Thus, three strategies are proposed to remove the problem of visibility between
L3 and the Earth, helping to make this particular point available for astronautical
applications. The mathematical models used are described in section 5.2, where the
pair of equations representing the AEP of interest is shown. The results are detailed
in section 5.3, where three different forms of solutions to the communication problem
between L3 and the Earth are proposed and evaluated as function of the minimum
ratio area-to-mass required while using a solar sail. The final considerations of the
chapter are written in section 5.4.

5.2 Mathematical models

According the Coriolis theorem (SYMON, 1971), the equation of motion of a space-
craft under the gravitational influence of the Sun and the Earth and subjected to
a force due to the solar radiation pressure over its sail written in a non-inertial
rotating frame of reference that has the Sun fixed in its center is given by

d2~rs
dt2

+ 2~ω × d~rs
dt

+ ~ω × (~ω × ~rs) + d~ω

dt
× ~rs = −µs

r3
s

~rs −
µe
r3
e

~re + 1
m
~fp, (5.1)

where:
~ω is the angular velocity of the rotating frame,
~rs is the position of the spacecraft,
~re locates the spacecraft with respect to the Earth,
~fp is the force over the sail due to the solar radiation pressure,
µs is the gravitational parameter of the Sun and
µe is the gravitational parameter of the Earth.
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Figure 5.1 - rotating frame of reference

SOURCE: Author’s production.

The rotating frame of reference is shown in Fig.5.1, from where the bodies involved
(Sun, Earth and spacecraft) and the new artificial equilibrium point near L3 can
be seen. The Sun is placed in the center of the reference system, with the Earth
in a circular orbit with radius R. The satellite equipped with a solar sail - a flat
one - remains fixed in the artificial equilibrium point near L3. In particular, the
out-of-plane component of its location is noted, marked by he. In order to obtain
this equilibrium, the vector normal to the solar sail needs to make an angle γe with
the direction of the solar rays. In this geometry, the line Sun-spacecraft makes an
angle α with the orbital plane of the Earth. The force due to the solar radiation
pressure over a flat solar sail with perfect reflection is given by MCINNES (2004) as

~fp = 2peAR2 cos2(γe)
r2
s

~n, (5.2)

where R is a positive constant that represents the Sun-Earth distance, pe is the solar
radiation pressure at a distance R from the Sun, A is the total area of the sail, ~n is
the vector normal to the flat sail and γe is the angle between ~n and ~rs.

For the purpose of this study, the motion of the Earth around the Sun is assumed
to be circular and non-perturbed by any force, which indicates a Keplerian orbit.
Thus, the angular velocity vector ~ω can be written as

~ω = (0, 0, ω) =
(

0, 0,
√
µs
R3

)
. (5.3)
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According to Fig.5.1, the ~rs and ~re vectors can be written as

~rs = (xe, ye, he) (5.4)

and
~re = (xe, ye, he)− (R, 0, 0) = (xe −R, ye, he), (5.5)

where xe, ye and he are the coordinates of the position of the spacecraft.

The cross products of the third term on the left side of Eq. (5.1) can be calculated
through the use of Eqs. (5.3) and (5.4), thus the result is

~ω × (~ω × ~rs) =
(
−xeµs
R3 ,−yeµs

R3 , 0
)
. (5.6)

The equilibrium condition is defined as

d~rs
dt

= 0. (5.7)

By using Eq. (5.7) and Eq. (5.3), Eq. (5.1) becomes

~ω × (~ω × ~rs) = −µs
r3
s

~rs −
µe
r3
e

~re + 1
m

2peAR2 cos2(γe)
r2
s

~n. (5.8)

Equation (5.8) can be written in a column vector form as

A

m

2R2pe cos2(γe)
r2
s


n1e

n2e

n3e

 =

µs
r3
s


xe

ye

he

+ µe
r3
e


xe −R
ye

he

− µs
R3


xe

ye

0

 , (5.9)

where n1e, n2e and n3e are components of the vector ~n, respectively, in the x, y and
z directions.

Although artificial equilibrium points could be searched in all over the space, this
work aims in searching for solutions of the artificial equilibrium points that stay
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near L3 for the main spacecraft and near L1, L2 or L3 for an eventual assistant
spacecraft. The locations are above or below the Sun-Earth line, only in the (x, z)
plane, which means searching for solutions such that ye = 0. For this condition, the
vector ~n can be written as


n1e

n2e

n3e

 =


cos (α + γe) xe

|xe|

0
sin (α + γe) he

|he|

 , (5.10)

where α = arctan
(∣∣∣he
xe

∣∣∣) is the smallest angle between ~rs and the x axis, as shown
in Fig. 5.1.

Using Eq. (5.10), the two non-trivial equations left from the vector components of
Eq. (5.9) are written as

(
A

m

) 2R2 cos2(γe)pe
r2
s

cos (α + γe)
xe
|xe|

= µs
r3
s

xe + µe(xe −R)
r3
e

− xeµs
R3 (5.11)

and (
A

m

) 2R2 cos2(γe)pe
r2
s

sin (α + γe)
he
|he|

=
(
µs
r3
s

+ µe
r3
e

)
he, (5.12)

where rs =
√

(he)2 + (xe)2 and re =
√

(he)2 + (xe −R)2.

Table 5.1 shows the values for the respective parameters used in this research.

Table 5.1 - Parameters used in the simulations

R 1.496 1011m
pe 4.56 10−6 N

m2

µs 1.3275412528 1020m3

s2

µe 3.98588738352 1014m3

s2

Using the values for the respective parameters given by Table 5.1, there are four
unknown variables left in Eqs. (5.11) and (5.12). They are: xe, he, γe and the ratio
A
m
. By fixing two of them it is possible to find the other two, such that all of them

satisfy both Eqs. (5.11) and (5.12), if solutions exist.

This work presents three kind of solutions for the communication problem. For the
particular case of communication solution 3, the one shown in subsection 5.3.3,
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the angle between the vector normal to the solar planar sail and the solar rays
is constrained such that the reflected rays are in the direction of the z axis. This
constraint means:

γe = π

4 −
α

2 . (5.13)

The total force due to the solar radiation pressure over each of the solar sail is given
by the sum of each of the photons’ flux pushing the solar sail, as shown in Eq. (5.14),
for the case of communication solution 3. Due to the geometrical symmetry of this
solution, both the incident rays that come directly from the Sun and the ones coming
from the Sun reflected by the other spacecraft make the same angle γe with the vector
normal to the solar sail. The details of the solution are given in subsection 5.3.3.

~fp = 2peAR2 cos2(γe)
r2
s

~n+ 2peAR2 cos2(γe)
(rs + 2he)2 ~n (5.14)

Therefore, if Eq. (5.14) replaces Eq. (5.2), then Eqs. (5.11) and (5.12) are replaced
by

(
A

m

)
2R2 cos2(γe)pe cos (α + γe)

(
1
r2
s

+ 1
(rs + 2he)2

)
xe
|xe|

=

µs
r3
s

xe + µe(xe −R)
r3
e

− xeµs
R3 , (5.15)

and
(
A

m

)
2R2 cos2(γe)pe sin (α + γe)

(
1
r2
s

+ 1
(rs + 2he)2

)
he
|he|

=(
µs
r3
s

+ µe
r3
e

)
he, (5.16)

where α = arctan
(∣∣∣he
xe

∣∣∣) and γe is given by Eq. (5.13).

A particular algorithm is used to find less accurate solutions of Eqs. (5.11) and
(5.12), or Eqs. (5.15) and (5.16), and the Newton method for two variables is used
to improve the accuracy, starting from these less accurate solutions. Each solution
set presented in this research satisfies Eqs. (5.11) and (5.12) or Eqs. (5.15) and
(5.16), with a minimum accuracy in the order of 10−10 for each of them.
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5.3 Results and solutions

A wide range of solutions sets (xe, he, γe and the ratio A
m
) that satisfy the equilibrium

condition (Eq. (5.7)) is found. For clarity purposes, Figs. 5.2-5.4 show the solutions
sets for A

m
= 12m2

kg
near L1, L2 and L3, respectively. The three points are considered,

although the main goal of the chapter is to search for artificial equilibrium points
near L3, because the two other colinear equilibrium points are also candidates to
receive a second spacecraft to complete the communication system. In that way,
artificial equilibrium points near those points are useful to attend the goal of the
present research. In these figures, each of the brown straight lines represent the solar
sail and its respective inclination (γe), which is the angle between the vector normal
to the solar sail and the vector in the direction of the rays coming from the Sun.
The solar radiation pressure comes from the left side for the solutions sets near L1

and L2 and from the right side for the solutions sets near L3. Figures 5.2-5.4 also
show that, for γe = π

2 , the only possible solutions are the L1, L2 or L3 lagrangian
traditional points, which are located very close to xe

R
= 0.99, xe

R
= 1.01 and xe

R
= −1,

respectively. This happens because the solar sail is assumed to be flat, so there is
no solar radiation pressure effects over the sail when it is parallel to the rays of the
Sun. A physical analysis of the figures can be done to explain their behavior. The
first fact noticed is that the new equilibrium points are shifted towards the Sun.
This means a shift to the left for the points L1 and L2 and to the right for the
point L3. Therefore, the net result of adding the solar radiation pressure is that it
combines with the centrifugal force and the gravity forces of the Sun and the Earth
to install again the equilibrium condition in another position. Another fact noted in
Figs. 5.2-5.4 is the behavior of the angle γe, which defines the attitude of the solar
sail. It starts perpendicular to the rays of the Sun at the original lagrangian point,
to have a zero effect from the solar radiation pressure. Then, it starts to decrease,
making the vertical component of the force to get stronger, thus he increases and a
maximum value is reached. After that, the solar sail rotates until it faces the Sun.
At this point there is no vertical component of the force and the equilibrium point
goes back to the horizontal axis, in its minimum distance from the Sun.

Similar patterns can be obtained for other values of the ratio A
m
, but with other

values for the maximum he reached, as shown in Fig. 5.5. It is interesting to note
that different values of the maximum distance from the orbital plane of the Earth
are reached in each situation. The equilibrium points take into account the effects
of the gravity forces and the solar radiation pressure. Near L3 the gravity forces are
weaker, because it is the point located far away from the Earth. Therefore, it is the
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point where he is larger, compared to the other points, for a given value of the ratio
A
m
. In the points L1 and L2, the gravity forces of the Earth are quite relevant, but the

solar radiation pressure effects are weaker in L2. Thus, the point L2 has the smallest
values for the maximum he and the middle of the two primaries is the intermediate
case in the aspect of larger he reached. Of course, the values of he increase with
A
m

for all the points, as expected, and these values are quantified in Fig. 5.5. In all
the results presented here, the Earth shadow is neglected, because the equilibrium
points of interest are not in the orbital plane of the Earth, so they are outside the
region of possible shades.

Figure 5.2 - Black dots represent the solutions sets for A
m = 12m2

kg near L1. Red dots are
also solutions. Their respective angles γe (in radians) of the normal to the sail
relative to the rays of the Sun are shown. Solar rays come from the left side
of the figure. The brown straight lines represent the inclination of the planar
solar sail (not in scale).

SOURCE: Author’s production.
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Figure 5.3 - Black dots represent the solutions sets for A
m = 12m2

kg near L2. Red dots are
also solutions. Their respective angles γe (in radians) of the normal to the sail
relative to the rays of the Sun are shown. Solar rays come from the left side
of the figure. The brown straight lines represent the inclination of the planar
solar sail (not in scale).

SOURCE: Author’s production.
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Figure 5.4 - Black dots represent the solutions sets for A
m = 12m2

kg near L3. Red dots are
also solutions. Their respective angles γe (in radians) of the normal to the sail
relative to the rays of the Sun are shown. Solar rays come from the right side
of the figure. The brown straight lines represent the inclination of the planar
solar sail (not in scale).

SOURCE: Author’s production.

The next step is to combine those results to obtain geometries that allow the com-
munication between L3 and the Earth. Figure 5.6 represents the solutions sets for
xe and he coordinates for its respective value of the ratio A

m
. The red line at xe = 0

represents the size of the radius of the Sun. The blue straight line connects the
highest point near L3, the point with maximum value for he, to the highest point
reached near the lagrangian point L1. The green straight line connects the highest
point near L3 to the center of the Earth. The values for γe are omitted from this
figure for clarity purposes, but each set of solution contains its respective value for
γe.

Figure 5.5 shows an approximated linear relation between the maximum value for
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he reached near L1, L2 and L3 as a function of A
m
. The results come from the data

obtained by the algorithm to solve the set of equations that represent the equilibrium
conditions. The absolute value of the acceleration of the solar radiation pressure is
also proportional to A

m
, which means that the maximum he reached is proportional to

the absolute value of the force due to the solar radiation pressure. If the reflection of
the solar sail is not perfect (a real solar sail), then the resultant force of the solar sail
would be smaller for a given ratio A/m and this linear relation should be considered.

Note that exactly the same results presented in this study could be obtained for
z = −he, instead for z = he, due to the symmetry of the problem between “above"
and “below" the Ecliptic plane. In fact, there is an infinite number of solutions
with the equilibrium point being visible just in the limit of the solar disk, but in
any direction (not in the x, z plane). It gives different points of observation for the
spacecraft, which can be used to attend different goals of the mission. Besides that,
orbits around those artificial equilibrium points are also an option, but neither of
the cases are in the scope of the present chapter.

The effects of the interference in the communication signs due to the electromagnetic
waves as they pass near the Sun are ignored in this work. The calculations are
made taking into account that the radius of the Sun is approximately 6.96× 108m.
Thus, if the value for he near L3 is more than twice this value, the spacecraft can
communicate directly with the Earth and the Sun is no longer an obstacle.
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Figure 5.5 - Color dots represent the solutions sets for the maximum value of he reached
for the respective value of the parameter A

m (m2

kg ) near L3 (black dots), L1
(red dots) and L2 (blue dots).

SOURCE: Author’s production.
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Figure 5.6 - Black dots represent the solutions sets for A
m = 8, 10, 12, 14, 16 and 18 m2

kg ,
respectively, in each plot. The red straight line represents the radius of the
Sun. The green straight line connects the maximum value of he reached near
L3 to the center of the Earth. The blue straight line connects the maximum
value for he reached near L3 to the maximum value for he reached near L1.
Note that the solutions sets near xe/R ≈ −1 form a black column near L3,
the solutions sets near xe/R ≈ 0.99 form a black column near L1, and the
solutions sets near xe/R ≈ 1.01 form a black column near L2. These columns
are better detailed in Figs. 5.2-5.4.

SOURCE: Author’s production.
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5.3.1 Communication solution 1

As mentioned before, three classes of solutions are shown to solve the communication
problem. The first of them requires a spacecraft with a ratio area-to-mass A

m
= 16m2

kg

or more, because the spacecraft near L3 placed in the (x, z) plane must have a
coordinate in the z axis to be at least 1.4 × 109m to communicate directly with
the Earth, as can be seen from Fig. 5.5. Figure 5.6 (A

m
= 16) shows that the green

straight line connects the solution point with the highest value for he near L3 to
the Earth. This green straight line does not cross the radius of the Sun, thus the
spacecraft located in this solution can communicate freely with the Earth. Figure
5.7 shows a drawing for this kind of solution.

Figure 5.7 - Geometry of the communication solution 1. The communication electromag-
netic waves path does not cross the radius of the Sun.

SOURCE: Author’s production.

The advantage of this solution is that it is satisfied with just one spacecraft, to the
expense of a large area-to-mass vehicle. To have an idea of this ratio, a spacecraft
with 100 kg would require an area of 1600 m2, which means a square sail with each
side measuring 40 meters. The solar sail of the spacecraft for the Ikaros mission had
approximately a square sail with 14 m each side (TSUDA et al., 2013).

It is important to mention that a large area for the sail may have some advantages,
depending on the goal of the mission. It can be used to get solar energy, so reducing or
eliminating the need of a power supply. There are also some important observations
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related to the flux of particles in the space that requires a large surface to collect the
particles (WILLIAMS, 2003). Thus, the effort to build a large solar sail is not only
used to shift the equilibrium point. The values of the parameters and the position
of the spacecraft near L3 used for this kind of solution are given in Table 5.2.

Table 5.2 - Parameters and positions used in communication solution 1.

Spacecraft near L3
A
m

16m2

kg

xe −1.48897776339213 1011m ≈ −0.995R
he 1.428 109m
γe 0.595011210480688

5.3.2 Communication solution 2

The second alternative to solve the problem uses two spacecraft equipped with
solar sails to keep the equilibrium condition (Eq. (5.7)) at very different positions.
This kind of solution requires two spacecraft with ratio A

m
= 12 m2

kg
. One of them

is positioned in the solution point with the maximum value for he near L3 and
the other one in the solution point with the maximum value for he near L1. The
geometry of this solution is shown in Fig. 5.8.

Figure 5.8 - Drawing of the communication solution 2. The spacecraft 2 acts as a commu-
nication bridge between Earth and spacecraft 1 near L3.

SOURCE: Author’s production.
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The blue straight lines of Fig. 5.6 (A
m

= 12) represents the path of the electromagnetic
wave used for communication between both spacecraft. This path does not cross the
radius of the Sun, then both spacecraft can communicate with each other freely. The
spacecraft near L1 can communicate with the Earth directly, consequently it works
as a communication bridge between the spacecraft located near L3 and the Earth.

This type of solution requires two spacecraft, but each of them with a smaller A/m
compared with the first type of solution. Having two spacecraft helps to make ob-
servations from two different points in space, which can be interesting for the mis-
sion itself, not only to reduce the A/m ratio. On the other hand, it requires two
equipments, increasing the costs and the risks of failures. Of course there is also an
infinite number of combinations of solutions of this type, because both spacecraft
may not have the same area-to-mass ratio. The best combination depends on other
constraints coming from the mission. This is an interesting flexibility for mission
designers. The parameters and the position of the spacecraft near L3 and L1 used
for this solution are given by Table 5.3.

Table 5.3 - Parameters and positions used in communication solution 2.

Spacecraft near L3 Spacecraft near L1
A
m

12m2

kg
12m2

kg

xe −1.49175472073972 1011m ≈ −0.997R 1.47905589503409 1011m ≈ 0.989R
he 1.051 109m 3.56 108m
γe 0.689928275818861 0.5150135706943621

5.3.3 Communication solution 3

The third kind of solution involves two spacecraft with the same area and mass, both
near L3, positioned as shown in Fig. 5.9. The spacecraft 1 is located above the x
axis with the z coordinate equals to he and the spacecraft 2 is located symmetrically
opposite, below the x axis, with z coordinate equals to −he. The angle γe of both
spacecraft are such that the reflected solar rays go vertically directly to the other
spacecraft, which stays symmetrically opposite positioned in the z axis, as shown
in Fig. 5.9. This is the reason why the parameter γe is not an independent variable
anymore. In this configuration, the spacecraft can interact with each other through
the reflected solar rays. In this figure, the second spacecraft is subjected to part of
the projected area of the first spacecraft over the second (and vice versa) and the
total distance of the rays that come from the Sun and are reflected from the other
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spacecraft is
√
x2
e + h2

e+2he. Then, the total force due to the solar radiation pressure
over each spacecraft is the one that comes from these rays reflected by the other
spacecraft plus the force due to the rays that comes normally directly from the Sun.
The resultant force due to the solar radiation pressure is almost doubled in each
spacecraft, in comparison with the configuration with a single spacecraft alone.

Figure 5.9 - Drawing of the solution 3. Solar rays that hit each spacecraft are reflected
in the direction of the other spacecraft. The resultant force due to the solar
radiation pressure is doubled in the spacecraft.

SOURCE: Author’s production.

In comparison with the other types of solution, communication solution 3 demands
a considerable smaller ratio A/m, just 9 m2

kg
, but it also requires an almost perfect

planar solar sail in order to make reflection towards a distance equals to 2he in
the direction of the other spacecraft. In comparison with the first type of solution,
for a fixed mass, the area of the solar sail is almost halved. The angle γe must be
controlled almost perfectly to make the reflected rays to hit the other spacecraft.
This kind of solution requires high precise technologies to be implemented. Table 5.4
shows the values for the positions and parameters for the spacecraft 1 and 2, in the
configuration given by this third kind of communication solution. The technology
for such high accuracy may not be available now, but the idea of the present chapter
is to show this potential possibility for the future, as well as to compare this solution
with the other two solutions previously showed.
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Table 5.4 - Parameters and positions for spacecraft 1 and 2 used in communication solution
3.

Spacecraft 1 (above the x axis): Spacecraft 2 (below the x axis):
A
m

9 m2

kg
equals spacecraft 1

xe −1.49110398621742 1011m ≈ −0.997R equals spacecraft 1
he 1.45241181117863 109m −1.45241181117863 109m
γe 0.780528060797507 equals spacecraft 1

The maximum value reached for a spacecraft for he for a given ratio A/m is signif-
icantly increased (almost doubled) for the configuration of the spacecraft given in
communication solution 3 in comparison with the other previously given solutions,
as shown in Fig. 5.10.

Figure 5.10 - Color dots are the solutions sets in the (x, z) plane represented by the values
he and xe/R, for the respective values of the parameter A/m (m2

kg ) near L3
for the communication solution 3.

SOURCE: Author’s production.

This kind of solution uses two spacecraft with the same ratio A/m with symmetry
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in the z axis with respect to the x axis in the (x, z) plane, so, both spacecraft can
communicate directly with Earth. Solutions in the (x, z) plane with different ratio
A/m could also be searched. For example, the main and heaviest spacecraft (with
smaller ratio A/m) could be positioned in an artificial equilibrium point below the x
axis, right close to it, and the other spacecraft positioned with larger value for |he|,
such that this last spacecraft could serve as a bridge for communications between
the first spacecraft and the Earth. Of course the exactly positions would depend on
all the parameters of each spacecraft, including γe, but this can also be an interesting
flexibility for mission designers.

Additionally, this kind of solution is not restricted to place a spacecraft near L3.
As an example of an expansion of this idea, two spacecraft can be placed around
the Earth, one below the Ecliptic plane and the other one symmetrically opposite
placed above the Ecliptic plane. The first one would have a permanent contact with
the region of low latitude, near the south pole, while the other one would be in
permanent contact with the region with high latitude, near the north pole. The
idea of maintaining a spacecraft equipped with a solar sail in permanent contact
with high latitude regions of the Earth was first presented and patented by Forward
(1991), but the kind of solution presented here takes the advantage of two spacecraft
with less area-to-mass ratio than just one, as presented by Forward. The maximum
value for he reached is approximately linearly dependent on the ratio A/m, as shown
in Figs. 5.5 and 5.10. The configuration presented in this kind of solution almost
doubles the resultant force due to the solar radiation pressure, because Eq. (5.14)
replaces Eq. (5.2) for this configuration, therefore the net effect is that the ratio
A/m can be almost halved if the objective is to maintain the same value for he, in
comparison with the solutions with a single spacecraft, like the solution of Forward
or the communication solution 1 presented here. Besides that, both of them can
simultaneously be useful, one to interact with regions near the south pole and the
other one to interact with regions near the north pole. Figure 5.11 illustrates the
extension of this kind of solution.
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Figure 5.11 - The idea of communication solution 3 applied to permanent observations of
both poles of the Earth.

SOURCE: Author’s production.

5.4 Considerations

The main purpose of this research is to offer new options of solutions for the com-
munication problem between a spacecraft orbiting the Sun in a point near L3 and
the Earth, in the Sun-Earth system.

The idea is to take advantage of a large solar sail, which can also be used for other
purposes of the mission, to find new artificial equilibrium points, which are not
behind the Sun when looking from the Earth. A large number of solutions for each
given value of the area-to-mass ratio is found. The results showed the exact locations
and the attitude of the solar sail for the three collinear equilibrium points.

Three types of solutions are proposed. The first of them uses only one spacecraft, but
it requires a large area-to-mass ratio, in the order of 16 m2

kg
. The second solution uses

two spacecraft, each one having a solar sail and located at the artificial equilibrium
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points near L3 and L1. For this type of solution a ratio A
m

= 12 m2

kg
is enough to

obtain communication. The third kind of solution requires considerable smaller area-
to-mass ratio (A

m
= 9 m2

kg
). This solution has high precision technological challenges,

but the present chapter has the goal of showing this potential for the future, not
considering the details of implementations.

In this way, three options of solutions are shown. Removing the negative aspect
of the communication problem, the point L3 can be better considered for practical
applications, in the same way that the other two unstable collinear points (L1 and
L2) are under consideration for a long time now.

Of course this is a preliminary study, and more sophisticated models for the solar
sail can be used to improve the results obtained here. Specific models, including
other perturbations, can also be used to calculate new sets of solutions for the three
types of communication solutions presented in this research.
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6 SOLUTIONS FOR A SPACECRAFT MOTION AROUND ARTIFI-
CIAL EQUILIBRIUM POINTS

The main goal of this chapter is to describe the motion of a spacecraft around
an artificial equilibrium point in the circular restricted three-body problem. The
spacecraft is under the gravitational influence of the Sun and the Earth, as primary
and secondary bodies, subjected to the force due to the solar radiation pressure and
some extra perturbations. Analytical solutions for the equations of motion of the
spacecraft are found using several methods and for different extra perturbations.
These solutions are strictly valid at the artificial equilibrium point, but they are
used as approximations to describe the motion around this artificial equilibrium
point. As an application of the method, the perturbation due to the gravitational
influence of Jupiter and Venus is added to a spacecraft located at a chosen artificial
equilibrium point, near the L3 lagrangian point of the Sun-Earth system. The system
is propagated starting from this point using analytical and numerical solutions.
Comparisons between analytical-analytical and analytical-numerical solutions for
several kinds of perturbations are made to guide the choice of the best analytical
solution, with the best accuracy.

6.1 Introduction

The Lagrangian equilibrium points that appear in the restricted three-body prob-
lem are convenient for astronautical applications. They are good candidates to place
spacecraft, since their equilibrium conditions help to reduce the fuel consumption
for station-keeping maneuvers. An interesting application is described in chapter
5, which is the use of one of these points (L3) in the Sun-Earth system to place
a spacecraft. Such spacecraft could help to observe and detect solar activities in
the momentary opposite side of the Sun from the perspective of the Earth. Com-
bined with the rotation of the Sun, these detections could improve the prediction of
coronal mass ejection in the direction of the Earth weeks in advance. This advanta-
geous point can be useful for many others spacecraft missions, such as collections of
particles traveling in space (WILLIAMS, 2003) or for parallax measurements. Even
considering these benefits, there are only a few investigations performed to explore
this point. One of the reasons is its instability. Another important problem is the
strong perturbations coming from other planets, in particular Jupiter and Venus
(TANTARDINI et al., 2010). This is specially true during the times that they are
closer to this point. The instability problem exists not only for the point itself, but
also for the motion around this point (JIANG et al., 2016). This instability is also
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present in the other two collinear equilibrium points, called L1 and L2, but many
real applications are considered for these two points (GOMEZ et al., 1993; JORBA;

MASDEMONT, 1999; GOMEZ et al., 1998; KOON et al., 2000; LLIBRE et al., 1985). It is
necessary to study options to control this instability, but it can be done using an
adequate station-keeping strategy. Among the few studies related to this particu-
lar point, it can be mentioned reference (BARRABES; OLLE, 2006), which consider
motions around these points, and researches studying transfer orbits (PRADO, 1995;
HOU et al., 2007).

In this context and considering the AEP studied in chapters 4 and 5, the actual
stage of the research is represented by the goal of searching for solutions for the
motion of a spacecraft near an artificial equilibrium point. It is assumed that the
spacecraft is subjected to the force coming from the solar radiation pressure, besides
the forces given by the circular restricted three-body problem Sun-Earth-spacecraft.
It is also considered that the spacecraft is equipped with a solar sail. An adequate
choice of the parameters involved in the solar sail, like its attitude, reflectance prop-
erties, area, etc, can generate families of locations for these new artificial equilibrium
points described before, with some of them lying outside the orbital plane of the
Earth. Of course, there is an extra engineering work in building solar sails with
large ratio area-to-mass, but they can also be used in scientific experiments, like
producing energy or collecting particles traveling in space (WILLIAMS, 2003). Thus,
a perturbation is added to the problem through its equations of motion, and then,
analytical solutions of these equations are found. Analytical solutions for the equa-
tions of motion are found for some different forms of perturbations and through the
use of different methods, either direct analytical solution or the analytical solution
of the linearized equations of motion. From these analytical solutions, it is possible
to study the motion of the spacecraft in details. The method is applied considering
the important perturbations coming from Jupiter and Venus or Jupiter only gravi-
tational interactions with the spacecraft located near the L3 lagrangian point of the
Sun-Earth system. These two planets represent the largest forces acting as perturba-
tions over a spacecraft in this location. Hence, specific values of the parameters and
perturbations are given. Results coming from the different analytical methods are
shown, as well as coming from a numerical method. Thus, the results are compared
with each other. These comparisons guide the choice of the best model to be used,
as a function of the accuracy desired for the problem and the time span involved.

This stage of the research is written in this chapter and divided as follows. Math-
ematical models are presented in section 6.2. In subsections 6.2.1-6.2.3, solutions
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are found through different methods and forms for the perturbation. In section 6.3,
results are obtained for some specific cases shown in subsections 6.3.1-6.3.4. Final
considerations of the chapter are shown in section 6.4.

6.2 Formulation of the problem and description of the mathematical
models used

Suppose a spacecraft under the gravitational influence of the Sun and the Earth,
subjected to a force due to the solar radiation pressure over its sail, and to pertur-
bations from other sources. In a non-inertial rotating frame of reference, that has
the Sun fixed in its center and the Earth fixed along the x axis, according Coriolis
theorem (SYMON, 1971), the equation of motion of such spacecraft is given by

d2~rs
dt2 + 2~ω × d~rs

dt + ~ω × (~ω × ~rs) + d~ω
dt × ~rs = −µs

r3
s

~rs −
µe
r3
e

~re + 1
m
~fp + ~a, (6.1)

where:
~ω is the angular velocity of the rotating frame;
~rs is the position of the spacecraft;
~re locates the spacecraft with respect to the Earth;
~fp is the force over the solar sail due to the solar radiation pressure;
~a is the perturbative acceleration vector acting in the spacecraft;
µs is the gravitational parameter of the Sun;
µe is the gravitational parameter of the Earth.

Figure 6.1 - Geometry of the problem in the rotating frame of reference

SOURCE: Author’s production.
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The rotating frame of reference and the geometry of the problem are shown in
Fig.6.1, from where it is possible to see the bodies involved (Sun, Earth and space-
craft). The Sun is placed in the center of the reference system, not in the baricenter.
For the purpose of this work, the motion of the Earth around the Sun is circular
and non-perturbed by any force, which indicates

~ω = (0, 0, ω), (6.2)

where ω is a constant.

The equation of motion (Eq. (6.1)) now becomes

d2~rs
dt2 + 2~ω × d~rs

dt + ~ω × (~ω × ~rs) = −µs
r3
s

~rs −
µe
r3
e

~re + 1
m
~fp + ~a. (6.3)

The artificial equilibrium point (AEP) is defined by the condition given by

1
m
~fp = ~ω × (~ω × ~rs) + µs

r3
s

~rs + µe
r3
e

~re. (6.4)

The reason why this condition can be called an AEP will be explained later in this
section. If Eq. (6.4) is true, then Eq. (6.3) becomes:

d2~rs
dt2 + 2~ω × d~rs

dt = ~a (6.5)

Using Eq. (6.2), the components of Eq. (6.5) can be written as

d2x

dt2 − 2dy
dt ω − ax(x, y, z, t) = 0, (6.6)

d2y

dt2 + 2dx
dt ω − ay(x, y, z, t) = 0, (6.7)

and
d2z

dt2 − az(x, y, z, t) = 0, (6.8)

where x, y and z are the components of the position vector ~rs and ax(x, y, z, t),
ay(x, y, z, t) and az(x, y, z, t) are the components of the perturbation vector ~a and
may depend on the position and time variables.

Equations (6.6)-(6.8) form a set of coupled ordinary differential equations. Depend-

140



ing on the form of the perturbation vector ~a, analytical solutions for these equations
may be easily obtained. In the case where the components of the perturbation vector
~a = (ax, ay, az) is given by

ax = 1
2ω

dX(x)
dt + Y (y) + Tx(t) (6.9)

ay = X(x)− 1
2ω

dY (y)
dt + Ty(t) (6.10)

and
az = Z(z) + Tz(t), (6.11)

where X(x), Y (y), and Z(z) are any functions of x, y, and z only, respectively, and
Tx(t), Ty(t), and Tz(t) are any explicit functions of time only, then Eqs. (6.6)-(6.8)
can be rewritten as

d3x

dt3 + 4ω2 dx
dt − 2ωX − 2ωTy −

1
2ω

d2X

dt2 −
dTx
dt = 0, (6.12)

d3y

dt3 + 4ω2 dy
dt + 2ωY + 2ωTx + 1

2ω
d2Y

dt2 −
dTy
dt = 0, (6.13)

and
d2z

dt2 − Z − Tz = 0. (6.14)

Equations (6.12)-(6.14) form a set of three uncoupled ordinary differential equations.
Depending on the form of X, Y, Z, Tx, Ty, and Tz, analytical solutions for these equa-
tions may be obtained.

Supposing a perturbation caused by the gravitational interaction of the spacecraft
with another planet, it depends on the relative position of the spacecraft with respect
to the planet, which means that it depends only on the position of the spacecraft
and the time t, since the position of the perturbing planet is usually supposed to be
known as a function of time. The major variation of the relative position between
the spacecraft and the perturbing planet is due to the variation of the position of
the planet itself in the frame of reference, because, in comparison, the displacement
of the spacecraft in this same frame of reference is supposed to be small around
the AEP. Therefore, it is assumed here the approximation that the perturbing force
may be calculated using the relative position between the planet and the AEP. Note
that, in this approximation, the advantage that the perturbing force becomes only
a function of time t is used in the next solution.
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6.2.1 Analytical Solution 1 - perturbation linearly dependent on time

If the gravitational forces (or accelerations) due to Venus and Jupiter are used as an
example of perturbation, then this perturbation is a function of the position of the
spacecraft and time, because the motion of Venus and Jupiter around the Sun can
be predicted as a function of time. The motion is close around the AEP, then the
perturbation can be approximated by a function of time only, calculated at the initial
position of the spacecraft. More than that, the components of the perturbation are
assumed to be linear functions of time in the following forms:

ax(x, y, z, t) = ax(x0, y0, z0, t) = ax(x0, y0, z0, 0) + αxt, (6.15)

ay(x, y, z, t) = ay(x0, y0, z0, t) = ay(x0, y0, z0, 0) + αyt, (6.16)

and
az(x, y, z, t) = az(x0, y0, z0, t) = az(x0, y0, z0, 0) + αzt, (6.17)

where x0, y0 and z0 are the initial position components and αx, αy and αz are
assumed to be constants calculated as explained now. For a given time t = tf > 0, the
value of the constant αx is calculated using Eq. (6.15) itself, because the perturbation
ax(x0, y0, z0, tf ) at the time t = tf and the perturbation ax(x0, y0, z0, 0) at the time
t = 0 are assumed to be known. In the same way, Eqs. (6.16) and (6.17) can be used
to calculate the values of αy and αz, respectively. For brevity and simplicity, instead
of using the notation given by Eqs. (6.15-6.17), the perturbation components are
written by following the notation

ax = ax0 + αxt, (6.18)

ay = ay0 + αyt, (6.19)

and
az = az0 + αzt, (6.20)

where ax0 = ax(x0, y0, z0, 0) and αx = 1
tf

[ax(x0, y0, z0, tf )− ax(x0, y0, z0, 0)] in
Eq. (6.18) and analogously for Eqs. (6.19) and (6.20).

If the relations X(x) = 0; Y (y) = 0; Z(z) = 0; Tx(t) = ax0 + αxt; Ty(t) = ay0 + αyt;
and Tz(t) = az0 + αzt are put into Eqs. (6.9)-(6.11), the components of the pertur-
bation given by Eqs. (6.18)-(6.20) are satisfied. Therefore, using these relations, the
uncoupled Eqs. (6.12)-(6.14) becomes
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d3x

dt3 + 4ω2 dx
dt − 2ωTy −

dTx
dt = 0, (6.21)

d3y

dt3 + 4ω2 dy
dt + 2ωTx −

dTy
dt = 0, (6.22)

and
d2z

dt2 − Tz = 0. (6.23)

Equations (6.21)-(6.23) form a set of uncoupled ordinary differential equations. The
analytical solution for these equations can be easily obtained and they are written
as functions of the initial positions and velocities as

x(t) =
sin(2tω)

(
−ay0

2ω + vx0 − αx
4ω2

)
2ω +

cos(2tω)
(
−ax0

2ω − vy0 + αy
4ω2

)
2ω +

t
(
ay0

2ω + αx
4ω2

)
+ ax0

4ω2 + t2αy
4ω + vy0

2ω + x0 −
αy
8ω3 , (6.24)

y(t) =
cos(2tω)

(
−ay0

2ω + vx0 − αx
4ω2

)
2ω +

sin(2tω)
(
ax0
2ω + vy0 − αy

4ω2

)
2ω +

t
(
αy
4ω2 −

ax0

2ω

)
+ ay0

4ω2 −
t2αx
4ω −

vx0

2ω + αx
8ω3 + y0, (6.25)

and
z(t) = t2az0

2 + t3αz
6 + tvz0 + z0. (6.26)

where (x0, y0, z0) = (x(0), y(0), z(0)) and (vx0, vy0, vz0) = (vx(0), vy(0), vz(0)) are the
position and velocity initial conditions of the motion.

The derivatives with respect to time are the respective velocity components and
they are written as

vx(t) = cos(2tω)
(
−ay0

2ω + vx0 −
αx
4ω2

)
−

sin(2tω)
(
−ax0

2ω − vy0 + αy
4ω2

)
+ ay0

2ω + tαy
2ω + αx

4ω2 , (6.27)

vy(t) = − sin(2tω)
(
−ay0

2ω + vx0 −
αx
4ω2

)
+

cos(2tω)
(
ax0

2ω + vy0 −
αy
4ω2

)
− ax0

2ω −
tαx
2ω + αy

4ω2 , (6.28)

and
vz(t) = taz0 + t2αz

2 + vz0. (6.29)
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6.2.2 Analytical Solution 2 - constant perturbation

In a simpler and more direct case, the perturbation ~a is a constant vector, calculated
at the AEP in the time t = 0, being ax(x, y, z, t) = ax0, ay(x, y, z, t) = ay0 and
az(x, y, z, t) = az0. This is a particular case of the situation shown in subsection
6.2.1, where αx = αy = αz = 0. Therefore, using these relations, the solutions given
by Eqs. (6.24)-(6.29) becomes

x(t) = 1
2ω

(
− (vy0 + ax0

2ω ) cos(2ωt) + (vx0 −
ay0

2ω ) sin(2ωt) +

ay0t+ (vy0 + ax0

2ω ) + 2ωx0

)
, (6.30)

y(t) = 1
2ω

(
(vx0 −

ay0

2ω ) cos(2ωt) + (vy0 + ax0

2ω ) sin(2ωt)−

ax0t− (vx0 −
ay0

2ω ) + 2ωy0

)
, (6.31)

z(t) = az0t
2

2 + vz0t+ z0, (6.32)

vx(t) = (vy0 + ax0

2ω ) sin(2ωt) + (vx0 −
ay0

2ω ) cos(2ωt) + ay0

2ω , (6.33)

vy(t) = −(vx0 −
ay0

2ω ) sin(2ωt) + (vy0 + ax0

2ω ) cos(2ωt)− ax0

2ω , (6.34)

and
vz(t) = az0t+ vz0. (6.35)

Now, an explanation is given for the reason why the condition given by Eq. (6.4)
defines an AEP. In a scenario with no perturbation (ax0 = ay0 = az0 = 0), supposing
that the initial velocity is given by (vx0, vy0, vz0) = (0, 0, 0), then, if Eq. (6.4) is true,
the solutions given by Eqs. (6.30-6.35) are rewritten as

x(t) = x0 (6.36)

y(t) = y0 (6.37)

z(t) = z0 (6.38)
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vx(t) = 0 (6.39)

vy(t) = 0 (6.40)

vz(t) = 0 (6.41)

Equations (6.36)-(6.41) show that, if there is no perturbation, the initial veloc-
ity is zero and ~fp is adjusted such that Eq. (6.4) is satisfied at least in a single
point (X0, Y0, Z0), then all the components of the accelerations are balanced and
the spacecraft would be in a stationary condition at the AEP. Despite the name, it
is important to note that an AEP is not only a point in the 3D space, because it also
requires other variables (or parameters) implicit in the force function ~fp to assume
values such that Eq. (6.4) is satisfied. In this sense, an AEP is a set of conditions.

A more direct engineering application is found if the force ~fp due to the solar radi-
ation pressure over the solar sail can be controlled such that Eq. (6.4) is true along
all the path. Therefore, the solutions given by Eqs. (6.24)-(6.29) or Eqs. (6.30-6.35)
can describe the motion for a linearly time dependent or a constant perturbation,
respectively. But, considering an engineering problem, it is common that the force
~fp can not be controlled during all the time. It means that Eq. (6.4) can not be true
along all the path and the solution given by Eqs. (6.24)-(6.29) or Eqs. (6.30)-(6.35)
depends on this condition to be valid. However, suppose that Eq. (6.4) is satisfied
for a single point, called AEP. If this AEP is the starting point of the motion of
a spacecraft, then it is expected that, even if this condition is not satisfied outside
the AEP, Eq. (6.5) can describe the motion of the spacecraft around the AEP with
some degree of accuracy. The closer the spacecraft is from the AEP, the higher the
accuracy.

A similar approximation analysis can be made for the perturbation. Equations
(6.24)-(6.29) or (6.30)-(6.35) are valid as solutions of Eqs. (6.6-6.8) only if the per-
turbation is linearly dependent on the time or is a constant vector. Even if this is
not true, with the motion starting at the AEP, it is expected that the analytical so-
lution given by Eqs. (6.24)-(6.29) or (6.30)-(6.35) can describe the motion originated
by Eqs. (6.6-6.8) if the perturbation is approximated accordingly, being constant or
linearly dependent on time.

6.2.3 Linear Analytical Solution

Analytical solutions for Eqs. (6.6)-(6.8) strictly valid around the AEP can also be
obtained using a well known method presented in this subsection (BOYCE; DIPRIMA,
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2001). The simpler case of a constant perturbation is used, but this method could
also be used to search for solutions in the case of other forms of perturbations. On
the other side, as will be shown later, the method presented in this subsection is
highly expensive. It requires the evaluation of the eigenvectors of a 6 × 6 matrix
and other expensive steps in order to find the final solution. Despite the costs, the
solution obtained through the use of this method will be useful for comparisons and
validations of the more direct analytical solutions previously presented. According
Eq. (6.3), the equation of motion with no perturbation is

d2~rs
dt2 = −2~ω × d~rs

dt − ~ω × (~ω × ~rs)−
µs
r3
s

~rs −
µe
r3
e

~re + 1
m
~fp. (6.42)

If the velocity components are defined as new variables, this system of three second
order ordinary differential equations can be converted in a system of 6 first order
ordinary differential equations as

d ~X
dt = ~F ( ~X), (6.43)

where ~X is the vector of the variables and ~F ( ~X) is the vector that represents the
functions of each respective component equation, which are functions of the variables
~X.

A vector ~Y is defined as a displacement δ ~X in the following way: ~Y = ~X − ~XAEP ,
where ~XAEP is the vector ~X calculated at the AEP. Each component of the function
vector ~F ( ~X) can be expanded in Taylor series around the AEP. In this series ex-
pansion, if the terms of the components of ~Y of order two or more are neglected, as
well as crossed terms among the components of ~Y , Eq. (6.43) is said to be linearized
around the AEP and the result is written as

d~Y
dt = ~A6×6~Y , (6.44)

where ~A6×6 is a 6x6 matrix, representing the Jacobian of the function vector ~F ( ~X),
calculated at the AEP. A perturbation may be added to Eq.(6.44) and the result is
written as

d~Y
dt = ~A6×6~Y + ~pa, (6.45)
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where ~pa is the vector due to the perturbation of the system, that comes directly
from ~a in Eq. (6.1). The perturbation ~pa is assumed to be constant for this kind of
solution.

Equation (6.45) is known as a system of non-homogeneous coupled linear ordinary
differential equations of first order with constant coefficients. As said before, this
method is expensive, thus a general solution for general parameters could not be
obtained due to the large number of therms contained in the eigenvalues of ~A6×6.
On the other hand, if all the values of the parameters are explicitly defined, the
analytical solution ~Y (t) of Eq. (6.45) is obtained through the use of the method of
combinations of the eigenvectors of ~A6×6 plus a particular solution of this equation,
taking into account that the initial conditions are given at the AEP (~Y0 = ~0).

Linear stability analysis for different explicit possible forms of ~fp could be done using
~A6×6. On the other side, linear stability analysis of AEP in space has already been
done in the case of a radial propulsive acceleration (ALIASI et al., 2011) or a general
propulsive acceleration (BOMBARDELLI; PELAEZ, 2011).

6.3 Results and Analysis

In this section, the results of the solutions are shown for several more realistic cases,
that consider the gravitational perturbations of Jupiter and Venus or just Jupiter.
In order to give an estimation of the accuracy of the analytical solutions with the
assumptions made by the approximations, numerical simulations of the complete
equation of motion (Eq. (6.3)) are used for comparison purposes.

A spacecraft which parameters and positions variables are such that the conditions
of an AEP are satisfied near the lagrangian point L3 of the Sun-Earth system is
subjected to the perturbation of the gravitational interaction of Jupiter and Venus
in the Epoch December 16, 2016. The equation of motion of such spacecraft is
described by Eq. (6.3). An AEP implies that Eq. (6.4) is satisfied. In order to show
a more explicit example, suppose that ~fp given in Eq. (6.4) is the force due to the
solar radiation pressure acting over the surface of the solar sail of a spacecraft and
it is given by (MCINNES, 2004)

~fp = 2peAR2 cos2(γe)
r2
s

~n, (6.46)

where R is the Sun-Earth distance, pe is the solar radiation pressure at a distance
R from the Sun, A is the total area of the flat solar sail, ~n is the vector normal to
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the solar sail and γe is the angle between ~n and ~rs.

The values of the parameters used for all the calculations are given in Table 6.1. If the
force due to the solar radiation pressure is given by Eq. (6.46), which parameters and
variables values are given by Table 6.2, then Eq. (6.4) is satisfied and the spacecraft
is located at an AEP.

Table 6.1 - Values of parameters used in this chapter.

R = 1.495978707 1011 m = 1 au
pe = 4.56 10−6 N/m2 (MCINNES, 2004)
µs = 1.32712440041 1020 m3/s2 (LUZUM et al., 2011)
µe = µs/328900.56 (LUZUM et al., 2011)
µj = µs/1047.3486 (LUZUM et al., 2011)
µv = µs/408523.71 (LUZUM et al., 2011)

Table 6.2 - Parameter values of the artificial equilibrium point.

A
m

= 12 m2/kg
γe = 0.670259715053405 rad
x0 = −1.49152431572918 1011m
y0 = 0 m
z0 = 1.0595 109m

At this equilibrium point, Eq. (6.3) becomes Eq. (6.5). For the analytical solution 2,
the perturbations of Jupiter and Venus are considered constant for the integration
time, which is a whole day. This time is very short compared to the orbital periods
of Venus and Jupiter, so their positions are considered constants for the analytical
solution 2 and also for the linear analytical solution. In the case of the analytical
solution 1, the perturbation of Venus and Jupiter are calculated at the AEP, but
it varies linearly with time. Then, the motion of the spacecraft around the AEP
can be determined by the analytical solutions of the equations of motion, which are
Eqs. (6.30-6.35), Eqs. (6.24-6.29) and Eq. (6.45). These solutions are exact solutions
at the AEP, but they are approximations outside this point. The accuracy of each
kind of solution is shown and it is expected to be better when the spacecraft is
positioned near the AEP.

For the examples shown here, the spacecraft under the gravitational influence of the
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Sun, Earth, Venus and Jupiter is positioned at the AEP according Table 6.2, with
initial velocities given by vx0 = vy0 = vz0 = 0 m/s at the time zero. The evolutions
of their respective motion are determined and compared by the analytical solution 1
(Eqs. (6.24-6.29)), the analytical solution 2 (Eqs. (6.30-6.35)), the analytical solution
of the linear expansion (solution of Eq. (6.45)) and the numerical solution integrated
via Runge Kutta of fourth order, as shown in the next figures.

6.3.1 Case 1 - Jupiter and Venus in 12/16/16

In this first case, the positions of Venus and Jupiter relative to the frame of refer-
ence are calculated for the approximated real data (JET PROPULSION LABORATORY,
2018) in the date of 12/16/16. These positions at the initial integration time (t = 0)
are given by Table 6.3. For the analytical solution 2 and the linear analytical solu-
tion, the perturbation is assumed to be constant and its value is calculated at the
initial conditions (the AEP and t = 0). For the analytical solution 1, the perturba-
tion is calculated at the AEP at the time t = 0 and at the AEP at the time t = tf ,
where tf is the final integration time. Thus, two steps are needed: one to calculate
the values of α for each component of perturbation and another to calculate the val-
ues of the solutions. For the numerical solution, the positions of Jupiter and Venus
are updated for each step of the numerical integration, so this solution takes into
account the influence of the motions of Jupiter and Venus around the Sun into the
perturbation of the system.

Table 6.3 - Values of the positions of Jupiter and Venus (JET PROPULSION LABORATORY,
2018) in 12/16/2016 in the rotating frame of reference. The last line shows the
total distance from the Sun. All values are given in meters.

coordinate Jupiter Venus
x -166397914578 54185387000
y -721781287016 93293222036
z 16846403798 -4976020886√

x2 + y2 + z2 740905050316 108002047323

There are two sources of errors in the analytical solutions. The displacement of
the spacecraft position from the AEP, since the analytical solution assumes that
Eq. (6.4) is always true, and the accelerations due to the perturbation, since the
analytical solution 2 and the linear analytical solutions are obtained assuming a
constant perturbation, while the analytical solution 1 assumes that this perturbation
varies linearly with time. In order to know which of them is better to describe
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the motion of the spacecraft, the numerical calculations are made considering the
perturbation due to the gravitational forces of Jupiter and Venus and updating
their values for each integration step for the respective position of the spacecraft, as
the solution evolves in time. The updating of the position of Jupiter and Venus in
time are obtained through an algorithm given in (JET PROPULSION LABORATORY,
2018). Due to this step update, the numerical solution is closer to reality, among
these models.

In order to give an idea of the differences of the solutions at the end of the integration
time, a delta function is defined as the analytical minus the numerical solution, for
each analytical solution and for each of the components of the position and velocity
as functions of time, as shown in Eq. (6.47). Their respective values are shown
in Tables (6.4-6.7), always calculated at the final time of the integration interval
(tf = 86400s).

∆x = (x− x0)
∣∣∣
analytical

− (x− x0)
∣∣∣
numerical

∆vx = vx
∣∣∣
analytical

− vx
∣∣∣
numerical

∆y = (y − y0)
∣∣∣
analytical

− (y − y0)
∣∣∣
numerical

∆vy = vy
∣∣∣
analytical

− vy
∣∣∣
numerical

∆z = (z − z0)
∣∣∣
analytical

− (z − z0)
∣∣∣
numerical

∆vz = vz
∣∣∣
analytical

− vz
∣∣∣
numerical

. (6.47)

The differences between the values of the positions as functions of t and their values
in the initial conditions are shown in Fig. 6.2 with the respective values of ∆. The
values of the components of the velocity is shown in Fig. 6.3 also with the respective
values of ∆. The total components of the perturbation ~a at the AEP are ax =
9.1 10−11 m/s2, ay = −2.4 10−7 m/s2 and az = 5.1 10−9 m/s2. The large differences
among these components explains why the motion is larger in the y axis, as seen
in Fig. 6.2. It can be noted, from this figure, that the the analytical and numerical
solutions apparently diverge faster for x. They are almost identical for y and they
are slightly divergent for z. It can also be noted that, as expected, the solutions are
almost coincident for low values of t, starting from a perfect match at t = 0. The
range of the validity of the analytical solutions depends on the accuracy required.
For the example shown in Fig. 6.2, the major difference is in the x component. In
the worst case of the x-axis, the errors (differences between analytical and numerical
solutions) are bellow 0.2m in position and 10−4 m/s in velocity in the first 20000 s,
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which is more than 5 hours. This means a result good enough to consider that the
analytical equations are useful, even if Eq. (6.4) is true only in a single point, which
is the starting point of the motion. Figure 6.2 also shows that the analytical solution
2 and the linear solution are almost coincident with each other and the analytical
solution 1 approximates the numerical solution more than the other two options.
The solution is better when the curve that represents ∆ shown in the right side
of Figs. 6.2 and 6.3 is closer to zero. The comparisons among the curves in these
figures also indicates that, for the x coordinate, approximately half of the error of
the analytical solution 2 and the linear solution are due to the assumption that the
perturbations from Venus and Jupiter over the spacecraft are constants.
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Figure 6.2 - Case 1 - components of the differences between the position and the initial
position are shown in the three figures of the left side as functions of time
evaluated numerically (red), analytically via solution 1 (blue), analytically via
solution 2 (green) and analytically via linearized equations of motion (black).
The functions ∆ defined in Eq. (6.47) are shown in the figures of the right
side for the components of the position. At the time t = 0, the spacecraft is
located at the AEP given in Table 6.2 with velocities vx0 = vy0 = vz0 = 0 m/s.
The motions of the perturbing planets Jupiter and Venus around the Sun are
calculated using JET PROPULSION LABORATORY (2018). Overlays of the
curves may arise hiding firstly the red one in the figures of the left side.
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Figure 6.3 - Case 1 - components of the velocity are shown in the three figures of the left
side as functions of time evaluated numerically (red), analytically via solution
1 (blue), analytically via solution 2 (green) and analytically via linearized
equations of motion (black). The functions ∆ defined in Eq. (6.47) are shown
in the figures of the right side for the components of the velocity. At the
time t = 0, the spacecraft is located at the AEP given in Table 6.2 with
velocities vx0 = vy0 = vz0 = 0 m/s. The motions of the perturbing planets
Jupiter and Venus around the Sun are calculated using JET PROPULSION
LABORATORY (2018). Note that overlays of the curves may arise hiding
firstly the red one in the figures of the left side.
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Table 6.4 - Case 1 - delta function of the components of the position and velocity calcu-
lated at the time tf = 86400s for the linear analytical solution, the analytical
solution 1 and the analytical solution 2. The perturbations are given by Jupiter
and Venus with their respective positions in the date 12/16/2016. The delta
function is the difference between the analytical and the numerical solutions.
The units are meters for the differences of positions andm/s for the differences
of velocities.

Linear Analytical Analytical Sol. 2 Analytical Sol. 1
∆x -8.0141×10−0 -8.0136×10−0 -3.4466×10−0

∆y -1.6452×10−0 -1.6454×10−0 5.2743×10−2

∆z 0.4496×10−0 0.4501×10−0 0.3955×10−0

∆vx -2.3854×10−4 -2.3851×10−4 -7.9772×10−5

∆vy -5.6823×10−5 -5.6832×10−5 1.6736×10−6

∆vz 1.1041×10−5 1.1062×10−5 9.1654×10−6

Table 6.4 indicates that the delta of the analytical solution 1 is the function that
tends to get closer to zero, which means that this is the solution closer to the
numerical solution, for the given perturbation.

6.3.2 Case 2 - Jupiter and Venus at (−RJ , 0, 0) and (−RV , 0, 0), respec-
tively

In order to continue the analysis of the influence of the perturbations over the
differences between the four kinds of analytical and numerical solutions for more
situations, Jupiter is set to be in the nearest position of the spacecraft (located
near L3) in the initial position in the frame of reference (x, y, z) = (−RJ , 0, 0).
Venus is also set to be in the nearest position of the spacecraft, so its positions is
(x, y, z) = (−RV , 0, 0), where RJ and RV are the distance of these planets from the
Sun at 12/16/16. The values of RJ and RV are given by

√
x2 + y2 + z2 in Table

6.3, for each planet. Their motion are assumed to be circular around the Sun with
the constant angular velocity given by

√
µs/R3

J − w for Jupiter and
√
µs/R3

V − w
for Venus during the interval of integration time, which is a day (tf = 86400 s).
The results are shown in Fig. 6.4 and Table 6.5, as the difference of the positions as
functions of time and the ∆ functions.
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Figure 6.4 - Case 2 - components of the differences between the position and the initial
position are shown in the three figures of the left side as functions of time
evaluated numerically (red), analytically via solution 1 (blue), analytically via
solution 2 (green) and analytically via linearized equations of motion (black).
The functions ∆ defined in Eq. (6.47) are shown in the figures of the right side
for the components of the position. At the time t = 0, the spacecraft is located
at the AEP given in Table 6.2 with velocities vx0 = vy0 = vz0 = 0 m/s. Jupiter
and Venus are initially positioned at the nearest position to the spacecraft at
(−740905050316, 0, 0) and (−108002047323, 0, 0), respectively. Overlays of the
curves may arise hiding firstly the red one in the figures of the left side.
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Table 6.5 - Case 2 - delta function of the components of the position and velocity cal-
culated at the time tf = 86400s for the linear analytical solution, the ana-
lytical solution 1 and the analytical solution 2. The perturbations are given
by Jupiter and Venus initially positioned at t = 0 in (−740905050316, 0, 0)
and (−108002047323, 0, 0), respectively. The delta function is the difference
between the analytical and the numerical solutions. The units are meters for
the differences of positions and m/s for the differences of velocities.

Linear Analytical Analytical Sol. 2 Analytical Sol. 1
∆x -3.3263×10−0 -3.2793×10−0 -3.5030×10−0

∆y -1.9969×10−0 -1.9972×10−0 4.7333×10−2

∆z 0.3896×10−0 0.3890×10−0 0.3994×10−0

∆vx -7.4608×10−5 -7.2433×10−5 -7.9996×10−5

∆vy -6.9422×10−5 -6.9441×10−5 1.5703×10−6

∆vz 8.8993×10−6 8.8704×10−6 9.2303×10−6

6.3.3 Case 3 - Jupiter and Venus at (RJ , 0, 0) and (RV , 0, 0), respectively

The same analysis can be made by changing the position of Jupiter in the frame
of reference to (x, y, z) = (RJ , 0, 0) = (740905050316, 0, 0) and Venus to (x, y, z) =
(RV , 0, 0) = (108002047323, 0, 0). Their motions around the Sun are also assumed to
be circular with constant angular velocity during the integration time. The results
are shown in Fig. 6.5 and Table 6.6 as the difference of the positions as functions of
time and the ∆ functions.
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Figure 6.5 - Case 3 - components of the differences between the position and the initial
position are shown in the three figures of the left side as functions of time
evaluated numerically (red), analytically via solution 1 (blue), analytically via
solution 2 (green) and analytically via linearized equations of motion (black).
The functions ∆ defined in Eq. (6.47) are shown in the figures of the right side
for the components of the position. At the time t = 0, the spacecraft is located
at the AEP given in Table 6.2 with velocities vx0 = vy0 = vz0 = 0 m/s. The
position of Jupiter and Venus at t = 0 is (x, y, z) = (740905050316, 0, 0) and
(x, y, z) = (108002047323, 0, 0), respectively. Note that overlays of the curves
may arise hiding firstly the red one in the figures of the left side.
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Table 6.6 - Case 3 - delta function of the components of the position and velocity cal-
culated at the time tf = 86400s for the linear analytical solution, the ana-
lytical solution 1 and the analytical solution 2. The perturbations are given
by Jupiter and Venus initially positioned at t = 0 in (740905050316, 0, 0) and
(108002047323, 0, 0), respectively. The delta function is the difference between
the analytical and the numerical solutions. The units are meters for the differ-
ences of positions and m/s for the differences of velocities.

Linear Analytical Analytical Sol. 2 Analytical Sol. 1
∆x -3.4025×10−0 -3.4481×10−0 -3.4800×10−0

∆y 2.5986×10−0 2.5989×10−0 3.8396×10−2

∆z 0.3948×10−0 0.3949×10−0 0.3949×10−0

∆vx -7.8135×10−5 -8.0242×10−5 -8.1607×10−5

∆vy 9.0268×10−5 9.0286×10−5 1.3852×10−6

∆vz 9.1397×10−6 9.1438×10−6 9.1433×10−6

6.3.4 Case 4 - Jupiter only

In order to analyze the behavior of the analytical solutions for a gravitational per-
turbation caused only by a single planet, the same results obtained before with the
perturbations coming from Jupiter and Venus (Figs. 6.2 and 6.3 and Table 6.4) are
shown neglecting the Venus gravitational influence over the spacecraft. This means
that the perturbation is caused only by the gravitational influence of Jupiter. The
results are shown in Fig. 6.6 and in Table 6.7.
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Figure 6.6 - Case 4 - components of the differences between the position and the initial
position are shown in the three figures of the left side as functions of time
evaluated numerically (red), analytically via solution 1 (blue), analytically via
solution 2 (green) and analytically via linearized equations of motion (black).
The functions ∆ defined in Eq. (6.47) are shown in the figures of the right side
for the components of the position. At the time t = 0, the spacecraft is located
at the AEP given in Table 6.2 with velocities vx0 = vy0 = vz0 = 0 m/s. The
perturbation is given only by the gravitational force of Jupiter calculated using
(JET PROPULSION LABORATORY, 2018). Note that overlays of the curves may
arise hiding firstly the red one in the figures of the left side.
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Table 6.7 - Case 4 - delta function of the components of the position and velocity calculated
at the time tf = 86400s for the linear analytical solution, the analytical solution
1 and the analytical solution 2. The perturbation is given only by Jupiter
with its respective position in the date 12/16/2016. The delta function is the
difference between the analytical and the numerical solutions. The units are
meters for the differences of positions and m/s for the differences of velocities.

Linear Analytical Analytical Sol. 2 Analytical Sol. 1
∆x -8.0470×10−0 -8.0449×10−0 3.8823×10−0

∆y -1.6990×10−0 -1.6992×10−0 3.2995×10−0

∆z 0.4558×10−0 0.4563×10−0 0.1840×10−0

∆vx -2.3969×10−4 -2.3858×10−4 1.7505×10−4

∆vy -5.8687×10−5 -5.8697×10−5 1.1368×10−4

∆vz 1.1255×10−5 1.1277×10−5 1.8235×10−6

6.4 Considerations

Three kinds of solutions were developed analytically with the objective to describe
the motion of a spacecraft around an AEP. The three solutions are analytical 1
(Eqs. (6.24-6.29)), analytical 2 (Eqs. (6.30-6.35)), and the linear analytical (given
by the solution of Eq. (6.45)). All of them can describe the motion around the AEP.

The numerical solution is the closest to the reality among the solutions, because
it does not use approximations for the condition given by Eq. 6.4 outside the AEP
and the values of the perturbations are updated in each small step of the integration
time. This means that the definitions given by Eqs. (6.47) for the delta functions
allow them to describe the error associated with each one of the analytical solutions
found in this research. Of course this error decreases with the decreasing of the time
and it tends to zero for shorter integration times. Thus, all the solutions are able to
describe the motion of the spacecraft around the AEP with some degree of accuracy,
which also means that an error is associated to each one of the analytical solutions
outside the AEP. In this research, these errors are estimated for some cases, allowing
the reader to analyze the behavior of the error when the system is evolved for a day.

Tables 6.4 - 6.7 show that the maximum absolute values of the delta function are of
the order of 1 m for the components of the position and of the order of 10−4m/s for
the components of the velocity, if the systems are propagated for a whole day. This
means that a day of integration time can associate any of the solutions obtained in
this research with errors that could fit in the design of some spacecraft missions.

The analytical solution 2 and the linear analytical solution are always practically
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coincident for all the positions of Jupiter and Venus used in section 6.3, as can be
seen in Figs. 6.2 - 6.6 and Tables 6.4 - 6.7. This is an expected result, since both of
them consider the perturbation as a constant of motion. On the other hand, both
solutions are obtained through two completely different methods. Linear analytical
solution require very complex steps and its final solution ~Y (t) is only found if the
parameters are explicit. On the other side, analytical solution 2 takes the advantage
of a general solution obtained in a closed form for all values of the parameters.

Tables 6.4 - 6.7 show that the absolute values of the delta function for analytical
solution 1 is the one among all analytical solutions that tends to be closer to zero, but
there are some exceptions. For the first case, showed in subsection 6.3.1, the absolute
values of the delta functions for analytical solution 1 are smaller than both linear
analytical and analytical solution 2 for every position and velocity components. For
the second case, showed in subsection 6.3.2, Table 6.5 shows that the absolute values
of the delta function is slight larger for the analytical solution 1 than others, both for
x and z axis components, but all these errors are small if compared to the respective
axis displacement. The errors are about 0.5% of the displacement for x and about
2% for z position components. Otherwise, an analysis in the y position components
shows that the error is larger for the analytical solution 2 and the linear analytical
solution. These errors are larger if compared to the displacement, about 25% of the
displacement for the analytical solution 2 and for the linear analytical solution. On
the other hand, the comparative error for the analytical solution 1 shows that the
error is only about 0.05% of the displacement in the y position components. This
fact indicates that, for this case, analytical solution 1 is the best choice. For the
third case, showed in subsection 6.3.3, an analysis of Table 6.6 shows quite similar
results compared to the second case, except that all the solutions show significant
errors for the z position component. The error is about 33% in the displacement, but
the z displacement is much smaller for this case than for the other two situations
shown before. For the fourth case, showed in subsection 6.3.4, Table 6.7 shows that
the absolute values of the delta function for analytical solution 88 is smaller for
x and z components position and it is larger for y component position. For the
linear analytical solution and analytical solution 2, the errors are: about 26% of the
displacement for x coordinate, about 0.17% of the displacement for y coordinate
and about 2.3% of the displacement for z coordinate. This same Table shows that
the errors for the analytical solution 88 are about 12.6% of the displacement for x
coordinate, about 0.33% of the displacement for y coordinate and about 0.9% of the
displacement for z coordinate. Again, when the relative error is large, the analytical
solution 1 is much better than the other two analytical solutions. All these results
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can be also analyzed through Figs. 6.2 - 6.6, because they show the differences
between the analytical solutions for all the interval of the integration, not only in
the final time. Thus, the conclusion is that the errors of the analytical solution 1
tend to be smaller than the errors of the analytical solution 2, which in turn are
quite similar to the errors of the linear analytical solution.

If Eq. (6.4) is satisfied along all the path, then analytical solutions 1 and 2 are
exact ones for their respective given perturbations. Moreover, all kinds of analytical
solutions presented in this chapter can be considered as approximated ones in more
realistic cases, where Eq. (6.4) is satisfied only in the initial conditions of the motion
and the perturbations are approximated as constants or linearly dependent on time.
In these more realistic cases, the numerical solution is closer to reality. On the other
hand, for the numerical calculations, more than a million operations are needed in
order to reach the results, while the analytical calculations could be made for any
time with less than a thousand operations. An analytical solution can be useful for
many purposes, including to lower time computation costs or analytical calculations
of station-keeping costs, trajectories, etc.
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7 SEARCHING FOR ORBITS TO OBSERVE THE POLES OF CE-
LESTIAL BODIES

The objective of the present chapter is to show a method to find orbits near artificial
equilibrium points for a satellite equipped with a continuous thrust that allows it
to stay near the poles of a celestial body. The physical system includes the presence
of a moon of the celestial body under observation, and the perturbation caused by
this moon is used to help the satellite to stay close to its original position. Some
considerations are made and an analytical solution for the equations of motion is
obtained and analyzed. Analogous considerations are applied to the spacecraft. A
numerical simulation is obtained, which results are obligated to be find in agreement
with the analytical solution using periodic adjustments of the thrust. This agreement
means that the motion of the spacecraft remains bounded close to its initial position
for long times. Several systems with different sizes and mass parameters are used
as examples, like Sun-Earth-Moon, Sun-Ida-Dactyl and Sun-Saturn-Titan systems.
The results also indicate the location of the points with minimum thrust required,
as well as the total annual increment of velocity required to keep the satellite near
its initial position. Several analyzes are made about practical applications of the
method.

7.1 Introduction

A new solution describing the spacecraft motion around AEP were shown in the
research written in chapter 6. Therefore, once again, new tools are now available to
solve further related problems. One of them is explained next.

The restricted three-body problem accepts four different solutions: periodic orbits,
quasi-periodic orbits, chaotic orbits, and equilibrium points. In the case of natural so-
lutions, i. e., a system without interference of external forces, the equilibrium points
of the restricted three-body problem are the well known Lagrangian points. The
collinear points have been used for space missions along the last years, and a more
recent example is the James Webb Space Telescope, which is in phase of construc-
tion, with a planned date of launch in 2020. This space telescope will be placed in
the L2 Sun-Earth Lagrangian point 1. Although useful points for space exploration,
these points have limitation, since they are always in the plane of the secondary or-
bit. The use of continuous thrust by the spacecraft can change this restriction, since
the use of thrust allows the rise of families of artificial equilibrium points all over the

1https://jwst.nasa.gov/orbit.html
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space (MCINNES et al., 1994). The type of continuous thrust required to create these
points can be generated by engines that require low propellant consumption, like
ion engines (GOEBEL; KATZ, 2008), or no propellant consumption at all, by using so-
lar sails (MCINNES, 2004), electric sails (JANHUNEN, 2004; JANHUNEN; SANDROOS,
2007; MENGALI; QUARTA, 2009), magnetic sails (ZUBRIN; ANDREWS, 1991; UENO et

al., 2009), or magneto-plasma sails (YAMAKAWA et al., 2006). In previous work (DE

ALMEIDA JUNIOR et al., 2017a), AEP located near the Lagrangian point L3 Sun-
Earth, but above and below the Ecliptic plane, were found. These orbits could be
a possible solution for the communication problem between Earth and the classical
L3. AEPs out of the Ecliptic plane can also be useful for placing a spacecraft in a
region where it can be maintained in constant contact with the poles of a celestial
body (FORWARD, 1991). Stable AEP exists only in a region around the triangular
Lagrangian points (ALIASI et al., 2011; BOMBARDELLI; PELAEZ, 2011). In order to
solve the stability problem, Halo orbits have been found and extensively investigated
(FARQUHAR; KAMEL, 1973; HOWELL, 1984). In recent researches, some of these or-
bits are under study for a satellite equipped with solar sail (FARRÉS; JORBA, 2014;
HEILIGERS et al., 2015).

The main objective in this stage of the work is to develop a method to find orbits for
a spacecraft equipped with a continuous thrust that allow it to stay near an AEP
located above or below the poles of a celestial body for a long period of time, despite
its linear stability. This type of artificial equilibrium points is of great importance
to place a spacecraft, because it can be used as an observation, communication
or research spot. A satellite like that would be perfect to be used in regions near
the poles as a “geosynchronous satellite" (FORWARD, 1991), as an option for the
satellites placed in Molniya orbits. The gravitational interaction with a third body
(which will be called here a moon) will be considered as an additional perturbation.
The presence of the third body shall help the spacecraft to keep its location close
to the original position. To complete this task, an analytical solution is created by
using a new tool (DE ALMEIDA JUNIOR et al., 2018) developed in chapter 6 that
requires direct integration of differential equations. Thus, the oscillatory terms of
this solution are identified, and the same conditions that were used to the analytical
oscillatory solution are applied to the spacecraft. The result of this process is such
that the motion of the spacecraft is bounded close to its initial position for a large
period of time, considering the perturbation of the moon. Additionally, an estimate
about the ratio area-to-mass required to satisfy the generic thrust is shown through a
solution using the solar radiation pressure coming from the Sun (primary body) and
reflected to the spacecraft through a mirror installed on the surface of the secondary
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body.

The last stage of the research is written in this chapter and divided as follows.
In section 7.2, an introductory definition is made using the respective mathemati-
cal models. The equations of motion are simplified using some considerations and
approximations. The analytical solutions for the simplified equations are exactly
obtained and analyzed. The same considerations used to simplify the equations are
applied to the spacecraft through periodic approximations by slightly changing the
thrust. A numerical solution to the complete equations of motion is also obtained.
The results are presented in section 7.3 and they show how the numerical solution
comes closer to the analytical one, as function of the period in which the thrust
is adjusted for three different systems. The final considerations of the chapter are
written in section 7.4.

7.2 Mathematical models

Let two main bodiesM1 andM2 move around their center of mass. The equations of
motion of a spacecraft subject to a perturbation, its own thrust and the gravitational
interaction with M1 and M2 in the rotating reference frame is given by

d2~r

dt2
+ 2~ω × d~r

dt
+ ~ω × (~ω × ~r) + d~ω

dt
× ~r = −µ1

r3
1
~r1 −

µ2

r3
2
~r2 + ~ft + ~a, (7.1)

where: ~r denotes the position of the spacecraft, which coordinates are x, y, z; ~ω is the
angular velocity of the rotating frame of reference; ~r1 is the position of the spacecraft
with respect to the body M1; r1 is the absolute value of ~r1; ~r2 locates the spacecraft
with respect to the body M2; r2 is the absolute value of ~r2; ~ft is an acceleration
acting over the spacecraft due to its thrust; µ1 is the gravitational parameter of
M1; µ2 is the gravitational parameter of M2; and ~a is an acceleration due to an
additional force. Using ~i, ~j, and ~k as the unitary vectors along the x, y, and z axes,
respectively, and the classic definition of center of mass, the relative positions ~r1

and ~r2 are given by ~r1 = ~r + xM1
~i and ~r2 = ~r − xM2

~i, where xM1 = R/(1 + µ1/µ2)
and xM2 = R/(1 +µ2/µ1), with R the distance between the two main bodies. In the
case where the motion of the main bodies are circular around their center of mass,
Eq. (7.1) becomes

d2~r

dt2
+ 2~ω × d~r

dt
− ω2

(
~r − z~k

)
= −µ1

r3
1
~r1 −

µ2

r3
2
~r2 + ~ft + ~a. (7.2)
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Let a moon of the primary M2 be in a circular orbit around it, which semi-major
axis is Rm and the angular velocity is ωm. The vector that locates this moon is given
by

~rm = (xM2 +Rm cos(ωmt+ θ))~i+ (Rm sin(ωmt+ θ))~j. (7.3)

The main bodies, the moon, and the spacecraft are shown in Fig. 7.1.

Figure 7.1 - The spacecraft and the bodies involved.

SOURCE: Author’s production.

The acceleration over the spacecraft due to its gravitational attraction with the
moon is

~a = µm
‖~rm − ~r‖3 (~rm − ~r) , (7.4)

where µm is the gravitational parameter of the moon. Hence, Eq. (7.2) becomes

d2~r

dt2
+ 2~ω × d~r

dt
− ω2

(
~r − z~k

)
= −µ1

r3
1
~r1 −

µ2

r3
2
~r2 + ~ft + µm

‖~rm − ~r‖3 (~rm − ~r) . (7.5)

7.2.1 Analytical solution valid for a short integration time

Let the acceleration ~ft due to its own thrust applied over the spacecraft be given by

~ft =
(
−ω2~r +

(
ω2z + µm

‖~rm − ~r‖3 z

)
~k + µ1

r3
1
~r1 + µ2

r3
2
~r2

)
(7.6)

at an arbitrary point (x0, y0, z0), which will be called a pseudo artificial equilibrium
point (PAEP). The PAEP would be an equilibrium point if only the z component of
the perturbation ~a would be taken into account, neglecting the x and y components
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of this perturbation, which is not possible in the real case. This is the reason why
this point is called a PAEP and not an artificial equilibrium point. The components
of Eq. (7.2) can be rewritten at the PAEP as

d2x

dt2 − 2dy
dt ω −

(
µm

‖~rm − ~r‖3 (Rm cos(ωmt+ θ) + (xM2 − x))
)

= 0, (7.7)

d2y

dt2 + 2dx
dt ω −

(
µm

‖~rm − ~r‖3 (Rm sin(ωmt+ θ)− y)
)

= 0, (7.8)

d2z

dt2 = 0. (7.9)

Note that this set of equations is valid only at the PAEP. On the other hand, it can
describe the motion around the PAEP with some accuracy (DE ALMEIDA JUNIOR

et al., 2018). Let the term xM2 − x of Eq. (7.7) and the term y in right side of
Eq. (7.8) be approximated by xM2 − x0 and y0, respectively. Let the quantity α be
defined as α = Rmµm/‖~rm − ~r‖3. It is also assumed that α is a constant during the
motion, where ~r is evaluated at x0, y0, z0 and ~rm is evaluated at the initial time of
the motion. Due to the fact that the motion of the moon is circular around M2, this
approximation is exact if the satellite is located at any point above M2, it is also a
good approximation for points around it, which is the case that will be explored in
the present chapter. Considering the above assumptions, Eqs. (7.7) and (7.8) become

d2x

dt2 − 2dy
dt ω − α (cos(ωmt+ θ) + (xM2 − x0)) = 0, (7.10)

d2y

dt2 + 2dx
dt ω − α (sin(ωmt+ θ)− y0) = 0, (7.11)

which solutions are exactly given by

x(t) = 1
4ω2ωm (ωm + 2ω)

[
2αω cos(θ) (ωm + 2ω) + ωm

(
(ωm + 2ω)

(
α (xM2 − x0) +

2ω (−αty0 + vy0 + 2x0ω) + sin(2tω) (2ωvx0 + αy0)
)
− (ωm + 2ω) cos(2tω)

(α (xM2 − x0) + 2ωvy0)− 2αω cos(θ − 2tω)
)
− 4αω2 cos (θ + tωm)

]
, (7.12)
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y(t) = 1
4ω2ωm (ωm + 2ω)

[
(ωm + 2ω)ωm

(
− 2ω (αt (xM2 − x0) + vx0) +

sin(2tω) (αxM2 + 2ωvy0 − αx0) + cos(2tω) (2ωvx0 + αy0)− y0
(
α− 4ω2

))
+

2αω sin(θ)
(
− ωm cos(2tω)− 2ω cos (tωm) + ωm + 2ω

)
+

2αω cos(θ) (ωm sin(2tω)− 2ω sin (tωm))
]
, (7.13)

where x0 = x(0), y0 = y(0), vx0 = vx(0), and vy0 = vy(0) are the initial conditions
of the motion.

7.2.2 Numerical calculation

The numerical solution is obtained through a direct numerical integration of
Eq. (7.5) using a Runge-Kutta method. In this case, the acceleration ~ft is evalu-
ated at the PAEP using Eq. (7.6) and it is assumed to be constant during every
part of the motion.

7.2.3 Chasing the analytical solution

The secular terms present in Eqs. (7.12) and (7.13) are linearly dependent on t and
they also depend on the initial position of the motion. These secular terms vanish
in the case where the satellite is initially positioned above M2 at (x0, y0, z0) =
(xM2 , 0, z0). Hence, there will be only oscillatory terms left in the solution. The
problem is that this solution requires that Eq. (7.6) is satisfied over all the path.
Since Eq. (7.6) is satisfied only at the initial condition of the motion, the analytical
solution is valid only for short times of integration. In general, after some time, which
may vary depending on the parameters, the numerical solution diverges from the
analytical one and the satellite will tend to escape from its initial position. In order
to solve this problem, the thrust will be adjusted every period of time such that
Eq. (7.6) will be valid again, right after the adjustment. Even in the case where the
initial position is not right above M2, the secular terms are not a problem anymore,
because the analytical solution is used again at every period of time.

The process is described next. The analytical solution is used to predict the motion
after a given period of time. The new position will be used to slight adjust ~ft, such
that Eq. (7.6) is valid again. The new position and velocity will be used as initial
conditions to repeat the process for a new period of time. This sequence is repeated
as many times as necessary, until the duration of the mission is reveryed. In the
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case where the numerical solution is used, the process is the same, except that the
integration over every period of time is made using a Runge-Kutta method.

The objective of this method is to force the motion to try to chase the analytical
solution, hence the satellite will be kept around the PAEP for a longer time.

7.2.4 Thrust using a solar sail

The acceleration ~ft can be provided by a solar sail attached to the satellite, due to
the solar radiation pressure or other source of photons as (MCINNES, 2004)

~fs = β
A

m

k cos2(γ)
r2
n

~n, (7.14)

where β is a positive non-dimensional parameter less than 1 (β = 1 means a perfect
reflection), k is a parameter that depends on the luminosity of the body, A is the
area of the flat solar sail, m is the mass of the satellite, ~rn is the vector that locates
the sail with respect to the source of photons, ~n is the vector normal to the solar sail
and γ is the angle between ~rn and ~n, which is given according to cos γ = (~rn ·~n/rn).
Note that the parameter β is used to represent many forms of practical applications,
such as a satellite which reflexivity of its panel can be changed (FUNASE et al., 2011;
HUA et al., 2016), as well as a satellite which effective area is adjustable (ROMAGNOLI;

OEHLSCHLAGEL, 2011; RODRIGUEZ-SOLANO et al., 2012). This acceleration can be
used to keep the satellite at the PAEP. On the other hand, it can be useful even if its
magnitude is not large enough to satisfy the magnitude of ~ft, because it is possible
to combine this acceleration with a propulsion system.

In the case where the acceleration ~ft is given totally by the planar solar sail, in order
to make the analytical solutions given by Eqs. (7.12) and (7.13) valid, the condition
~fs = ~ft must be satisfied at he PAEP. Hence, ~ft can be calculated at the PAEP using
Eq. (7.6), where ~r and ~rm must be evaluated at an arbitrary point (x0, y0, z0) and in
the initial time of the motion, respectively. Let the components of ~ft be written as
~ft =

(
fx~i+ fy~j + fz~k

)
. Hence, the unitary vector normal to the solar sail is given

by

~n = fx~i+ fy~j + fz~k√
f 2
x + f 2

y + f 2
z

. (7.15)

The value of the parameter k depends on the luminosity of the body. Let k1 be
the value of k in the case where M1 is the source of photons, then k1 = 2peR2

e

in the case where the Sun is the source, where Re is the distance Sun-Earth and
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pe = 4.56 × 10−6kg/(ms2) holds for the solar radiation pressure at a distance Re

from the Sun. Therefore, the above conditions require that, at the PAEP, the ratio
βA/m is given by

β
A

m
= 1
k1

(
f 2
x + f 2

y + f 2
z

) 3
2 r4

1

((x+ x1)fx + yfy + zfz)2 . (7.16)

The locations of interest used in this chapter are above M2, which means that the
direction of ~ft is almost totally given in the z direction, while the vector ~r1 is almost
totally given in the x direction. This means that, if M1 is the source of photons,
the force given by Eq. (7.14) is highly attenuated by the term cos2(γ). A very high
value for the ratio A/m is required in order to compensate the attenuation of this
term. On the other hand, if this term would not be taken into account, that is, if
~n was positioned in the same direction of the rays, a solar sail with a reasonable
ratio area-to-mass could generate an acceleration capable to satisfy the absolute
value of ~ft, but with distinct direction. In order to solve this problem, a solution is
proposed here where the direction of the rays will be changed at the surface of M2.
It will be assumed that there is a small planar mirror located at M2, permanently
reflecting the rays coming from M1 to the satellite. The size of this mirror can be of
the same order of the area of the satellite. Depending on M2, which can be a planet
or an asteroid, there are engineering challenges to implement this solution (a rolling
mirror on it) that will not be discussed here. In the same way, the problems related
to point the mirror to the satellite is out of the scope of the present chapter. In
the configuration for this solution, the mirror is located at (xM2 , 0, l), where l is the
radius ofM2. The vector ~rA locates the mirror with respect toM1 and the vector ~rB
locates the solar sail with respect to the mirror. They are written as ~rA = (xM2 , 0, l)
and ~rB = (x− xM2 , y, z − l). A sketch of this solution is shown in Fig. 7.2.
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Figure 7.2 - A solution to redirect the photons coming from M1 to the solar sail.
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In this solution, the force per unit of mass can be written as

~fs = β
A

m

k1 cos2(γ)
(‖~rA‖+ ‖~rB‖)2~n, (7.17)

where cos γ = (~rB · ~n/‖~rB‖). The ratio βA/m required to satisfy the equilibrium
condition is

β
A

m
= 1

k1 (fz(z − l) + fx (x− xM2) + yfy) 2

 (f 2
x + f 2

y + f 2
z

)3/2 (
(x− xM2)2 +

y2 + (l − z)2
)(√

l2 + x2
M2 +

√
(l − z)2 + (x− xM2) 2 + y2

)
2

. (7.18)

7.3 Results

Let the acceleration ~ft be slightly adjusted every period of time such that Eq. (7.6)
is satisfied at the positions in these discrete periods of time and it remains constant
during the motion. The trajectory of the satellite can be evaluated using both the
analytical solution given by Eqs. (7.12) and (7.13) or the direct numerical integra-
tion of the equations of motion [Eq. (7.5)]. In the numerical case, the vector ~ft is
adjusted at every period of time, such that Eq. (7.6) is satisfied, while the analytical
solution is already obtained with the assumption that Eq. (7.6) is satisfied over all
the path. After this period of time, the values of the position and velocity are used
as initial conditions for the integration during the next same period of time using
both solutions.
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Let the components of the initial velocity of the motion be vx0 = vy0 = vz0 = 0
and the coordinates of the PAEP at t = 0 be (x0, y0, z0) = (xM2 , 0, z0), where xM2

is the x coordinate of the body M2. Assuming θ = 0, the only parameter left is the
altitude z0, which is the initial distance from M2. All the other parameters depend
on the configurations of the system given by M1, M2 and the moon that rotates
around M2. Thus, the satellite is initially located above M2 with a z0 coordinate
for three different systems: the Sun-Earth-Moon, Sun-Saturn-Titan, and Sun-Ida-
Dactyl taking place of M1-M2-moon. The absolute value of the force per unit of
mass required to maintain the PAEP at t = 0 as function of the initial coordinate
z0 is shown for the respective systems, as well as the ratio βA/m required to satisfy
the PAEP using a solar thrust and a mirror at “the top" of M2 reflecting the rays
towards the satellite for the case of the Sun-Ida-Dactyl, according to the scheme
shown in Fig. 7.2. The initial coordinate z0 is chosen as the one that minimizes
the absolute value of the force required to satisfy the PAEP in the case of the
Sun-Earth-Moon and Sun-Saturn-Titan systems. In the case of the Sun-Ida-Dactyl
system, this coordinate is chosen closer to Dactyl such that its gravitational effect
over the trajectories is stronger. Thus, the system is evolved and the projection of
trajectories in the x-y plane are shown for the respective system for different period
of times that the thrust is adjusted in order to satisfy Eq. (7.6).

7.3.1 Sun-Earth-Moon system

Table 7.1 - Values of the parameters for the Sun-Earth-Moon system.

R 1.495978707× 1011 m = 1 AU
µ1 1.32712440041× 1020 m3/s2 (LUZUM et al., 2011)
µ2 µ1/328900.56 (LUZUM et al., 2011)
µm 0.0123000371µ2 (PITJEVA; STANDISH, 2009)
Rm 3.84402× 108m
ωm 2π/(27.321582 days)

In the case where M1 is the Sun, M2 is the Earth and the generic moon is
the Moon, which parameters are shown in Table 7.1, the absolute value of the
force required to satisfy the PAEP [Eq. (7.6)] is shown in Fig. 7.3. The abso-
lute value of the acceleration has a minimum of ‖~ft‖ = 0.162974 × 10−3m/s2 at
z0 = 0.01832589841874661 AU , where AU = 149597870700 m is the astronomical
unit. This acceleration implies in a total increment in velocity of 5.1 km/s every
year. This point is attractive due to the costs of the thrust. It is an indication of
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a very good region to place the spacecraft, independent of the control technique to
keep it there. This figure also shows the increase in the costs with the value of z0

in the case of the specifications of the mission do not allow the use of the mini-
mum point. This information is also used in the case of a constellation of spacecraft
along the z axis is planned. The implementation of the mirror over M2 explained
in the subsection 7.2.4 may be very difficult for the Sun-Earth-Moon system, a
case where M2 is the Earth, but once this problem is solved, an evaluation using
Eq. (7.18) shows that the minimum ratio βA/m reveryed is βA/m = 18.53 m2/kg

at z0 = 0.01799601960829353 AU . This type of solution is used here to express that
the required amount of force per unit of mass could be reveryed using current tech-
nology for the ratio βA/m (TSUDA et al., 2013). Alternatively, this force per unit of
mass can be reveryed by the use of ionic thrust2.

Figure 7.3 - The absolute value of ~ft given by Eq. (7.6) evaluated at the PAEP located at
(xM2 , 0, z0) as a function of z0 for the Sun-Earth-Moon system.
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In the case of the Sun-Earth-Moon system, the solution for x(t), y(t), and z(t) are
shown in Fig. 7.4 for a fixed period of adjustment of 24 h. The black curve of these
figures represent the analytical solution given by Eqs. (7.12) and (7.13), while the red
curve represents a numerical integration via Runge-Kutta method of the complete
equations of motion [Eq. (7.5)]. The (x, y) coordinates of the trajectories are shown
in Fig. 7.5 for one year of integration time using z0 = 0.01832589841874661 AU .
The blue dots represent the initial position of the motion, while the lighter red
and the gray dots represent the final position of the satellite after one year for
the numerical an analytical solutions, respectively. The trajectories are changed for
different periods of the adjustments where the continuous thrust satisfy Eq. (7.6) at
the respective position. These periods vary from no adjustment at all in the top left

2http://www.adastrarocket.com/aarc/technology
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plot of the figure to every hour of adjustment in the bottom right plot of the figure.

Figure 7.4 - Displacements in the x, y, and z directions as function of time in the case of
the Sun-Earth-Moon system for a spacecraft initially located at (xM2 , 0, z0),
where z0 = 0.01832589841874661 AU . The thrust is adjusted every 24 hours.
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Figure 7.5 - Projection of the trajectories in the x-y plane for 365 days of integration time
in the case of the Sun-Earth-Moon system for a spacecraft initially located at
(xM2 , 0, z0), where z0 = 0.01832589841874661 AU . The thrust is not adjusted
in the top left figure and it is adjusted every 90, 30, 7, and 1 days and every
1 h in the respective subsequent figures.
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7.3.2 Sun-Ida-Dactyl system

Table 7.2 - Values of the parameters for the Sun-Ida-Dactyl system.

R 2.863914916076813 AU (JET PROPULSION LABORATORY, 2018)
µ1 1.32712440041× 1020 m3/s2 (LUZUM et al., 2011)
µ2 3× 106 m3/s2 (BELTON et al., 1996)
µm 9× 10−5 µ2 (BELTON et al., 1995)
Rm 90.5 km (BELTON et al., 1996)
ωm −

√
µ2/R3

m (retrograde) (BELTON et al., 1996)

The same procedure used for the Sun-Earth-Moon system in section 7.3.1 is pre-
sented in this subsection for the Sun-Ida-Dactyl system, which parameters are given
in Table 7.2. The force per unit of mass required to satisfy the PAEP at the initial
condition of the motion is shown in the upper side of Fig. 7.6. A solar sail receiving
the reflected rays through a mirror at Ida can generate a thrust to satisfy Eq. (7.6)
for the ratio βA/m shown as function of z0 in the bottom side of Fig. 7.6. Note,
from this figure, that the minimum absolute value of the acceleration or the ratio
βA/m is reveryed at z0 ≈ 15.26× 103km. The trajectories are shown in Fig. 7.7 in
the case where the z component of the initial position of the satellite is z0 = 1000 m
for different periods of adjustments. The numerical trajectories vary from a range
of 50 km in the case where there is no adjustment at all to a range closer to the
analytical solution near the start position of the motion in the case where the ad-
justments are made at a period of every hour. It is noted that, in this system, the
force per unit of mass is much smaller, due to the smaller dimensions of the bodies
involved. The minimum is now ‖~ft‖ ≈ 3.9 × 10−8N/kg at z0 ≈ 15.26 × 103 km.
This value is four orders of magnitude compared to the Sun-Earth-Moon system.
The annual ∆v defined as ∆vannual = ‖~ft‖ × 1 year would be approximately equal
to 1.2× 10−3 km/s. These values are very small, and easy to be made using current
technology. It means that the idea proposed here is very practical when considering
binaries asteroids or other small bodies which mass ratio are much less than one.
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Figure 7.6 - The absolute value of ~ft given by Eq. (7.6) and the ratio βA/m given by
Eq. (7.18) evaluated at the PAEP located at (xM2 , 0, z0) as a function of z0
for the Sun-Ida-Dactyl system.
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Figure 7.7 - Projection of the trajectories in the x-y plane for 365 days of integration time
in the case of the Sun-Ida-Dactyl system for a spacecraft initially located
at (xM2 , 0, z0), where z0 = 1000 km. The thrust is not adjusted in the top
left figure and it is adjusted every 90, 30, 7, and 1 days and every 1 h in the
respective subsequent figures.
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7.3.3 Sun-Saturn-Titan system

Table 7.3 - Values of the parameters for the Sun-Saturn-Titan system.

R 9.5820172 AU
µ1 1.32712440041× 1020 m3/s2 (LUZUM et al., 2011)
µ2 3.793947517× 1016 m3/s2

µm 8.977972416× 1012 m3/s2

Rm 1.221870000× 109m

ωm
√
µ2/R3

m

The same procedure is used for the Sun-Saturn-Titan system. It is shown in Fig. 7.8
that the minimum value of the absolute value of the acceleration given by Eq. (7.6)
is reveryed at z0 ≈ 0.8 AU , which is relatively far from the heavy bodies of Saturn
and Titan. On the other side, the absolute value of the acceleration required to
satisfy the PAEP is two orders of magnitude less than the minimum for the Sun-
Earth-Moon system. It means that the total ∆vannual is approximately equal to
0.25285 km/s. Note that this value was evaluated at the initial position, hence it
is an approximation for the complete trajectory, since the acceleration ‖~ft‖ slightly
changes as the spacecraft is displaced from its initial position. It is evaluated at
every period of time of the respective adjustments and is constant during these
intervals. Evaluating the index ∆v at every period of time of the adjustments and
adding them, in the case in which the adjustment is made every 1 day, the value of
∆vannual is equal to 0.25268 km/s. Those values of accelerations and ∆v are small,
and not difficult to be implemented with current technology. It means that in a
system of primaries like that, this concept can be used. In the case where the initial
condition is given at the PAEP at z0 = 0.7982524313795235 AU , the projection of
the trajectories in the x-y plane is shown in Fig. 7.9. Due to the large distance of the
satellite from the massive bodies, it does not move far away from the initial position
in this case, but other value z0 can also be chosen to bring the numerical solution
closer to the analytical one.
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Figure 7.8 - The absolute value of ~ft given by Eq. (7.6) evaluated at the PAEP located at
(xM2 , 0, z0) as a function of z0 for the Sun-Saturn-Titan system.
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Figure 7.9 - Projection of the trajectories in the x-y plane for 365 days of integration time
in the case of the Sun-Saturn-Titan system for a spacecraft initially located at
(xM2 , 0, z0), where z0 = 0.7982524313795235 AU . The thrust is not adjusted
in the top left figure and it is adjusted every 90, 30, 7, and 1 days and every
1 h in the respective subsequent figures.
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7.4 Considerations

The present chapter focused in finding pseudo artificial equilibrium points to place
a satellite equipped with a continuous thrust to observe the poles of a celestial body
that has a moon around it. It is made an analytical and a numerical study, which
have a good agreement with each other. Solutions were found for the Sun-Earth-
Moon, Sun-Ida-Dactyl and Sun-Saturn-Titan systems. The results showed that the
acceleration required has a strong dependency with the altitude of the equilibrium
point, with a very clear minimum. They also show the annual increment of velocity
required to keep the satellite fixed in the equilibrium points found. Comparing the
systems, it is very clear that smaller bodies, like asteroids, have very low thrust
required to keep the equilibrium points. The magnitude of the accelerations required
for the thrusts are of the order 10−4 m/s2 for the Sun-Earth-Moon system, with an
annual velocity increment of 5.1 km/s. These number go to the order of 10−8 m/s2

for the Sun-Ida-Dactyl system, with an annual velocity increment of 1.2×10−3 km/s.
It means that this type of solution is relatively expensive for some systems, but very
affordable in others.

The results also showed that, depending on the z0 coordinate, without using the
method presented here, the trajectory of the satellite can oscillate around its initial
position (x0, y0, z0) = (xM2 , 0, z0) for a short term, but it will eventually escape
due to the perturbation, which is the gravitational interaction with the moon. For
the majority of the values of z0, the satellite tends to escape very fast from its
initial position. On the other side, using the method presented in this chapter, the
spacecraft is obligated to follow a previously developed analytical solution and so it
will keep an orbit around the PAEP for longer times, at the cost that, in every period
of time, which is defined by the mission designer, the direction and the absolute value
of the thrust must be slightly adjusted.

In comparison with a spacecraft which thrust is able to cancel all the accelerations
to keep itself in the equilibrium condition permanently, continuously changing the
absolute value and the direction of the thrust, the presented method has the ad-
vantage that the spacecraft does not need to cancel the x-y plane component of the
perturbation due to the gravitational interaction with the moon, which means that
a thrust with lower intensity is required, besides the fact that it does not need to
be adjusted continuously, only in periods of every hour or some days. Hence, an im-
portant restriction is withdrawn over its construction, besides the wear of material
to keep the thrust being changed continuously.
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8 CONCLUSIONS

The use of integral indices to measure the perturbation level of a particular trajec-
tory has several advantages. The integration of the perturbing forces can be made
analytically or numerically, depending on the disturbing force. Therefore, any pertur-
bation can be added to the system, even the ones that needs complex mathematical
models to be represented. It is not necessary to add or subtract forces in the dy-
namical model to measure their effects, which is interesting because those techniques
modify the trajectories of the spacecraft, so interfering in the results obtained. The
mappings can be made for each individual force, so it is possible to measure the
contribution of each force individually. Therefore, it is possible to use the results
to decide which forces should be included in the force model of a specific problem,
according to the accuracy level required by the mission. As mentioned above, these
indices identify the less perturbed orbits, which have a good potential to show less
oscillations in the orbital parameters. It means that they are good candidates to lo-
cate a spacecraft in missions that benefits from near Keplerian orbits. Those orbits
may also require less fuel for the station-keeping maneuvers. The results of the re-
search on the subject “Integral indices” shown in chapter 2 show that the exclusion
of non-Keplerian terms in the evaluation of an index lead to the assumption of ne-
glecting terms that may be of the same order of magnitude of the index itself when
used to compare it with the specif impulse. Thus, in chapter 3, several indices were
defined using non-Keplerian terms in their evaluations. The results of the chapter
show that some of them are still not useful, but the index defined in Eq. (3.83) gives
expected results, as can be checked using Figs. 3.15-3.17. The results of this index
are in agreement with the ones obtained using an index based in the displacement
of the perturbed orbit relative to the Keplerian one, given in Eq. (3.84). The final
contribution of this research is that this index can be useful when used to predict
the effects of the perturbation over an orbit without the need of the evaluation of
the complete system for long times.

The first research on the subject artificial equilibrium points is shown in chapter 4,
which clarifies the points in the Sun-Earth system where the parking is possible for
several different kinds of thrusts and quantified the required thrust. As an example,
in the case where the thrust is given in the x-z plane direction, the spacecraft can be
located in a stationary condition over a circle around the x axis, as can be noted in
Fig. 4.4, which radius is given by Eq. (4.74). In other situations, the directions of the
thrusts are represented as arrows and their norm as color scale in Figs. 4.14, 4.15,
4.16, 4.18, and 4.19. In the case where a solar sail is used, the ratio area to mass is
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represented in color scale as function of the position in Fig. 4.17 for the case of a
thrust given in the direction of the x-z plane, in Figs. 4.20 and 4.21 for the case of a
thrust given in the x-y plane direction, and in the bottom side of Fig. 4.7 for the case
of a thrust given in the direction of the ~r1 vector. The forbidden regions represent
locations where the parking is not possible for a solar sail due to the constraint of
the angle γ, which value must be in the interval (−π/2, π/2). The results of the
research of this chapter offer valuable informations for a mission designer in order to
take advantage of lower ratio are-to-mass or consumption of propellant. Note that
the forbidden zones expressed shown in the results are also important informations.

The second research on the subject artificial equilibrium points is written along
chapter 5, where a problem is proposed and solved in three different forms. Among
them, the communication solution 1 shown in subsection 5.3.1 offers the simpler
form to solve the problem, where a solar sail placed near L3 is sustained above
the Ecliptic about twice the radius of the Sun, by redirecting the solar rays. The
ratio area-to-mass required in this solution is about 16 m2/kg. The second kind of
solution requires a system of two spacecraft equipped with solar sails, one near L3

and the other near L1, both above the Ecliptic. The spacecraft near L1 works as a
bridge of information between the spacecraft located near L3 and the Earth. This
solution requires two spacecraft with lower ratio area-to-mass, about 12 m2/kg each.
The last kind of solution combines two spacecraft equipped with solar sails near L3,
one redirecting the solar rays to the other, helping each other to be sustained by
this redirection of the solar rays. Yet it requires technological challenges in order to
precisely point the rays towards its pair, this solution requires two solar sails with a
ratio area-to-mass only about 9 m2/kg. Finally, the last contribution in this stage of
the research is proposing this kind of solution to be applied to sustain a spacecraft
above the Ecliptic near the Earth, making permanently contact with its poles.

Analytical solutions to describe the spacecraft motion around artificial equilibrium
points are found in the research written in chapter 6. The linear analytical solution is
expensively obtained by linearizing the system of equations and solving it, while the
other two are obtained using a new proposed method, which is also created in this
research and valid for a general previously given form of the perturbation shown in
Eqs. (6.9)-(6.11). In the case where Eq. (6.4) is always true, the analytical solutions
obtained using the new proposed method are exact ones. On the other side, the
range of validity in time of the analytical solutions is investigated by making a com-
parison with numerical evaluations of the same system in the case where Eq. (6.4)
is valid only in the initial position of the motion. In their range of validity, such
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kind of analytical solutions can be used to lower time computation costs, analytical
evaluations of stations-keeping costs and trajectories, or they can be used to develop
a new method to maintain a spacecraft above one of the primaries with respect to
the ecliptic for long times.

The second research on the subject spacecraft motion around artificial equilibrium
points is written in chapter 7, where the method described in chapter 6 is used
to obtain analytical solutions for a spacecraft perturbed by a general moon after
some considerations. These analytical solutions are analyzed and their periodic and
secular terms are identified. The initial position is chosen such that the secular terms
are negligible, which is right above one of the primaries, including the presence
of a moon. Adjustments are applied to the spacecraft each determined period of
time with the goal of making the pseudo artificial equilibrium point valid again. A
numerical solution is obtained by integrating the complete equations of motion using
a numerical method. The results shown in section 7.3 present the solutions applied
to the Sun-Earth-Moon, Sun-Ida-Dactyl and Sun-Saturn-Titan systems, which are
shown in Figs. 7.5, 7.7, and 7.9, respectively. The results clearly show that the higher
is the frequency of the adjustments, the closer the numerical solution is with respect
to the analytical one, which in time is restricted to periodic terms. Therefore, the
spacecraft is kept near its initial position for long times, despite its linear stability.
This initial position can be used to place a satellite in permanent contact with
regions near the poles of one of the primaries and even the poles of its moon, in a
strategical point of view, as an option to the solution presented by Forward (1991)
or the Molniya orbits.

Some ideas for further researches crossing the subjects of this thesis are presented
next, as a final contribution. The effects of an additional perturbation over the
trajectory of a spacecraft motion around an artificial equilibrium point could be
identified using the integral index defined in Eq. (3.83). The range of validity for
analytical solutions of the kinds shown here could also be investigated using this type
of index. On the other hand, analytical solutions can be obtained for other extra
forms of the perturbation, which can be used to validate or to invalidate integral
indices, or even to other purposes.
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