
sid.inpe.br/mtc-m21c/2018/09.11.17.51-TDI

A REFERENCE ARCHITECTURE FOR SATELLITE
SYSTEMS OPERATIONS

Adair José Rohling

Doctorate Thesis of the Graduate
Course in Space Technology
and Engineering, guided by Drs.
Walter Abrahão dos Santos,
and Maurício Gonçalves Vieira
Ferreira, approved in October 10,
2018.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3RQJ3F2>

INPE
São José dos Campos

2018

http://urlib.net/xx/yy

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GBDIR)
Serviço de Informação e Documentação (SESID)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

COMMISSION OF BOARD OF PUBLISHING AND PRESERVATION
OF INPE INTELLECTUAL PRODUCTION (DE/DIR-544):
Chairperson:
Dr. Marley Cavalcante de Lima Moscati - Centro de Previsão de Tempo e Estudos
Climáticos (CGCPT)
Members:
Dra. Carina Barros Mello - Coordenação de Laboratórios Associados (COCTE)
Dr. Alisson Dal Lago - Coordenação-Geral de Ciências Espaciais e Atmosféricas
(CGCEA)
Dr. Evandro Albiach Branco - Centro de Ciência do Sistema Terrestre (COCST)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia e Tecnologia
Espacial (CGETE)
Dr. Hermann Johann Heinrich Kux - Coordenação-Geral de Observação da Terra
(CGOBT)
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação - (CPG)
Silvia Castro Marcelino - Serviço de Informação e Documentação (SESID)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Serviço de Informação e Documentação (SESID)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação
(SESID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SESID)
ELECTRONIC EDITING:
Marcelo de Castro Pazos - Serviço de Informação e Documentação (SESID)
Murilo Luiz Silva Gino - Serviço de Informação e Documentação (SESID)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m21c/2018/09.11.17.51-TDI

A REFERENCE ARCHITECTURE FOR SATELLITE
SYSTEMS OPERATIONS

Adair José Rohling

Doctorate Thesis of the Graduate
Course in Space Technology
and Engineering, guided by Drs.
Walter Abrahão dos Santos,
and Maurício Gonçalves Vieira
Ferreira, approved in October 10,
2018.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3RQJ3F2>

INPE
São José dos Campos

2018

http://urlib.net/xx/yy

Cataloging in Publication Data

Rohling, Adair José.
R636r A reference architecture for satellite systems

operations / Adair José Rohling. – São José dos Campos :
INPE, 2018.

xx + 122 p. ; (sid.inpe.br/mtc-m21c/2018/09.11.17.51-TDI)

Thesis (Doctorate in Space Technology and Engineering) –
Instituto Nacional de Pesquisas Espaciais, São José dos Campos,
2018.

Guiding : Drs. Walter Abrahão dos Santos, and Maurício
Gonçalves Vieira Ferreira.

1. Satellites control. 2. Reference architecture. 3. Software
component. I.Title.

CDU 629.783:004.4

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

ACKNOWLEDGEMENTS

(In Portuguese)

A Deus pela minha vida e saúde.

Agradeço especialmente minha família, minha mãe e meu pai pela vida e educação.
Também às minhas irmãs e especialmente minha esposa e filhas Ana Clara, Maria
e Dayana, que apesar das dificuldades sempre me fortaleceram.

Aos Drs. Mauricio Gonçalves Vieira Ferreira e Walter Abrahão dos Santos: obrigado
por todas as orientações, incentivos e pela confiança depositada. À professora Eliza
Yumi Nakagawa e ao amigo Valdemar Vicente Graciano Neto pelos ensinamentos
recebidos durante o período de doutorado sanduíche na USP.

Agradeço ao INPE, UTFPR e ao CNPq. E também a todas as pessoas que se fizeram
presentes e contribuíram na realização deste trabalho.

v

ABSTRACT

Software for Satellite Control Systems (SCS) domain performs a relevant role in
space systems, being responsible for ensuring the functioning of the satellites, from
the orbit launch to the end of their lifetime. Systems in this domain are complex and
are constantly evolving due to technological advancement of satellites, the significant
increase of controlled satellites, and the interoperability among space organizations.
However, in order to meet such complexity and such evolution, the architectures of
these systems have been usually designed in an isolated way by each organization,
hence may be prone to recurrent efforts and difficulties of interoperability. In parallel
to this scenario, reference architecture, a special type of software architecture that
aggregates knowledge of a specific domain, has performed an important role for
the success in development, standardization, and evolution of systems in several
domains. Nevertheless, the usage of reference architecture has not been explored in
the SCS domain. Thus, this thesis presents a Reference Architecture for Satellite
Operations Systems. Results achieved from using this reference architecture in the
development of a Microsatellite Control System for National Institute for Space
Research (INPE) showed a significant reduction of effort, benefits of interoperability,
scalability, and sharing of ground resources.

Keywords: Satellites Control. Reference Architecture. Software Component.

vii

UMA ARQUITETURA DE REFERÊNCIA PARA SISTEMAS DE
CONTROLE DE SATÉLITES

RESUMO

Software para o domínio de Sistemas de Controle de Satélites(SCS) desempenham
um papel relevante em sistemas espaciais, sendo responsável por assegurar o fun-
cionamento dos satélites, desde seu lançamento em órbita até o final de sua vida
útil. Sistemas deste domínio são complexos e permanecem em constante evolução
em conseqüência dos avanços tecnológicos dos satélites, do aumento significativo de
satélites controlados e da interoperabilidade entre as organizações espaciais. No en-
tanto, para atender essas complexidade e evoluções, as arquiteturas desses sistemas
geralmente são projetadas de forma isolada em cada organização, e assim podem
estar propensas a esforços recorrentes e dificuldades de interoperabilidade. Parale-
lamente a este cenário, arquitetura de referência, um tipo especial de arquitetura
de software que agrega conhecimento de um domínio específico, desempenha um
papel importante para o sucesso no desenvolvimento, padronização e evolução de
sistemas em vários domínios. No entanto, o uso de arquitetura de referência não
tem sido explorada em sua completude no domínio de SCS. Assim, o objetivo deste
trabalho é estabelecer uma Arquitetura de Referência para Sistemas de Controle de
Satélites. Resultados obtidos com o uso desta arquitetura de referência no desen-
volvimento de um Sistema de Controle de Microssatélites para o Instituto Nacional
de Pesquisas Espaciais (INPE) apresentou uma redução significativa de esforços,
benefícios de interoperabilidade, escalabilidade e compartilhamento de recursos em
solo. Como consequência, custos geralmente gastos no desenvolvimento e evolução
de SCS podem ser reduzidos.

Palavras-chave: Controle de Satélites. Arquitetura de Referência. Componentes de
Software.

ix

LIST OF FIGURES

Page

2.1 CubeSats by Mission Type . 10
2.2 Small satellites Launch History and Forecast (1-50 kg). 13
2.3 Small satellites trends by sector (1–50 kg). 14
2.4 Sequence of the Control Operations. 16
2.5 Illustration of data flow style . 19
2.6 The structure of a typical web-based application 19
2.7 Client-server structure . 20
2.8 Structure pattern of call and return architecture 21
2.9 Structure pattern of layered systems . 22
2.10 Summary of software architectural styles and sub-styles. 23
2.11 Diagram UML Version 2.5. 26
2.12 Archimate - Layers and Aspects . 27
2.13 Relationship between reference architecture and product line architecture. 29
2.14 Relationship between reference model, reference architecture, concrete

software architectures and software application. 30
2.15 Outline structure of ProSA-RA. 31
2.16 Groups and Elements of RAModel. 33
2.17 Component lifecycle . 34
2.18 Architectural Specialization . 36
2.19 CORBA Component Model . 37
2.20 Process Model of CBD . 39

3.1 High-level Decomposition of the EGS-CC. 43
3.2 Decomposition of the EGS-CC Kernel 44
3.3 Overview of technology suite - EGC-CC. 45
3.4 CCT Execution Architecture: Data Flow View. 46
3.5 CCT Planning Architecture: Data Flow View. 47
3.6 Hifly SOA Layer. 48
3.7 Hifly anywhere SOAP services logical model. 49
3.8 Overview of Hifly components and interfaces with GMV products. 50
3.9 SCOS-2000 client/server architecture. 51
3.10 GMSEC Layered Architecture. 54
3.11 Screen Shot of the GEDAT. 55
3.12 GEDAT - resource information (CPU, memory, network, disk utilization). 55
3.13 Architecture of the GENSO network. 57

xi

3.14 Genso layered architecture. 58
3.15 SatNet architecture overview. 59
3.16 SatNet integration. 62

4.1 Enterprise View of SCS-RA in organizational structures ECSS Standard. 73
4.2 Structural View of SCS-RA. 74
4.3 Data Flow View. 75
4.4 Logical View of SCS-RA. 76
4.5 Composition View of SCS-RA. 76

5.1 MicroSatCS Development Life Cycle. 86
5.2 Logic View of MicroSatCS. 87
5.3 Deployment View of MicroSatCS. 88
5.4 CubeSoft Taxonomy . 89
5.5 Instantiation of MicroSatCS. 91
5.6 MicroSatCS and Tracking of Satellite. 92
5.7 Computational Resources - Gateway Component 92
5.8 Monitoring Component - Tancredo-I picosat telemetry in the UbatubaSat

Project. 93

xii

LIST OF TABLES

Page

2.1 Classification of satellites by mass . 9
2.2 Small Satellites by Field of Knowledge 12
2.3 Small satellites - Brazil . 14
2.4 Component Models and Purpose . 35

3.1 CCT-Subsystems, Categories and Components 46

4.1 Contents of interest captured for the definition of SCS-RA 65
4.2 Mapping of the Features in Existing Systems 66
4.3 SCS-RA Requirements . 66
4.4 Category . 69
4.5 Requirements Mapping to the Architectural Design 77
4.6 Mapping of the SCS-RA components to the Existing Systems 80
4.7 Comparison between the elements of RAModel and SCS-RA. 81

xiii

LIST OF ABBREVIATIONS

ADL – Architectural Description Language
ATAM – Architecture Tradeoff Analysis Method
CAT – Criteria Action Table
CBD – Component Based Development
CCM – CORBA Component Model
CORBA – Common Object Request Bro-ker Architecture
CCSDS – Consultative Committee for Space Data Systems
CCT – Control Channel Toolkit
COTS – Commercial off-the-shelf
EGS-CC – European Ground Systems – Common Core
EJB – Enterprise Java Beans
ESOC – European Space Operations Center
FERA – Framework for Evaluation of Reference Architectures
GEDAT – GMSEC Environment Diagnostic Analysis Tool
GMSEC – The Goddard Mission Services Evolution Center
GRASP – GMSEC Remote Access Service Provider
GREAT – GMSEC Reusable Event Analysis Toolkit
GSFC – Goddard Space Flight Center
HTTPS – Hypertext Transfer Protocol Secure
MOM – Message Oriented Middleware
NRO – United States National Reconnais-sance Office
OSGi – Open Services Gateway Initiative
RAModel – Reference Architecture Model
RASIM – Reference Architecture for Space Information Management
RASDS – Reference Architecture for Space Data Systems
RPC – Remote Procedure Calls
SA – System Agent
SAAM – Software Architecture Analysis Method
SCS – Satellites Control System
SCOS 2000 – Satellite Control and Operation System 2000
SEI – Software Engineering Institute
SOA – Service Oriented Architecture
SOAP – Simple Object Access Protocol

xv

CONTENTS

Page

1 INTRODUCTION . 1
1.1 Problem Statement and Justification for the Research 2
1.2 Objectives . 4
1.3 Thesis Structure . 4

2 BACKGROUND . 7
2.1 Space System . 7
2.2 Satellites . 7
2.2.1 Historical Context . 8
2.2.2 Classification . 9
2.2.3 CubeSat . 9
2.2.4 Applications for Small Satellites . 11
2.2.5 Prospects for Small Satellites . 12
2.2.6 Small Satellites in Brazil . 13
2.3 Satellite Control . 13
2.3.1 Satellite Control Center . 15
2.3.1.1 INPE’s Satellites Control Center . 17
2.4 Software Architecture . 17
2.4.1 Architectural Style . 18
2.4.1.1 Data Flow Architectural Style . 19
2.4.1.2 Independent Component Architectural Style 20
2.4.1.3 Call and Return Architectural Style 21
2.4.1.4 Data-Center Architectural Style . 22
2.4.1.5 Virtual Machine Architectural Style 22
2.4.2 Architectural View . 22
2.4.3 Architectural Representation . 25
2.5 Reference Architecture . 27
2.5.1 ProSA-RA: A Process to Build Reference Architectures 31
2.5.1.1 Step RA-1: Information Source Investigation 31
2.5.1.2 Step RA-2: Architectural Analysis 32
2.5.1.3 Step RA-3: Architectural Synthesis 32
2.5.1.4 Step RA-4: Architectural Evaluation 32

xvii

2.6 Software Components . 32
2.6.1 Components Model . 34
2.6.1.1 Enterprise Java Beans (EJB) . 36
2.6.1.2 CORBA Component Model (CCM) 36
2.6.1.3 Open Services Gateway Initiative (OSGi) 37
2.7 Component-Based Development . 38
2.7.1 Component-Based Development Process 39

3 RELATED WORK . 41
3.1 Reference Architecture for Space Systems 41
3.2 Software Application for Satellites Control Systems 42
3.2.1 The European Ground Systems – Common Core (EGS-CC) 42
3.2.2 Control Channel Toolkit (CCT) . 44
3.2.3 Hifly . 47
3.2.4 Satellite Control and Operation System 2000 (SCOS-2000) 51
3.2.5 Goddard Mission Services Evolution Center (GMSEC) 52
3.2.6 Global Educational Network for Satellite Operations (Genso) 56
3.2.7 Satellite Network (SatNet) . 58
3.2.7.1 SatNet Architecture . 58
3.2.7.2 SatNet Services . 60
3.2.7.3 SatNet Integration . 61

4 ESTABLISHMENT OF A REFERENCE ARCHITECTURE
FOR SATELLITES CONTROL SYSTEM 63

4.1 Step RA-1: Information Source Investigation 63
4.2 Step RA-2: Architectural Analysis . 66
4.2.1 Architectural Requirements of SCS Domain 66
4.2.2 Components of SCS Domain . 68
4.2.2.1 Registry Component . 69
4.2.2.2 Mashup Component . 69
4.2.2.3 Discovery Component . 70
4.2.2.4 Composition Component . 70
4.2.2.5 Orbit Calculator Component . 70
4.2.2.6 Telemetry Component . 71
4.2.2.7 Maneuver Component . 71
4.2.2.8 Telecommand Component . 71
4.2.2.9 Schedule Component . 71
4.2.2.10 Spacecraft Component . 71

xviii

4.2.2.11 Ground Station Component . 72
4.2.2.12 Tracking Component . 72
4.2.2.13 Gateway Component . 72
4.3 Step RA-3: Architectural Synthesis . 72
4.3.1 Enterprise View . 72
4.3.2 Structural View . 73
4.3.3 Data Flow View . 74
4.3.4 Logical View . 74
4.3.5 Composition View . 75
4.4 Step RA-4: Architectural Evaluation . 77
4.4.1 Requirements Mapping to the Architectural Design 77
4.4.2 Validation of the SCS-RA by Mapping of the SCS-RA Components to

the Existing Systems . 80
4.4.3 Validation through the RAModel . 81
4.5 Final Remarks . 84

5 CASE STUDY - USING SCS-RA FOR DEVELOPMENT OF
MICROSATELLITES CONTROL SYSTEM 85

5.1 MicroSatCS Overview . 85
5.2 The MicroSatCS Development Process 85
5.3 Architectural Design Process . 87
5.4 Software Design & Implementation Process 88
5.5 Software Operation Process . 91
5.6 Final Remarks . 93

6 CONCLUSIONS AND FUTURE WORKS 95
6.1 Discussion . 95
6.2 Final Remarks . 95
6.3 List of Publications Attained . 96

REFERENCES . 101

xix

1 INTRODUCTION

Satellites currently comprise an essential technology with high impact to society.
They support and offer important services, such as telecommunication, global posi-
tioning system (GPS), weather forecast, earth and space observation, meteorology,
resource monitoring, military observation, and many others. INPE, as one of the
main Brazilian organization for space technology, has concentrated its efforts to
promote studies and scientific research for the technological and space environment,
since its creation in 1961. There are numerous projects being developed and exe-
cuted in the space area, including satellites SCD1, SCD2, SACI1, SACI2, SATEC,
CBERS-1, CBERS-2, CBERS-2B, CBERS-3, CBERS-4 e CBERS-4A, Amazonia-
1 and EQUARS. INPE has a Satellite Control Center (SCC) responsible for the
planning and execution of satellite control operations. The SCC has developed soft-
ware solutions for Satellites Control Systems (SCS)1 since 1980s is always proposing
advances and technological innovations to contribute in this domain.

In order to keep them properly functioning, satellites are controlled during their
whole lifetime by SCS. These systems control satellites in orbit by performing op-
erations developed on the ground. Software solutions for SCS are complex and have
several functions, among which we can highlight: (i) sending telecommands; (ii)
telemetry reception; (iii) mission data reception; (iv) satellites tracking; (v) at-
titude control; (vi) maneuver calculation; (vii) orbit propagation and determina-
tion; and (viii) flight plans generation. In addition to their various functionalities,
such solutions must have scalability to meet the significant increase in the number
of controlled satellites. According to United Nations Office for Outer Space Af-
fairs (UNOOSA) (UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS (UNOOSA),
2017), 7,853 objects were launched into outer space, excluding space debris and non-
functional objects. As reported to Union of Concerned Scientists (UCS) (UNION OF

CONCERNED SCIENTISTS (UCS), 2017), there were 1,459 operational satellites by
the end of 2016. The Nano / Microsatellite market forecast (SPACEWORKS ENTER-

PRISES, 2017) shows a 70% increase in the number of launches of small satellites
(up to 50 kg) from 2017 to 2023. In Brazil, for example, there is also a significant
increase in the number of projects and initiatives for the development and launch of
small satellites, such as NANOSATC-BR1, NANOSATC-BR2, AESP, CONASAT,
ITASAT, EQUARS, UbatubaSat, SERPENS and FLORIPA-SAT.

Space organizations have several ground-based infrastructure resources to control

1For sake of simplicity, henceforth, we use this acronym to express both singular and plural.

1

satellites. Examples of these resources are antennas, rotors, modems, radio, Termi-
nal Node Controller (TNC), computers, softwares, and data links. Most of them
are only used during the satellites passages over their ground stations. The shar-
ing of these resources among space organizations increases the number of accesses
to the satellites, provides greater capacity to control and track them, and signifi-
cantly reduces entire cost of a space mission (WERTZ; LARSON, 1999). The sharing
of ground resources is addressed by the Consultative Committee for Space Data Sys-
tems (CCSDS) through the standardization of Cross Support Services(CSS) (THE

CONSULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS, 2006). The cross support
occurs when one organization provides part of its resources to service the space data
transfer requirements of another organization (THE CONSULTATIVE COMMITTEE

FOR SPACE DATA SYSTEMS, 2005). On the ground segment, CSS are defined through
Space Link Extension (SLE) services. In recent years, European Space Agency (ESA)
has adopted the CCSDS Recommendations for SLE transfer services as a standard
interface for network ESTRACK (ARZA; DREIHAHN, 2012). The NASA/JPL also
adopted the CCSDS Recommendations SLE for using in Deep Space Network(DSN)
(NASA, 2014; NASA, 2015). The sharing of resources in ground is fundamental and
has several advantages, so that when we develop softwares for SCS, they can meet in-
teroperability requirements among space organizations to make possible the sharing
of ground resources.

In short, Software systems for SCS are complex and remain in constant evolution to
cope with: (i) the diversity and complexity of space missions (as a consequence of the
advances in electronics and the increase of computational power, which enable satel-
lites to perform diverse and extremely complex tasks in the space) (DVORAK, 2009;
SHAMES; YAMADA, 2003); (ii) the significant increase in the number of controlled
satellites, mainly small ones (SORENSEN et al., 2012; SPACEWORKS ENTERPRISES,
2017); and (iii) the interoperability and sharing of ground resources among space
organizations (SORENSEN et al., 2012; SHAMES; YAMADA, 2003; THE CONSULTATIVE

COMMITTEE FOR SPACE DATA SYSTEMS, 2005; THE CONSULTATIVE COMMITTEE

FOR SPACE DATA SYSTEMS, 2006; SHAMES; YAMADA, 2004).

1.1 Problem Statement and Justification for the Research

Several software applications have been developed, both in academia and in the in-
dustry, to meet the evolution and complex scenario of SCS. However, during devel-
opment and upgrades of such applications, each organization designs their software
architecture in an isolated way and without an architectural model, causing signif-

2

icant and recurrent rework efforts. These software architectures may also further
require adaptations during the process of interoperability among organizations that
adopt different SCS (CHAMOUN et al., 2006; SULLIVAN et al., 2009). Besides that,
new adaptations may be necessary when performing new interoperability processes,
interfering directly or indirectly with the existing ones. In Shames and Yamada
(2003), Shames and Yamada (2004), THE CONSULTATIVE COMMITTEE FOR
SPACE DATA SYSTEMS (2013), it is stated that elements of a given SCS cannot
be easily used by others and it is also sometimes difficult even to describe the prob-
lems associated with interoperability among SCS. In this sense, there are several
factors which should be considered when developing interoperable SCS solutions,
e.g., high security, availability, dependability, heterogeneity, and low cost (SMITH et

al., 2008). However, the lack of any type of architectural model or standard services
has led to non-interoperable systems (THE CONSULTATIVE COMMITTEE FOR SPACE

DATA SYSTEMS, 2013). As SCS becomes more complex, having architectural models
that can be used as a guideline to develop SCS architectures seem to be a suitable
solution.

In this context, Reference Architectures(RA)2 arise, encompassing the knowledge
about how to design concrete architectures of systems by (i) capturing the essence
of software architectures of a particular application domain (OUSSALAH, 2014;
MARTÍNEZ-FERNÁNDEZ, 2013), (ii) serving as standardization and evolution of soft-
ware systems of a given domain (NAKAGAWA et al., 2011); (iii) avoiding the rein-
vention or revalidation of solutions to problems already solved (CLOUTIER et al.,
2010); and (iv) reducing costs of maintenance and development of software appli-
cations (JONES, 1986; TRACZ, 1988; WENTZEL, 1994). Due to their advantages,
RA has been proposed and also successfully used in several domains, including in
the industry (MARTÍNEZ-FERNÁNDEZ et al., 2015; CLEMENT et al., 2017; FERRO et al.,
2015; KLEIN et al., 2016; PANUNZIO, 2011; NAKAGAWA et al., 2011; GUESSI et al., 2015;
WEYRICH; EBERT, 2016; FILHO; BARBOSA, 2015; SHETH et al., 2010). Some important
initiatives have encouraged the creation of RA in space systems (SHAMES; YAMADA,
2003; THE CONSULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS, 2013; THE CON-

SULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS, 2008; PANUNZIO; VARDANEGA,
2013; DURO et al., 2005). Nevertheless, the use of RA has not been explored in the
development of systems for the SCS domain.

2For sake of simplicity, this acronym will be used interchangeably to express singular and plural
forms.

3

1.2 Objectives

According to the research gap characterized in the previous section, the general re-
search question to be investigated in this thesis is whether or not the systematization
of the reference architecture can positively impact on the quality of SCS software
architectures.

Motivated by this scenario, the main goal of this work is to establish a Reference
Architecture for Satellite Systems Operations. This reference architecture will be de-
fined in the sequence as Reference Architecture for Satellite Control Systems (SCS-
RA). SCS-RA has the following goals: (i) supporting the development and evolution
of SCS; (ii) contributing to improve interoperability, structuring and maintaining
SCS; and (iii) contributing to improve reuse of software components when devel-
oped based on SCS-RA. In order to establish SCS-RA, ProSA-RA (NAKAGAWA

et al., 2014) was used as a systematized process to design, represent, and evaluate
RA. The validation of SCS-RA was carried out during the development of a Mi-
crosatellites Control System (MicroSatCS). Results achieved through the adoption
of SCS-RA brought evidence of its feasibility and other advantages of its applica-
bility. An additional contribution of this research is the definition of a Software
Component Model for Satellite Control Domain (CubeSoft).

1.3 Thesis Structure

This thesis report is comprised of 6 chapters structured as described hereafter.

An overview of the background information that supports the topics investigated in
this thesis are explored in Chapter 2. Initially, key concepts related to Space System
and Satellite Control are discussed. After that, theory associated with Software
Architecture, Software Components, and Reference Architecture are addressed.

Chapter 3 comprises the related works and introduces some important initiatives
which encourage the creation of RA in space systems. It explores some software
application for Satellites Control Systems and their architectures. The European
Ground Systems – Common Core (EGS-CC), Control Channel Toolkit (CCT), Hifly
system, Satellite Control and Operation System 2000 (SCOS-2000), Goddard Mis-
sion Services Evolution Center (GMSEC), Global Educational Network for Satellite
Operations (Genso), and Satellite Network (SatNet) are parts of this study.

Chapter 4 describes the establishment of Reference Architecture for SCS (SCS-RA).
We adopted the systematic process ProSA-RA to establish the SCS-RA. The estab-

4

lishment of SCS-RA involved the steps of ProSA-RA: Information Source Investiga-
tion, Architectural Analysis, Architectural Synthesis, and Architectural Evaluation.
The evaluation of SCS-RA was accomplished through the requirements mapping
to the architectural design, mapping of the SCS-RA components to the existing
systems, and through the use RAModel. This chapter too shows final remarks.

Chapter 5 shows a case study of the use of SCS-RA in the development of a Mi-
croSatellites Control System (MicroSatCS). The development of MicroSatCS con-
tributed to observe benefits of adopting SCS-RA and to supply evidence on its
viability.

Finally, chapter 6 presents the conclusions of this study, revisiting the achieved
contributions, summarizing limitations, and brings the final remarks and future
work perspectives. The list of publications attained from this work is presented.

5

2 BACKGROUND

This chapter provides an overview of the subjects that underlie the research de-
veloped in this thesis. The organization of the chapter is as follows. Section 2.1
introduces the Space System. Section 2.2 presents key concepts about satellites.
Section 2.3 shows an overview of Satellite Control. Sections 2.4, 2.5, and 2.6 char-
acterizes the state-of-the-art of Software Architecture. Reference Architecture, and
Software Components, respectively.

2.1 Space System

A space system is composed of all necessary elements for the development of a
product which, at any given moment of its life cycle, should be in contact with the
space environment, whether it orbits the earth as any other celestial body, any other
celestial body or as it travels through space. Satellites, rockets and probes are the
most visible of these products, projected in a space system.

The space system is better understood in its development through the constitution
of physical structural divisions based on peculiar functions. These divisions are de-
nominated segments, according to (PISACANE, 2005). A segment is a set of elements
which is grouped to form a larger component or main function within a system. The
main sections of a space system are:

a) Space segment: this is the part placed into orbit, denominated as satellites,
probes, space stations;

b) Launch segment: it is the part used to place the space section into orbit,
denominated rockets, spaceships, etc. ;

c) Ground segment: it is the part charged with supervision of the satellite
functioning. It allows controlling the satellite during its life cycle, data
control and reception. It is constituted mainly by ground stations, data
communication networks and the Satellite Control Center (SCC).

From now on, we will present details on satellites, which constitute the main element
of the space segment.

2.2 Satellites

The artificial satellite is a vehicle developed by man and placed in an orbit with
the aim of scientific investigation. Satellites are conceptually divided in two parts:

7

payload and the platform. The payload is constituted of specialized instruments des-
tined to accomplish the mission proposed for the flight. This way, a remote sensing
satellite’s payload is typically a camera or a set of cameras. The platform is con-
stituted by the necessary parts to support the launching and to serve the payload’s
operations.

Each satellite performs functions in a space mission, which may be telecommunica-
tions, remote sensing, data collection and scientific and technological testing (EURO-

PEAN COOPERATION FOR SPACE STANDARDIZATION (ECSS), 2000; WERTZ; LARSON,
1999).

Satellites are equipped with devices to send and receive data. To keep adequate
functioning, satellites are controlled by ground stations, which send instructions and
receive data from the mission and telemetry data from the satellite. This way, the
ground stations perform a fundamental role in the communication with the orbiting
satellites.

Today, we may verify a constant reduction in the size of satellites concurrently
with an increase in the operational capability. The electronic miniaturization and
the increase in computational power resulted, resulted in an enormous increase in
number and importance of small satellites in the last years.

The new generations of small satellites are creating significant opportunities for
research and industry. Some missions which were performed by large-sized satellites
before, now may be performed by small satellites (COUNCIL, 1994).

In the small satellites there is an important characteristic: the standardization of
variables such as mass, form and dimensions. Because of that, the time for devel-
opment and the construction costs may be significantly reduced (PUIG-SUARI et al.,
2001).

2.2.1 Historical Context

The origin of satellites goes back to the development of small satellites, since 1957,
when the former USSR launched the first satellite to space, the Sputnik I, weighting
83.6kg. Other small satellites also inhabited space, as did the Explorer and the
Vanguard, launched by the USA, weighting 8.3kg and 1.47kg, respectively. During
that time, the limited capability of launchers set the restrictions for the mass and the
dimensions of the satellites. The Sputnik, the Explorer and the Vanguard programs
had a high success level and opened the doors to the space race. They were also

8

the forerunners for technologies as space thermal control, telemetry transmission
and reception in orbit, and solar power and transistors, which contributed to the
reduction in the size of satellites (HELVAJIAN; JANSON, 2008).

2.2.2 Classification

There are many different ways to classify satellites. The main classification systems
are performed through characteristics as type of orbit, cost and mass (DUBOS et al.,
2010; FORTESCUE et al., 2003; BOLEA-ALAMANAC, 2001; SHIROMA et al., 2011)). The
most popular way to classify small satellites is the categorization by mass. Table 2.1
shows the classification of satellites by mass.

Table 2.1 - Classification of satellites by mass

Category Class Mass range (kg)
Standard
Satellites

Large >1000
Medium 500-1,000

Small
Satellites

Mini 100-500
Micro 10-100
Nano 1.0-10
Pico 0.1-1.0
Femto <0.1

SOURCE: Fortescue et al. (2003)

In this class, we can find different values, as in the report by the Ames Research
Center in (NASA, 2015), where the small satellites with the mini-satellites category
are limited to 180kg.

2.2.3 CubeSat

In 1999, the professors Jordi Puig-Suari, from California Polytechnic State
(CalPoly), and Robert Twiggs, from Stanford University’s Space Systems Devel-
opment Laboratory (SSDL), made the document available ‘Cubesat Design Specifi-
cation’ to standardize projects on the CubeSat standard. The document defines the
requirements, physical, mechanical and electric specifications to standardize satel-
lites to the CubeSat standard (CALPOLY, 2014). The CubeSat standard main char-
acteristics are: its structure, 10cm in the shape of a cube; its mass, limited to 1.3kg.
As a result of these efforts, smallsats can now be developed with relatively mod-
est resources: a small team of developers, off-the-shelf components (COTS), and a

9

budget that is feasible and affordable for smaller organizations.

The main goal aimed by the professors by creating the CubeSat standard was to
make possible for students to design, build, test and operate a satellite with sim-
ilar capabilities as the first satellites developed (CHIN et al., 2008a; PUIG-SUARI et

al., 2001). The CubeSat standard is present in more than 100 private and public
universities and space agencies (CALPOLY, 2014). The figure 2.1 demonstrates the
CubeSat’s participation in university missions as well as other mission types.

Figure 2.1 - CubeSats by Mission Type

SOURCE: Swartwout (2017)

With CubeSat recent popularization, the interest in commercial applications was
been considerably expanded, especially as a consequence of the maturity of existing
university technologies and projects. The CubeSat standard is helping to accelerate
the development of technologies and is also making the commercial application of
the platform more attractive (LOWE; MACDONALD, 2014).

The CubeSat standard success is attributed to its standardized interface in the inte-
gration of the launching vehicle, which resulted in lower launching costs, of around
many tens of thousands of Euro and an accelerated schedule in the preparation for
launching (SCHOLZ; JUANG, 2015).

CubeSat launchings have been done as secondary payload in different launching vehi-

10

cles (CHIN et al., 2008b). Shared launching between payloads is increasingly common,
being good for all parties involved. The costs for producing and launching a CubeSat
amount to approximately 65 to 80 thousand dollars (DAVID, 2004), and the approx-
imate cost for launching averages 20 thousand dollars by kilogram (SUTHERLAND,
2012; LOWE; MACDONALD, 2014).

2.2.4 Applications for Small Satellites

The micro-electronics technologies give small satellites the possibility to provide
services in the main areas of the space section. Areas such as telecommunications,
geosciences, space science and teaching have small satellites as a resource to reach
the mission goals in the space section.

In the telecommunications area, there are some examples as the Brazilian satellites,
SCD1 and SCD2, which provide transmission services for environmental data. There
are also the American Teledesic satellites used for transmission of broadband Internet
and the Globalstar satellite used to provide with telephone service to remote areas.

In the geosciences area, the small satellites have many applications, as in earth,
atmosphere and ocean surveillance services. Miniaturization of technologies as elec-
tronic cameras, optical telescopes and sensors were the main factors to contribute
to this progress.

The small satellites have also been used in space science, accomplishing useful func-
tions especially in the areas of astronomy and astrophysics, such as the observation
of the celestial electromagnetic spectrum. In the educational area, the small satel-
lite enabled the students to practice the development of space systems (HEIDT et al.,
2000; BOLEA-ALAMANAC, 2001; THYAGARAJAN et al., 2005). Among the small satel-
lites with mass lower than 10kg and built until 2010, around 52% had educational
purposes (BOUWMEESTER; GUO, 2010). Table 2.2 presents some of the principal
projects for small satellites classified by field of knowledge.

There are other uses for small satellites, as in the use of experimental technology in
the space environment, due to the cost and to the fast development of components. In
military activity, the small satellites can contribute to defense systems and also in the
demonstration of technology, signals intelligence, communication and observations.

11

Table 2.2 - Small Satellites by Field of Knowledge

Field of Knowledge Satellites (Country)
Telecommunications SCD1 and 2 (Brazil); UoSat (United Kingdom); Health-

sat2, FAISAT, TUBSAT, ORBCOMM, Globalstar,
Teledesic (United States).

Geosciences IMAGE, OrbView-2,4, GRACE (United States); Or-
ted (Denmark); SMOS (France); FASat-bravo (Chile);
TMSat (Thailand); KITSAT-3 (South Korea); Tsinghua
(United Kingdom).

Space Science Hiten, Lunar-A, Yohkoh, Asuka (Japan); Clemen-
tine, Mars Pathfinder, Lunar Prospector, Europa Or-
biter, Deep Space1, Stardust, SWAS, TRACE, WIRE,
GALEX, STEREO (United States); ABRIXAS, DIVA
(Germany); SARA (France).

Educational UoSAT (United Kingdom); SURFSAT-1, SQUIRT,
CanSat, 3SAT (United States); BLUEsat (Australia),
SUNSAT (South Africa).

SOURCE: Adapted from Bolea-Alamanac (2001).

2.2.5 Prospects for Small Satellites

The proliferation of technology has been producing a world filled with scientific
possibilities and challenges. The advancement of technology has potential to consid-
erably increase the capacity of small satellites to accomplish significant missions on
a low cost (COUNCIL, 1994). The decrease in cost and the better performance has
begun an extensive succession of space missions. According to (HEIDT et al., 2000),
the “smaller, cheaper, faster, better” philosophy has gained momentum in projects
of satellites.

The substantial increase in the number of small satellites was mainly due to projects
developed in universities for educational purposes. Space agencies, such as NASA
and ESA also began to use small satellites as platform for new technologies, due to
its low cost and short development time and especially due to the success in launches
and in the operation of the first missions using this concept.

The 2017 market research for these satellites shows an important increase in the
number of future projects for small satellites. Figure 2.2 presents the projection for
the increase in the number of satellites up to 2023. Another significant advance is
the increase in the number of small satellites for the commercial sector. Figure 2.3

12

shows a growth trend by sector in satellites up to 50kg.

Figure 2.2 - Small satellites Launch History and Forecast (1-50 kg).

SOURCE: SPACEWORKS ENTERPRISES (2017)

2.2.6 Small Satellites in Brazil

In Brazil, the first satellite to be designed, built and operated by INPE, the SCD-1,
was launched in 1993, which weighed a total mass of 115Kg. Other projects for small
satellites developed or still being developed are presented in Table 2.3.

2.3 Satellite Control

Orbiting satellites controlling is associated with these operating activities: attitude
control, orbit control, service platform and payload control. Attitude control for
satellites refers to the techniques employed to maintain, an acceptable range of val-
ues and the direction in which the satellite is pointed to in space. Attitude control
in a satellite is made autonomously and independently by an electronic (usually
based in microcomputers) on board the satellite. The service platform, payload and
orbit control are made by operations on the ground. The ground segment refers to
all ground systems to support preparation and the performance of the activities of
the mission remote operation (EUROPEAN COOPERATION FOR SPACE STANDARD-

IZATION (ECSS), 2000).

13

Figure 2.3 - Small satellites trends by sector (1–50 kg).

SOURCE: SPACEWORKS ENTERPRISES (2017)

Table 2.3 - Small satellites - Brazil

Satellite Institution Launching Year
SCD-1 INPE 1993
SCD-2 INPE 2007
SCD-2-A INPE 2008
SCD-1 INPE 1993
NANOSATC-BR1 INPE/UFSM 2014
NANOSATC-BR1 INPE/UFSM 2016
AESP INPE/ITA 2015
CONASAT INPE/UFRN 2016
SERPENS UnB 2015
Tancredo-I Municipal School Tan-

credo Neves/INPE
2017

ITASat-1 ITA/INPE 2018

SOURCE: Author

The ground segment control contains all the equipment, services and programs
needed to perform the control of the satellite during its life cycle in space and
also the planning and the execution of the mission. In ground segment, the control

14

of the satellite is performed by ground stations and the Satellite Control Center
(SCC).

The communication between the satellite and the ground segment is done when
there is visibility of the satellite in its pass. The communication happens by sending
packages of remote control and by the reception of telemetry packages from the
platform and the payload. A telemetry package from the platform contains informa-
tion on the status, temperature, electric tension levels, location, subsystems status,
operations modes and current functioning parameters of the satellite. The telemetry
package from the payload contains specific information of the space mission, such
as imaging raw data and values read by testing sensors.

All the communication from the ground to the orbiting satellites is done by ground
stations, which constitute the direct interface with the space section. A ground
station is constituted mainly by UHF and VHF antennas, S band, microwave equip-
ment, receivers, transmitters, digital equipment, communication equipment and
computers. The main goal of the ground station is the establishment of communica-
tion between the ground control system and the satellites controlled by it, during the
period when these satellites overfly their antennas’ visibility range (GALSKI, 2012;
ROZENFELD et al., 2002).

A ground station, through its antennas, must follow the satellite during its pass
over the station. It must also receive, demodulate and record the telemetry data
from the satellite (from the platform and the payload) and forward it to the SCC.
It must radiate the remote control received from the SCC to the satellites in the
scheduled time, measure speed and location (the distance between the satellite to
the station and the azimuth and elevation angles from the satellite relative to the
station) (EUROPEAN COOPERATION FOR SPACE STANDARDIZATION (ECSS), 2000),
forward these measurements to the SCC, so they can be processed to determine the
orbital control of the satellite.

2.3.1 Satellite Control Center

According to Ferreira (2001), the SCC is the brain of all of the ground system. Its
main function is to secure the normal working of the satellite since it is being placed
in orbit until the end of its life cycle. Therefore, the SCC takes the vital role in
the tracking and control of the satellites, having as main associated activities load
control (platform and payload), attitude control and orbit control of the satellites.

15

The main satellite control operations are constituted by flight dynamics, operations
planning and procedures execution. These operations are executed periodically and
independently for each satellite. Figure 2.4 presents the relationship between these
operations.

Figure 2.4 - Sequence of the Control Operations.

SOURCE: Tominaga (2010)

The flight dynamics is responsible for the definition and radiation of the orbital
positioning and the attitude pointing information, using tracking and calibration
measures. Operations’ planning schedules the tasks to be done allowing the per-
forming of the mission operations of each satellite. The procedures execution has
the goal of performing the scheduled tasks in the operations planning (TOMINAGA,
2010). Control activities of satellites are scheduled as emergency activities. They are
specific for each satellite and are changed according to the operation mode of the
satellite.

The Satellites Control Center must have a minimum infrastructure to allow its func-
tioning; having real-time software to track the equipment in the satellite; receiving
data and radiating remote control. It must also have real-time software to track all
the ground segment equipment and satellite simulators to diagnose possible prob-
lems and to validate the procedures.

Software systems for the SCC are complex and must execute various functions. Some
of its main functions are: (i) to receive, to process and to store telemetry; (ii) to
calculate maneuvers; (iii) to generate, to validate and to forward the remote control
to the stations; (iv) to configure the operation of the payload; (v) to determine and
to radiate the orbits and the attitude of the satellites; (vi) to receive and to process
the measures of distance, speed and the angles; (vii) to receive and to track the

16

ground segment status; (viii) to store, to retrieve and to present historical data; (ix)
to prepare and to perform maneuvers with the satellites; (x) to generate the passing
projections for satellites over the stations; and (xi) to generate flight plans for the
controlled satellites. The CCS also performs preparation stages to control and to
support launches, involving adaptation of the ground infrastructure (ROZENFELD et

al., 2002).

2.3.1.1 INPE’s Satellites Control Center

The system of Satellite Tracking and Control Center (CRC), of the INPE located
in São José dos Campos (SP) is constituted by the CCS; remote ground stations
located in Cuiabá (MT) and Alcântara (MA). The CRC also have data and voice
communication networks linking these places, which operates 24 hours per day, 365
days per year (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS, 2017). Through this
network, satellite signals are received and sent to the CCS, where telemetry messages
contained by the signal are decoded, seen in real-time and stored in digital format.
On the opposite side, the remote control generated by the CCS is transmitted to
the station which, in its turn, transmits it to the satellite. To control its activities,
the CCS has the software SATellite Control System (SATCS), which was developed
especially to control satellites developed by the INPE.

2.4 Software Architecture

The concept of software architecture is presented in the literature through vari-
ous definitions. These definitions usually include words like structure, connections,
elements and components. The following are some of these definitions.

Software architecture can be defined as a structure, or set of system structures, which
includes software elements; externally visible properties of these elements; and the
relationships between them (BRITO et al., 2007). In Bass et al. (2003), software ar-
chitecture is defined as a high-level structure of the system in terms of architectural
elements, abstracting details from its implementation. In Garlan (2000), the ar-
chitecture is: the structure of components of a system; the relationships between
these components, the principles and guidelines that govern the projects; and the
evolution of the software. The ISO/IEC 42010 (INSTITUTO FOR ELECTRICAL AND

ELECTRONICS ENGINEERS, 2007), defines architecture as the fundamental organi-
zation of a system, represented by its components, relationships, and the principles
that drive its design and evolution. On the website of the Software Engineering In-
stitute (SEI), there is a list of definitions with definitions accepted by the software

17

community for the definition of the software architecture term1.

Software architecture becomes very important in the development process, contribut-
ing as a communication guide among project stakeholders, manifesting design de-
cisions in advance, and facilitating the transfer of knowledge from the system. In
the process of developing architecture, elements are organized to represent a system.
When the architecture is defined for a given application, this architecture is termed
as an architectural instance.

The development of a software architecture is the activity that determines the qual-
ity and maintainability of the software (WASSERMAN, 1996). During development,
its components have the function of processing and storing the data for a certain
functionality of the system (PERRY; WOLF, 1992). In addition to the components,
another element of the architecture is the connector, which is responsible for the
communication between the architectural components. A set of architectural com-
ponents connected by architectural connectors define an architectural configuration
(KRUGER; MATHEW, 2004).

2.4.1 Architectural Style

In the development of a software architecture, some structural patterns are used,
which determine how the elements will relate. The type of communication and the
data inputs and outputs for each element in the architecture are also defined. Thus,
this process of establishing the type of structures, communication and interfaces to
be applied in software architecture, defines its architectural style. Architectural style
can also constrain the kind of design elements and the formal relationships among
them.

An architectural style defines a family of systems in terms of a pattern of struc-
tural organizations. It is an abstraction for a set of architectures that have a set
of common architectural features. According to Zhu (2005), a architectural style is
determined by the following types of features: a set of components; a set of con-
nectors; a topological structure; and a set of semantic constraints. In Monroe et
al. (1997), architectural styles have important properties, such as a vocabulary of
high-level design elements; design rules for component compositions; and semantic
interpretation. In order to present recurring solutions for the design of architectures,
some styles were proposed, in the software engineering community. In the following,
there is described some of the major architectural styles. The classification of the

1https://www.sei.cmu.edu/architecture/start/glossary/community.cfm

18

styles presented is based in (ZHU, 2005), a more complete set of architectural styles
can be obtained in (GARLAN et al., 2010; SHAW; GARLAN, 1996).

2.4.1.1 Data Flow Architectural Style

This style is widely used in various application domains where data processing plays
a significant role. It is characterized by viewing the system as a series of transforma-
tions on successive pieces of input data. The structure of the design is dominated by
orderly motion of data from component to component. A data flow system can be
viewed as a directed graph, where nodes are processing elements and arcs are data
flows between the elements (ZHU, 2005). Figure 2.5 illustrates the data flow style.
Web-based applications can be regarded as in the data flow architectural style. For
example, a typical e-business system depicted in the following Figure 2.6.

Figure 2.5 - Illustration of data flow style

SOURCE: Zhu (2005)

Figure 2.6 - The structure of a typical web-based application

SOURCE: Zhu (2005)

19

A way of understanding what can be different for systems in a style is to recognize
its sub-styles. There are two main sub-types of data flow style, sequential processing
and pipe-and-filter.

2.4.1.2 Independent Component Architectural Style

This architectural style consists of a number of independent components that com-
municate asynchronously via messages. The message may be passed to named partic-
ipants or passed among unnamed participants in case of using the publish/subscribe
paradigm. The components send data to each other, but typically do not directly
control each other. This style has attracted increasing interest recently for its strong
support to software reuse and evolution due to the ease it provides for the integration
of components into a system (ZHU, 2005).

The independent component style does not present a general pattern of system topo-
logical structure. A typical example of independent component architecture is the
client-server architecture, which consists of a number of clients and one or more
servers, as shown in Figure 2.7. This style has the following sub-types of style: com-
municating processes; event-based implicit invocation; and multi-agent systems. In
addition to these sub-types, there is also C2 sub-style, which is designed to sup-
port the particular needs of applications that have a graphical user interface aspect.
However, this sub-style clearly has the potential for supporting other types of ap-
plications (TAYLOR et al., 1996).

Figure 2.7 - Client-server structure

SOURCE: Zhu (2005)

20

2.4.1.3 Call and Return Architectural Style

In software development, it is necessary to partition the system into cohesive and
weakly coupled subsystems (LARMAN, 2005). Subsystems are usually identified by
the services they offer, defined through the operations of their interfaces. A software
system in call and return style is essentially decomposed into smaller pieces to deal
with complexity and to help achieve modifiability.

Call and return style are directly supported by almost all high-level programming
languages with the procedure/function facility, also called subroutine. Figure 2.8
illustrates a structural pattern of a system in the call and return style. It can have
any topological structure that links subroutines by subroutine calls.

Figure 2.8 - Structure pattern of call and return architecture

SOURCE: Zhu (2005)

There are two main sub-types of call return style: one is layered systems, the other is
data abstraction including abstract data types and its advanced form object-oriented
systems. The main characteristic of the layered sub-style is its way of organizing
subroutines into a simple topological structure. Figure 2.9 shows a layered system.
The subroutines are organized into a number of groups, which are called layers. Each
layer contains a collection of subroutines that provide services at a certain abstract
level to the layer or layers above it. Layers are widely used for building web systems,
which consists of using three layers: (i) one responsible for the interaction between
the system and the user; (ii) another responsible for implementing the business rules;
and (iii) a third which handles the storage of data. Software architectures organized

21

according to this division are known as three-tier architectures.

Figure 2.9 - Structure pattern of layered systems

SOURCE: Zhu (2005)

2.4.1.4 Data-Center Architectural Style

The data-center architectural style refers to systems in which the access and update
of a widely accessed data-store. This style has two sub-types: repository and black-
board. The repository style is a system that allows several interfacing components
to share the same data. The blackboard style sends notification to subscribers when
data of interest changes and components are communicated exclusively through the
repository.

2.4.1.5 Virtual Machine Architectural Style

The virtual machine architectural style simulates a computer system, but with some
functionality that is not native to the hardware and/or software on which it is
implemented (ZHU, 2005). This style has two sub-types: interpreters and rule-based
systems.

The interrelationships between styles and sub-styles are shown and summarized in
Figure 2.10.

2.4.2 Architectural View

Structural aspects always receive greater prominence in the architecture definitions,
but other aspects must be considered for a better understanding of the architecture.

22

Figure 2.10 - Summary of software architectural styles and sub-styles.

SOURCE: Zhu (2005)

In Garlan et al. (2010), for the complete understanding of the architecture of a soft-
ware, it is necessary to consider not only the structural perspective, but also aspects
such as physical distribution, communication process, and synchronization. Thus,
the software architecture must be seen and described under different views that
must define its components, relationships, interactions, properties, characteristics,
and constraints.

A architectural view is the representation of a coherent set of architectural elements,
duly written and read by system stakeholders. It consists of a representation of
a set of elements and the relations among them. One of the models proposed in
the literature to organize the different architectural view is the model proposed by
(KRUCHTEN, 1995), known as the “4+1 View Model of Architecture”. In this model
the software architecture is defined in the five competing views, which are detailed
in the sequence:

a) Logical View: a description of the data within the system and the decom-
position of the system into logical abstractions. The behavior is distributed
among these abstractions;

b) Process View: a description of the organization of the data elements, in

23

terms of process and threads executing that will run on the hardware;

c) Development View: focuses on the organization of software in relation to
the development environment. In this view, the elements are libraries, sub-
systems, files, class, and others;

d) Physical View: also known as the deployment view, this view shows the
physical organization of the system. It is concerned with the topology of
software components on the physical layer as well as the physical connec-
tions between these components;

e) Scenarios View: used to illustrate the behavior of the system in its archi-
tecture through the main scenarios of use cases.

Another proposal that presents the architecture through views is the model defined
by (HOFMEISTER et al., 1999). In this proposal, the classification of the description
of a software architecture is presented in four views: conceptual, module, execution,
and code. Because of these four views, the model is called “The 4 Views Architectural
Model”.

In Herzum and Sims (2000), the following views are characterized as the most rele-
vant visions for definition of software architecture:

a) Technical Architecture: refers to the components of the execution environ-
ment, tools and other technical facilities required to develop and run a
component-based system;

b) Application Architecture: refers to the set of architectural decisions, stan-
dards and guides required to build a system based on components;

c) Project Management Architecture: presents concepts, guides, principles
and management tools needed to build a large system;

d) Functional Architecture: where the specification and implementation of the
system is performed.

In Clements (2003), three categories of views are presented to represent the software
architecture: Module View, Component-and-Connector View, and Allocation View.
These views are detailed in the sequence:

24

a) Module View: it considers the elements as modules, which are units of
implementation. Modules represent a code-based way of considering the
system. Modules are assigned responsibilities or functionalities;

b) Component-and-connector View: elements are run-time components (main
computing units) and connectors (which represent communication paths
among components);

c) Allocation View: this view presents the relationship between the elements
of the software and the elements of the external environments where the
system is executed.

2.4.3 Architectural Representation

Architectural representation plays an important role in communication, quality as-
sessment, evaluation, and evolution in software architecture. The architecture of a
system is usually expressed through a set of diagrams representing different archi-
tectural views of the system.

However, considering the importance of the software architecture, it is essential to
properly represent software architecture during the life-cycle of software systems.

Software architecture can be represented in different forms. An Architectural De-
scription Language (ADL) can define different forms of representation of a software
architecture (INSTITUTO FOR ELECTRICAL AND ELECTRONICS ENGINEERS, 2007).
As examples of ADLs, we can mention the languages: Architecture Analysis & De-
sign Language(AADL)2, Systems Modelling Language (SYSML)3, Unified Modeling
Language (UML)4, ArchiMate5.

Among the existing architectural description languages, it is important to highlight
the UML. The UML has been the basis for modeling many software systems, it
has a wide variety of diagrams and also various tools that support its adoption at
different stages of the software life cycle. From its version 2.0, in addition to system
modeling, UML presented technical characteristics and capabilities for architectural
software description (IVERS et al., 2004). In its version 2.5, the UML provides a set of
diagrams divided into three categories (Structure, Behavior, Interaction), as shown
in Figure 2.11.

2http://www.aadl.info
3http://www.omgsysml.org
4http://www.uml.org/
5http://www.opengroup.org/subjectareas/enterprise/archimate-overview

25

Figure 2.11 - Diagram UML Version 2.5.

SOURCE: UML. . . (2015)

The ArchiMate is an enterprise architecture modeling language based on the
IEEE 1471 standard (INSTITUTO FOR ELECTRICAL AND ELECTRONICS ENGINEERS,
2000). It is maintained by the Open Group6. ArchiMate supports the description
of the construction and operation of business processes, organizational structures,
information flows, IT systems, and technical infrastructure. The latest version of the
language is the ArchiMate 3.0 Specification.

ArchiMate defines a structure of generic elements and their relationships. It consists
of three layers(Business, Application, and Technology) and three aspects(Active
Structure, Behavior, and Passive Structure). Figure 2.12 shows the relationship be-
tween layers and aspects. The Business layer is typically used to model the structure
and interaction between the business strategy, organization, functions, business pro-
cesses, and information needs. The Application layer is typically used to model the
information systems architectures of the enterprise, including the structure and in-
teraction of the applications. The Technology layer is typically used to model the
technology architecture of the enterprise, which consists of the structure and inter-
action of the platform services, and logical and physical technology components.

6http://www.opengroup.org/

26

Figure 2.12 - Archimate - Layers and Aspects

SOURCE: OpenGroup (2017)

2.5 Reference Architecture

The concept of software architecture as a particular discipline has begun to emerge
since the 1990s. It had strong growth with contributions from the industry and from
the academia (SHAW; GARLAN, 1996). From then on, there were also highlighted the
growth of interest on the topic of reference architecture (KRUCHTEN et al., 2006).

Despite the growing interest and spread of reference architecture, there is still no
consensus on its exact definition of the topic (ANGELOV et al., 2009; NAKAGAWA et

al., 2013).The following are the main definitions about this topic.

a) The Reference architecture refers to an architecture that covers the knowl-
edge about how to design concrete architectures of the systems for a given
application domain. It refers to a special type of software architecture that
captures the essence of the architectures of a set of systems in a given
domain (OUSSALAH, 2014).

b) The reference architecture is, in essence, a standard or a set of predefined
architecture patterns. It is designed and approved to be partially or fully
instantiated in certain technical or business contexts (KRUCHTEN, 2000).

c) The reference architecture is a generic architecture for a class of informa-
tion systems, which is used as the basis for the development of concrete
architectures (ANGELOV et al., 2009).

27

d) The reference architecture consists of a repository of domain knowledge
that promotes architectural reuse and supports the development of systems
(BASS et al., 2003).

The ’reference architecture’ term is generally considered synonymous with the term
’product line architecture’ when assigned in the context of domain engineering, espe-
cially in the design phase during the creation of the architecture artifact. However,
despite the similarities of the terms, there are several differences between the refer-
ence architecture and the product line architecture (NAKAGAWA et al., 2011):

a) Product line architectures are more specialized, sometimes focusing on a
specific subset of one domain system and providing standardized solutions
for a smaller family of systems;

b) Reference architectures are used to standardize the external structure of
the systems (interfaces and protocols) and consider the subsystems in-
volved as black boxes. However, in product line architecture the focus is
to build systems from a common set of artifacts. The internal structure is
standardized, aiming at the reuse of existing components that are consid-
ered white boxes. Thus, reference architectures focus on external standard-
ization, while product line architectures address internal standardization.

c) Product line architectures work with variabilities (information on how each
product differentiates itself into a software product line).

Typically, reference architectures have a higher level of abstraction if compared to the
product line architecture, so they can also be the basis for product line architectures.
In Nakagawa et al. (2013), a process is presented to systematize the use of the
reference architecture in the context of software product lines, this relationship is
shown in Figure 2.13.

Reference architecture is the abstraction of architectural knowledge for a particular
domain (OUSSALAH, 2014; MARTÍNEZ-FERNÁNDEZ, 2013), providing major guide-
lines for the specification of software architectures (NAKAGAWA et al., 2011) that
constitutes the main artifact to the success of software systems (KRUCHTEN et al.,
2006; SHAW; CLEMENTS, 2006). Among the several goals of the software reference
architecture is to serve as a guideline for the development, standardization and
evolution of several software architectures of a specific domain (NAKAGAWA et al.,

28

Figure 2.13 - Relationship between reference architecture and product line architecture.

SOURCE: Nakagawa et al. (2014)

2011). This is possible because the software reference architecture is abstract enough
to allow its use in different contexts (ANGELOV et al., 2012).

Since Reference architecture is an important area of research in software architec-
ture, several studies have focused on this special architecture type. Diverse domains,
both in academy and industry, understood the advantages of such architecture and
already possess their own. Examples of such domains are Automotive (MARTÍNEZ-

FERNÁNDEZ et al., 2015), Smart City (CLEMENT et al., 2017), Ambient Assisted Liv-
ing (FERRO et al., 2015), Big Data (KLEIN et al., 2016), On-board Space Applications
(PANUNZIO, 2011), Software Engineering (NAKAGAWA et al., 2011), Embedded Sys-
tems (GUESSI et al., 2015), Internet of Things (WEYRICH; EBERT, 2016), Healthcare
Supportive Home Systems (RODRíGUEZ et al., 2015), Mobile Learning Environments
(FILHO; BARBOSA, 2015), Recommender Systems (SHETH et al., 2010), and many
others.

There are several types of reference architecture. A classification is presented in
Angelov et al. (2012), which defines that the reference architecture can be classified
through multidimensional space, based on the dimensions of context, goals, and
design. The following classification of the reference architecture defines them as:

a) Type 1: These are classical, standardized architectures, designed to be
implemented in multiple organizations, and have a representative set of
users and software.

b) Type 2: These are classical, standardized architectures, designed to be
implemented in an organization. Groups of software users provide require-

29

ments that designers of the software design groups.

c) Type 3: These are classic facilitation architectures, designed by an inde-
pendent organization to be implemented in multiple organizations.

d) Type 4: These are classic facilitation architectures, designed to be imple-
mented in a single organization. Their representation may be semi-formal
or informal.

e) Type 5: These are preliminary architectures, designed to be deployed in
multiple organizations to facilitate future architecture projects.

Building a RA involves several steps and activities and should address several issues
such as business rules, architectural styles and patterns, architectural representation,
practices of software development, domain constraints, legislation and standards
(NAKAGAWA et al., 2011). A Reference model intends to improve the understand-
ing about their elements and relationships, supporting the establishment, use, and
evolution of such architectures. Figure 2.14 illustrates the relationship between the
reference model, the reference architecture, the concrete architectures and software
application.

Figure 2.14 - Relationship between reference model, reference architecture, concrete soft-
ware architectures and software application.

SOURCE: Author

30

2.5.1 ProSA-RA: A Process to Build Reference Architectures

Diverse works have focused on the building of reference architectures (NAKAGAWA

et al., 2014; ANGELOV et al., 2012; BAYER et al., 2004; CLOUTIER et al., 2010; DO-

BRICA; NIEMELÄ, 2008) and their validation (NAKAGAWA et al., 2012; ANGELOV et

al., 2008; GALLAGHER, 2000; GRAAF et al., 2005; SANTOS et al., 2013). We adopted
the systematic process ProSA-RA Nakagawa et al. (2014) to establish the SCS-RA,
considering that it prioritizes the design, representation, and evaluation of reference
architectures and has been already applied in the establishment of many reference
architectures (NAKAGAWA et al., 2014). ProSA-RA, illustrated in Figure 2.15, is com-
posed of four steps (NAKAGAWA et al., 2014): Information Source Investigation, Ar-
chitectural Analysis, Architectural Synthesis, and Architectural Evaluation. These
steps are detailed in the sequence.

Figure 2.15 - Outline structure of ProSA-RA.

SOURCE: Nakagawa et al. (2014)

2.5.1.1 Step RA-1: Information Source Investigation

This step aims to search various sources of information from the domain. There are
a number of ways that you can use to gather relevant information, books, articles,
existing software architectures, existing systems, knowledgeable people (e.g., users,
researchers, experts) and domain ontologies. These sources should provide informa-
tion about the process, activities and tasks to be automated. Revisions could be
made to systematize the process of searching, selecting and analyzing sources. Do-

31

main experts and system analysts actively participate in this step. As output from
this step, a group of information sources is presented.

2.5.1.2 Step RA-2: Architectural Analysis

Based on the information sources selected in the previous step, this step performs
the activities of identifying system requirements, establishing the requirements of
the reference architecture and identifying the domain concepts. System analysts
and specialists are directly involved in these activities. As outputs of this step, a set
of reference architecture requirements and a set of domain concepts are generated.

2.5.1.3 Step RA-3: Architectural Synthesis

In this step, the design of the reference architecture is carried out, based on the archi-
tectural requirements and concepts identified in the previous step. An architectural
description of the reference architecture and its representation through architectural
views is carried out. During this step, the following viewpoints are proposed to de-
scribe the architecture: crosscutting, runtime, deployment and source code. Software
architects, supported by domain experts participate in this step. In the end, this step
results in a description of the architecture composed of a set of views of the reference
architecture.

2.5.1.4 Step RA-4: Architectural Evaluation

In this final step, the objective is to verify the quality of the architecture through
methods of evaluation of architectures, such as Software Architecture Analysis
Method (SAAM) (GRAAF et al., 2005) and Architecture Tradeoff Analysis Method
(ATAM) (GALLAGHER, 2000). The evaluation can also be performed by inspec-
tion using checklist through Framework for Evaluation of Reference Architectures
(FERA) described in (SANTOS et al., 2013). Another way is using the Reference
Architecture Model (RAModel), which is a reference model specific to reference
architectures, providing a complete list of elements needed for constituting the ref-
erence architecture. These elements are classified in four groups (NAKAGAWA et

al., 2012): Domain, Application, Infrastructure and Crosscutting. Figure 2.16 shows
these groups and their elements.

2.6 Software Components

A software component is the software element which provides the functional be-
havior of applications. Software components have a set of key features, such as:

32

Figure 2.16 - Groups and Elements of RAModel.

SOURCE: Nakagawa et al. (2012)

performing specific and well-defined functions (BROWN; SHORT, 1997; KOZACZYN-

SKI, 1999; SAMETINGER, 1997; YACOUB et al., 1999); providing a set of inter-
faces (SAMETINGER, 1997); and provides adequate documentation to contribute
to the search, retrieval, adaptation and integration (HEINEMAN; COUNCILL, 2001;
SAMETINGER, 1997; MCCLURE, 1997). A detailed study of the characterization of a
software component is presented in (BROY et al., 1998).

In the building of a new software component, its development process is in many
aspects similar to system development (CRNKOVIC et al., 2006). A study comparing
these processes is presented in (CRNKOVIC et al., 2006). During the process of devel-

33

opment of a component, its requirements must be captured, analyzed and defined
and the component must be designed, implemented, verified and validated. A life-
cycle for the development of a software component (with these steps: requirements,
design, implementation, deployment and execution) is presented in (CRNKOVIC et al.,
2011). Figure 2.17 shows these successive stages of the lifecycle of a component. The
lower part is presented the ways in which components may be represented in that
particular stage of the lifecycle. Software components have evolved since they were

Figure 2.17 - Component lifecycle

SOURCE: Crnkovic et al. (2011)

mentioned in the NATO Software Engineering Conferences in 1968. This evolution
occurs mainly due to technological advances in the Computer Science and Software
Engineering areas. Software components changed from a scientific research field to a
widely used technique. Components speed up the adoption of new technologies and
improve reusability. The evolution in the development of software components oc-
curs from the definition of the component models. A model component contributes
in several aspects to the construction of a software component.

2.6.1 Components Model

A component model is defined by the characteristics of its implementation, inter-
operability, customization, composition, infrastructure, evolution and deployment.
Currently, there is a variety of component models available; each model provides
different approaches to building applications.

Component models are intended for general-purpose and specific domains. Several
domains already have their software component models and these models meet their
specified domain characteristics. Table 2.4 shows a list of component models and

34

their purpose.

Table 2.4 - Component Models and Purpose

Component Model Purpose
EJB (ENTERPRISE. . . , 2017), OSGi (OSGITM. . . ,
2017) COM (COM. . . , 2017), .NET (MICROSOFT,
2017), CORBRA (CORBA. . . , 2016) ICEMI (FUR-
MENTO et al., 2001)

Software Application

Pebble (MAGOUTIS et al., 2000), Koala (OMMER-
ING et al., 2000), PECOS (GENSSLER et al., 2002)

Embedded Systems

THINK (FASSINO et al., 2002), OSKit (FORD et al.,
1997), MMLite (HELANDER; FORIN, 1998)

Operating Systems

VERA (KARLIN; PETERSON, 2001), MicroACE
(JOHNSON; KUNZE, 2003), NetBind (CAMPBELL et
al., 2002)

Programmable Networking
Environments

LegORB (ROMAN et al., 2000), K-components
(DOWLING; CAHILL, 2004; GRIFFITH; KAISER,
2005)

Middleware Platforms

ASSERT Project - Component Model (PANUNZIO;
VARDANEGA, 2010)

On-board Software Space
Domain

SaveCCM (HANSSON et al., 2004) Vehicular Systems

SOURCE: Author

In the study conducted by Crnkovic et al. (2011), it is possible to see that approx-
imately 50% of the component models are domain-specific models. Domain-specific
component models offer advantages of standardization, integration, reuse and inter-
operability. In addition to this, they may be considered an architectural trend. In
Garlan et al. (2009), the specialized architecture is one way to help prevent architec-
tural mismatch. Figure 2.18 illustrates the architectural specialization space. At the
far left are completely unconstrained architectures; to the right, the architectures
must fit in a narrower design context.

For a better understanding of the characteristics of a software component, we present
next a detailed description of some major component models.

35

Figure 2.18 - Architectural Specialization

SOURCE: Garlan et al. (2009)

2.6.1.1 Enterprise Java Beans (EJB)

EJB is a component model for building distributed applications, which adopts the
Java programming language. Access to its interfaces is accomplished by invoking the
remote method and by passing messages.

EJB model has three types of components: the Session bean, the Entity bean, and
the Message-driven bean. The Session bean implements business logic; the Entity
bean represents the domain entities and the Message-driven bean is responsible for
handling asynchronous messages from clients.

EJBs run in the EJB container. Containers provide services of transactions, security,
they maintain life cycle for the EJBs and delegate calls to them. Containers run in
the Java EE servers. Compatible examples of these servers are Glassfish7, JBoss
Enterprise Application Platform8, Wildfly9, Apache TomEE10 and others.

2.6.1.2 CORBA Component Model (CCM)

The CCM is a model of the OMG’s11 component specification. The CCM specifi-
cation defines an abstract model; a programming model; a packaging model; a de-
ployment model; an execution model; and a ’metamodel’ (CRNKOVIC et al., 2011). It
also provides a Component Implementation Definition Language (CIDL); the seman-
tics of the CORBA Components Model (CCM); and a Component Implementation
Framework (CIF).

7https://javaee.github.io/glassfish
8https://www.redhat.com/en/technologies/jboss-middleware/application-platform
9http://wildfly.org

10http://tomee.apache.org
11http://www.omg.org/spec/CCM/

36

The CCM component has a single equivalent interface to clients; a set of attributes
(which are typed parameters exposed through getter and setter operations); It also
provides a set of facets (which are named ports providing specific interfaces); a
receptacle port (which are named connection points that describe the component’s
ability which is possible to invoke operations of other components); a event sources
(which are named connection points that send events according to publish-subscribe
paradigm); a event sinks (which are named connection points into which events of
a specified type may be pushed. It consumes events event sources); a stream source
port (which produces streams of a specific type of data), and a stream sink port
(which receives such data). Figure 2.19 depicts a CORBA component’s features.

Figure 2.19 - CORBA Component Model

SOURCE: Crnkovic et al. (2011)

CCM is non-proprietary language and platform independent. It allows designing and
implementing a distributed application independent of specific programming lan-
guages, operating systems or vendor-specific communication infrastructures (BORN

et al., 2003).

2.6.1.3 Open Services Gateway Initiative (OSGi)

OSGi12 is a consortium of numerous industry partners who work together to define
a Java-based interface specification (OSGITM. . . , 2017). OSGi defines a standard-
ized, component-oriented, computing environment for networked services. It has im-
plementations from organizations, like the Eclipse Foundation, with their Equinox

12https://www.osgi.org

37

framework (MCAFFER et al., 2010) and the Apache foundation, with the framework
Felix (GÉDÉON, 2010).

The OSGi framework separates the components for deployment and run-time into
bundles and services respectively. A bundle is comprised of java classes and other
resources, which together provide functions to end users.

OSGi is specific to Java. It is not platform-specific, requiring runtime container to
manage the component registration. The components are independent and can be
added, removed, or modified at runtime.

2.7 Component-Based Development

The Component Based Development (CBD) is a software development technique
that builds on the rapid building of systems from existing components (BACHMANN

et al., 2000). A system is developed not as a monolithic entity, but from the composi-
tion of parts that have already been constructed separately. The concept of reusing
parts of existing systems arose primarily to amortize development costs, to reduce
complexity in software development and to increase the quality of systems produced
(SZYPERSKI, 2011).

An important feature of CBD is the separation between the process of the devel-
opment of the general system and the process of the development of the individual
components. The CBD, like any other software development process, involves devel-
opmental phases with activities resulting in software artifacts, the difference being
that the system is constituted with the base unit of components. In Brown and
Short (1997), McClure (1997), Pour (1998), the predominant phases in the process
models of CBD are: analysis of requirements, acquisition, component understand-
ing, adaptation, composition and certification of the component. These phases are
also present in the process model proposed by (PRESSMAN, 2001), which is shown
in Figure 2.20

The main activities of component-based development are the creation of compo-
nents to be reused and the development of software based on existing compo-
nents (KRUEGER, 1992). In Kotonya et al. (2003), these activities are defined as
component engineering and application engineering.

Component engineering aims to develop reusable components for the construction
of systems. The main steps are: domain analysis, component building, maintenance
and publication, and certification of software components relevant to a domain.

38

Figure 2.20 - Process Model of CBD

SOURCE: Pressman (2001)

Application engineering aims to apply the software components in the development
process. Its main responsibilities are to qualify, adapt and integrate components for
use in new systems. In Brown and Short (1997), there are five steps in this process:
selection, qualification, adaptation, composition and updating.

2.7.1 Component-Based Development Process

With CBD gaining acceptance and other approaches, such as software reuse and
software product line, several component-based development process have emerged.
Among these processes we can highlight: The Catalysis approach (D’SOUZA; WILLS,
1999), FORM: A Feature-oriented Reuse Method with Domain-specific Reference
Architectures (KANG et al., 1998), RiDE: The RiSE Process for Domain Engineer-
ing (ALMEIDA, 2007), and CoPAM: Component-Oriented Platform Architecting
Method (AMERICA et al., 2000). Next, we present a brief description of UML Com-
ponents and Kobra process.

UML Components (an extension of the UML), represents a process of software
specification based on components (CHEESMAN; DANIELS, 2001). The process uses
a simple way to extend UML based on stereotypes. It provides a solution without
specifying the platform, so that the method can be used on many platforms and
with many different technologies.

In UML Components, the system architecture is structured into four distinct layers:

39

user interface, user communication, system services, and business services. In addi-
tion, the process is compatible with UML for modeling all phases of development,
including activities such as requirements definition, identification and description of
component interfaces, modeling, specification implementation and composition.

The KobrA approach (ATKINSON et al., 2000), which has been developed at the
Fraunhofer Institute for Experimental Software Engineering (IESE), aims at pro-
viding a systematic approach to the development of high-quality, component-based
application frameworks. KobrA has two main activities: initially, framework engi-
neering creates and maintains a generic framework.

In KobrA, a framework is the static representation of a set of Komponents (KobrA
component). Each Komponent is described at three levels of abstraction: specifica-
tion, realization and implementation. For each level of abstraction there is a set of
artifacts recommended for its specification as well as a set of activities associated
with its production. Most of these specifications use UML diagrams and textual
description. The complete list is presented in (ATKINSON et al., 2002).

40

3 RELATED WORK

This chapter presents the related work and introduces some important initiatives
which encourage the creation of reference architecture for space systems. It explores
some software application for Satellites Control Systems and their architectures. The
European Ground Systems – Common Core (EGS-CC), Control Channel Toolkit
(CCT), Hifly system, Satellite Control and Operation System 2000 (SCOS-2000),
Goddard Mission Services Evolution Center (GMSEC), Global Educational Network
for Satellite Operations (Genso), and Satellite Network (SatNet) are part of this
chapter.

3.1 Reference Architecture for Space Systems

CCSDS Recommended Practice entitled “Reference Architecture for Space Data
Systems (RASDS)” (THE CONSULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS,
2008) provides guidelines for the description of space data system architectures and
high-level designs that take into account the issues of operations in the space en-
vironment. RASDS provides the structure for a full semi-formal representation of
space data systems and also introduces a set of conventions for representing space
data systems from several viewpoints1. The development of a semi-formal represen-
tation using SysML2 is the subject of future proposed works (THE CONSULTATIVE

COMMITTEE FOR SPACE DATA SYSTEMS, 2008). RASDS provides five specific and
complementary viewpoints on the system and its environment (THE CONSULTA-

TIVE COMMITTEE FOR SPACE DATA SYSTEMS, 2008): enterprise viewpoint, func-
tional viewpoint, connectivity viewpoint, communications viewpoint, and informa-
tion viewpoint.

RASDS is intended to be soon used by CCSDS to establish an overall methodology
for defining and developing domain-specific architectures, as well as for defining
a common language, a taxonomy, and representations. ESA is applying RASDS
to a European technology harmonization to Ground Software Systems (SHAMES;

YAMADA, 2003; DURO et al., 2005; REID, 2012). Another related work is shown in
Shames and Yamada (2003) that presents how RASDS can be used to reduce the
cost of development of space data systems. In addition, an architectural framework

1Software architectures are often structured in views and viewpoints. A view is often materi-
alized in a model, and corresponds to one of the facets of a software. For example, a logical view
(usually represented in class diagrams UML), or a physical view, often represented as a deployment
diagram. In turn, a viewpoint corresponds to a collection of patterns, templates, and conventions
for constructing one type of view (KRUCHTEN, 1995; ROZANSKI; WOODS, 2005).

2http://www.omgsysml.org

41

applied to RASDS is introduced in (DURO et al., 2005).

Another initiative of CCSDS supporting the practice of RA is shown in “Refer-
ence Architecture for Space Information Management (RASIM)” (THE CONSULTA-

TIVE COMMITTEE FOR SPACE DATA SYSTEMS, 2013). RASIM is an informational
report that presents a RA for space information management (information architec-
ture). The information architecture covers problem areas associated with space data
systems (such as organizational, functional, operational, and cross-support issues).
RASIM is intended to provide an overview and background for those interested in
understanding and developing information architectural elements for building space
data systems. RASIM considers the lack of a real description of complex space data
system architectural topologies and best practices of using software components.

RASDS and RASIM are high-level architectures designed to facilitate and encourage
the creation of RA for space systems that will be needed in the future. In the context
of space systems and RA, ESA has recently worked on the definition, realization, and
adoption of a RA for the development of on-board software for satellites (PANUNZIO;

VARDANEGA, 2013).

In short, we observe that RA is a real and important element for space systems. In
the same perspective, the establishment of a RA for SCS is equally important.

3.2 Software Application for Satellites Control Systems

Software applications have increasingly assumed an important role in the satellites
control activities and have contributed in an effective way to meet the activities of
this domain.

3.2.1 The European Ground Systems – Common Core (EGS-CC)

The European Ground Systems – Common Core (EGS-CC)3, is an ESA initiative
with European agencies and industry to develop a common software infrastructure
to support space systems monitoring and control for all mission types (EUROPEAN

SPACE AGENCY (ESA), 2017a). The initiative is considered to be a strategic move
which would bring an array of resources and benefits to all parties involved.

The EGS-CC is a platform on which a monitoring and control systems can be built
and which provides core monitoring and control features as well as a set of compo-
nents that allow adapting the core monitoring and control features to the operation

3http://www.egscc.esa.int

42

environment (GOETZELMANN et al., 2014). It comprises of the software source code
and binaries for a given EGS-CC based system. The EGS-CC defined design goals
including: Open, component based, service oriented architecture; Support of all mis-
sion types; Generic and extensible functionality; Extensibility via binary interfaces;
Inter-operability through standardised interfaces; High performance and scalability,
and many others.

The EGS-CC architecture is logically structured in separate layers, isolating differ-
ent responsibilities and defining clear interfaces between them. EGS-CC is divided
into three architectural layers, the Kernel, the Reference Implementations, and the
Reference Test Facilities. Figure 3.1 shows the architectural layers and high-level
decomposition of the EGS-CC. The EGS-CC Kernel contains core monitoring and

Figure 3.1 - High-level Decomposition of the EGS-CC.

SOURCE: Pecchioli and Carranza (2013)

control functionality in a manner that is independent of the interfaces and the pack-
aging of the input-output data, in Figure 3.2 shows components of the EGS-CC
Kernel. The Reference Implementations consist of sets of components which provide
functionality required to adapt the Kernel to a specific environment. These com-
ponents may be replaced without any impact on other components. The Reference
Test Facilities is a test environment used for validation of the EGS-CC product. It

43

contains the external elements for a full validation of the kernel and the reference
implementations. The development of the EGS-CC require the application of sev-

Figure 3.2 - Decomposition of the EGS-CC Kernel

SOURCE: Goetzelmann et al. (2014)

eral technologies. Technology plays a key role and a number of different technology
have been considered as part of the EGS-CC. As result of the technology selection
a simplified overview of the technology suite is shown in Figure 3.3.

The EGC-CC development lifecycle is divided into phases. According to Pecchioli
and Carranza (2013), Pecchioli and Carranza (2017) The Phase A(Definition of
System concepts and Requirements baseline) has been recently completed, Phase
B(Architectural design and Technology baseline definition) just started, Phase C/D
(Development)is expected to deliver until the end of 2019 and Phase of Integration
and Adoption to be defined.

3.2.2 Control Channel Toolkit (CCT)

The CCT is a software asset base for a software product line of ground-based space-
craft command and control systems commissioned by United States National Re-
connaissance Office (NRO)4 and built under contract by Raytheon Company5. The
NRO designs, builds, and operates defense reconnaissance satellites. The asset base

4http://www.nro.gov
5https://www.raytheon.com

44

Figure 3.3 - Overview of technology suite - EGC-CC.

SOURCE: EUROPEAN SPACE AGENCY (ESA) (2017a)

consists of the different artifacts such as generalized requirements, a software ar-
chitecture, a development environment definition, a set of reusable software compo-
nents, and a guide for reusing the architecture and components (CLEMENTS et al.,
2001).

The CCT architecture is organized in two primary subsystems: planning and exe-
cution. These subsystems are organized by component categories and each category
has its components. Component categories across these two subsystems did not in-
teract(except by shared files). Components of a subsystem might use each other
and system functions are accomplished through the operating and interaction of
components across different categories. The basis for the architecture’s intercompo-
nent communication infrastructure was accomplished with Common Object Request
Broker Architecture (CORBA)6. Table 3.1 shows this architectural organization.

The execution subsystem referred to the time-critical component categories. These
components are responsible for the operations of communication directly with the
satellites, examples of such operations are telemetry and telecommand. Figure 3.4
shows the data flow view of CCT execution architecture. The planning architecture

6http://www.corba.org

45

Table 3.1 - CCT-Subsystems, Categories and Components

Subsystem Component Category Components

Execution

Status 4
Last recorded values 4
Control 4
On-board exec 3
History 5
Other (Playback) 1

Planning

Orbit 7
Attitude 4
Maneuver 5
Vehicle 3
Schedule 3
Evaluation 4

Object services Object services 10
Infrastructure Infrastructure 42

SOURCE: Clements et al. (2001)

Figure 3.4 - CCT Execution Architecture: Data Flow View.

SOURCE: Clements et al. (2001)

referred to the non-time-critical component categories. These components within
the six categories provide common features for producing commands which will be
sent to the satellites via execution subsystem. Figure 3.5 shows the data flow view
of CCT planning architecture.

The execution and planning architecture underwent explicit evaluation led by the

46

Figure 3.5 - CCT Planning Architecture: Data Flow View.

SOURCE: Clements et al. (2001)

Software Engineering Institute (SEI)7 using the Software Architecture Analysis
Method (SAAM) (BASS et al., 2003). The CCT program provided components to
support a real system, the Spacecraft C2 System. Among the various advantages
of using the CCT in this business case, are increasing quality and cost reduction
and development time. The development costs saved 18.2% of the total forecast and
27.8% savings related to maintenance costs(CLEMENTS et al., 2001).

3.2.3 Hifly

The Hifly is a complete commercial solution for SCS, developed by the company
GMV8. The system is based on COTS and it is compatible with multi-mission
and multi-user. Its design is based on a client-server and three-tier architecture
(MOREL et al., 2014). The main requirements for architectural design are scalability

7https://www.sei.cmu.edu
8https://www.gmv.com/en/Products/hifly

47

and interoperability, to achieve these requirements it was necessary to develop a
division between presentation layers and business logic.

Hifly adopts Service Oriented Architecture (SOA) to execute business logic. The
Simple Object Access Protocol (SOAP) layer provides data through the HTTP pro-
tocol, which is accessed through Remote Procedure Calls (RPC) with a middleware
Corba (LOPEZ; FRAGA, 2012). Any application, exchange data with hifly services
layer using CORBA. The service contract, acting as a façade, translate queries and
gather data from hifly server. The illustration of this process is shown in Figure 3.6.

Figure 3.6 - Hifly SOA Layer.

SOURCE: Lopez and Fraga (2012)

Applications use SOAP to exchange data with an authentication layer for accessing
the different web services (Core Services), which translate SOAP requests to the
hifly services through of hifly connector. Figure 3.7 shows the hifly anywhere SOAP
services logical model.

Hifly is built through a set of components that can be tailored to the needs of the
user (GMV, 2017). Next, we present a detailed description of these components.

High-level components:

a) hifly R©: Core fleet monitoring and control system for commercial satellite
operations, allows operators to focus on the operations of a specific satellite,

48

Figure 3.7 - Hifly anywhere SOAP services logical model.

SOURCE: Lopez and Fraga (2012)

while keeping track of events across the satellite fleet. The core incorporates
server and client components as follows:

– hifly Server: multimission telemetry and telecommand core processing
chains.

– hifly Client: workstation desktop providing operations support either
for a single satellite or for a fleet of heterogeneous satellites.

High-level components provide enhanced/high-end capabilities:

a) archiva: is a processed spacecraft telemetry database to store information
and statistical data over different time ranges. It delivers access to teleme-
try over the whole satellite lifetime, trending analysis and statistical data
to spacecraft analysts, engineers and operators.

b) SatDB: offline Satellite database management system, manages the satel-
lite database by editing and checking consistency of the data, and dis-
tributing it to the processing chains for operations.

c) SatMem: Advanced satellite memory management tool.

49

d) SyncBridge: synchronizes operational data between various sites. It can
also be used to transfer operational data to non-operational environments.

e) FleetMan: provides extended fleet management capabilities to satellite con-
trol centre deployments.

f) Views: is an open, advanced telemetry visualization client. It provides flex-
ible telemetry access and highly configurable data presentation.

g) Autofly: provides procedure automation functionality required to execute
and schedule operational procedures for satellite operations.

h) elBook: is an electronic operations logbook, provides centralized handling
of all system incidences observed by end-users.

i) E2EE: is an end-to-end emulator, simulates space system elements (satel-
lites, ground stations, SCCs, etc).

The following figure 3.8 provides an overview of the above-identified components
with the GMV products: focusGEO, magNet, smart rings, autofocus.

Figure 3.8 - Overview of Hifly components and interfaces with GMV products.

SOURCE: GMV (2017)

The use of the Hifly system is indicated for deploying in VMWare9 virtual environ-
ment, providing significant benefits compared to traditional deployments (MOREL et

al., 2014).

9https://www.vmware.com

50

3.2.4 Satellite Control and Operation System 2000 (SCOS-2000)

The SCOS 2000 is a generic configurable spacecraft monitoring and control system,
developed by the European Space Operations Center (ESOC), one of the main ESA
centers. The design of SCOS-2000 consists of a set of independent building blocks or
subsystems, developed from client-server architecture (NOGUERO et al., 2005; OSORIO

et al., 2006), as shown in Figure 3.9.

Figure 3.9 - SCOS-2000 client/server architecture.

SOURCE: Osorio et al. (2006)

The SCOS-2000 concentrates in generic features for all missions, so is developed the
concept of the mission family kernel. This kernel is a first level of customization
of the generic kernel for supporting a group of missions with similar operational
requirements. The objective is the production of mission family kernels for each
group of missions, for example Earth observation missions, interplanetary missions,
and observatory missions (NOGUERO et al., 2005). SCOS-2000 provides a library of
components and services that may be extended and customized to meet specific
requirements. The SCOS-2000 kernel is composed of the following subsystems:

a) Telemetry: responsible for the reception, extraction, modeling and display
of telemetry data. It provides a generic monitoring facility;

b) Telecommanding: responsible for generating, modeling and release of com-
mands;

51

c) Online Database: responsible for maintaining the online static mission in-
formation base, it contains the definitions of all static elements needed by
SCOS-2000 for run-time management;

d) Data Archiving & Distribution: responsible for filing, retrieval and distri-
bution of data generated (telemetry, telecommands and events);

e) User Management: responsible by access control to the system functions,
and the management of privileges;

f) Events & Action: responsible for providing event message generation, trac-
ing and handling;

g) Onboard Software Maintenance: responsible for providing of memory im-
ages and memory uplink data;

h) External Interfaces: responsible for supporting the provision and reception
of data to/from external systems.

A common CORBA interface is used throughout components to make the process
of TCP/IP connection established between clients and servers. CORBA is a basic
middleware for sharing common configuration. It uses a name service to enable server
processes to register their location and client processes to retrieve the location in
order to connect to the servers (OSORIO et al., 2006).

3.2.5 Goddard Mission Services Evolution Center (GMSEC)

The GMSEC is a satellite command and control system. It is designed and defined
by NASA’s Goddard Space Flight Center (GSFC)10 to support its satellite missions.
The purpose of GMSEC is to simplify integration, allow increased automation, facil-
itate new adaptations to flight operations components (e.g. Command and Control,
Flight Dynamics, Mission Planning, Automation, etc.) with minimum impact to the
overall system (CHAMOUN et al., 2006; MAYORGA, 2006; GUDMUNDSSON et al., 2015).

The GMSEC system was developed with the following architectural principles
(SMITH et al., 2006):

a) Standardize interfaces: GMSEC prioritizes the standardization of interfaces
- not components. It encourages the access to a broad range of technologies
by standardizing interfaces;

10https://gmsec.gsfc.nasa.gov

52

b) Middleware infrastructure: GMSEC provides a message oriented middle-
ware (MOM) at the center of the architecture;

c) User choice: GMSEC doesn’t decide which components are best nor dictate
which components a mission must use. The architecture allows the user or
mission to select the most appropriate products based on functional need
or personal preference and easily integrate them into a ground system;

d) General-purpose approach with flight-ground capabilities: The architecture
itself should be designed to be adaptable to any number of missions.

The GMSEC architecture is based on middleware, message-oriented communica-
tions and implemented as the message bus. The message-oriented middleware keeps
track of the locations of the software components so hard-code node routing is not
needed and logical/physical location transitions can occur instantly in the case of
failovers. The message bus provides publish/subscribe message passing mechanisms.
Applications “publish” messages to the bus. Each message contains a subject name
and the standard message contents.

The GMSEC API provides the generalized interface between applications programs
and the system middleware. Multiple languages, middleware products, platforms
and operating systems are supported. In addition, the API normalizes the behavior
of the middleware while allowing access to special functions or capabilities of indi-
vidual middleware products, in this way, changes in the middleware product does
not require changes to the software components. The Figure 3.10 shows an overview
of the GMSEC layered architecture.

Some other components or variations that could be part of a component above or
even its own subsystem are (HANDY, 2016):

• Maneuver (prediction, control, analysis, product generation);

• Data Processing;

• Data Analysis and Modeling;

• Data Archive and Data Management;

• Product Generation;

• Data Distribution;

53

Figure 3.10 - GMSEC Layered Architecture.

SOURCE: Smith et al. (2006)

• Communications and Data Transport;

• Configuration Monitoring and Control;

• Sensor, Instrument and Payload Operations.

Next, is described an overview of the main GMSEC in-house components and how
they integrate with the GMSEC framework to provide a versatile platform:

a) GMSEC Environment Diagnostic Analysis Tool (GEDAT): provides a
graphical display of the GMSEC environment, identifying and tracking all
GMSEC-compliant components connected to the bus. It alerts the user to
various error conditions including component and bus failover, as presented
in Figure 3.11. GEDAT also collects and shows computational resources of
each node(CPU, memory, network, disk), as presented in Figure 3.12;

b) System Agent (SA): provides health information about the computer host-
ing the agent to other GMSEC components. These agents provide some of
the raw data used by GEDAT. This includes host identifying information,
CPU utilization, memory utilization, and disk utilization;

c) Criteria Action Table (CAT): is a rules-based automation tool, with pur-
pose of monitoring real time system messages and certain specific events
can be detected in order to take associated predefined actions in an effort

54

to automate and enhance the reliability of the system. CAT automates a
wide set of ground system functions that otherwise might require dedicated
staff.

d) GMSEC Reusable Event Analysis Toolkit (GREAT): is a comprehensive
system for event/log messages. It displays all messages transmitted along
the information bus, message archive & retrieval, and data file format
conversion.

e) GMSEC Remote Access Service Provider (GRASP): provides the capabil-
ity for users to access remote viewing, via the Internet, of GMSEC in-
formation. GRASP addresses the transfer of information from a GMSEC
environment to a web server.

Figure 3.11 - Screen Shot of the GEDAT.

SOURCE: Handy (2016)

Figure 3.12 - GEDAT - resource information
(CPU, memory, network, disk
utilization).

SOURCE: Handy (2016)

The GMSEC and the Hifly systems performed an interoperability process, that in-
volved the development of an adaptor that would bridge the different architectures
of GMSEC (message-based middleware) and Hifly (CORBA-based API). In addi-
tion, there were a data adaptation of a typical NASA database and the adaptation
of the telemetry message and event flows (CHAMOUN et al., 2006).

Another example of system integration was performed by Aerospace Ground Systems
Laboratory in four satellites telemetry, tracking and command systems. This inte-
gration occurred through the use of adaptors developed by vendors and by Ground

55

Systems Laboratory (SULLIVAN et al., 2009).

3.2.6 Global Educational Network for Satellite Operations (Genso)

The Genso is an ESA initiative collaborating with the International Space Education
Board(ISEB), with the participation of several universities, such as University of
Tokyo, Vienna University of Technology, Cal Poly State University, Jean Monnet
University (LEVEQUE et al., 2007). It was officially created in October 2006 with
its main objective being the provision of communications to university satellites
and, moreover, to create an international network of university ground stations.
The objective of the project is to train students in space system and increase the
level of access to orbital spacecraft through the sharing of earth stations(CASTRO et

al., 2012). Among other GENSO’s objectives are the following (EUROPEAN SPACE

AGENCY (ESA), 2017b):

• Global access to mission operators of educational and amateur radio space-
craft.

• Remote access for operators to real-time mission data, even in cases when
their local ground station is experiencing technical difficulties.

• Scheduling of uplinks through ground stations.

• Definition of standard solution for the educational ground-segment hard-
ware, designed to optimize GENSO’s performance at minimal cost.

• Close collaboration with amateur radio to support a common interface in
order to apply for frequency allocation and coordination.

In the Genso network, satellite operators can control their satellite remotely from
any shared earth station in the network, regardless of their geographic location.
Communication between operators and stations is done through the Internet, as
well as the main elements of the Genso architecture that are deployed in distant
locations geographically.

Genso network has three main elements in its architecture: Authentication Server
(AUS), single point of authentication in the network; Ground Station Server (GSS),
which is deployed at earth stations; and Mission Control Client (MCC) used by
satellite operators (LEVEQUE et al., 2007). Figure 3.13 presents an overview of the
elements of Genso’s architecture.

56

Figure 3.13 - Architecture of the GENSO network.

SOURCE: EUROPEAN SPACE AGENCY (ESA) (2017b)

The AUS enables MCC and GSS to participate in the network, performs all com-
munication measurement, acts as a centralized authentication server. This server is
located at the University of Vigo, with a contingency at CalPoly. These servers are
also synchronized over the Internet in order to avoid failure on any particular node.

The GSS is the software that controls the hardware of the stations, such as the rotors,
TNC and the frequency settings of the radio. GSS must be installed on all ground
stations and connected to the AUS. The GSS application is also used in automated
remotes, scheduling negotiations, and booking with the MCC for specific missions.

MCC is used by satellite operators to schedule passage and receive data from earth
stations by GSS. For each controlled satellite will be necessary to install an MCC
instance. When the MCCC is authenticated in AUS, it will receive a list of available
earth stations with their configuration parameters. The GSS and MCC communicate
with one another in a Peer-to-Peer (P2P) fashion. Thus, the GENSO architecture is
a hybrid between a P2P network and a centralized network. Figure 2.11 presents an
overview of the Genso layered architecture. The red solid lines show the data path
for data downloaded from and uploaded to the spacecraft. The blue solid lines show
the control data path. The red provides a virtual link to the spacecraft (LEVEQUE

et al., 2007).

The Genso’s architecture is scalable to several stations, its implementation adopts

57

Figure 3.14 - Genso layered architecture.

SOURCE: LEVEQUE et al. (2007)

open source software, with development in Java language and part developed in
C# and C language. It adopts the COTS components approach and certificates and
HTTPS are used for communication security.

3.2.7 Satellite Network (SatNet)

The SatNet is an initiative of Cal Poly University together with Fundación Barrié of
Spain, currently the University of Vigo (Spain) and INPE (Brazil) also participate
in this project. The project aims to develop reusable software to control CubeSats
from shared earth stations. In the sharing of ground stations, each earth station
contributes with its resources and capacity of communication, promoting a set of
new communication channels of different locations. Thus, increased ground segment
coverage and providing control and tracking of small satellites for a longer time. It
uses an approach based on heterogeneity, allowing the integration of different earth
stations into a single system, and provides a distributed solution based on cloud
computing. The project provides a network infrastructure that allows operators to
remotely access ground stations (PARDAVILA et al., 2014).

3.2.7.1 SatNet Architecture

The SatNet architecture is composed of systems and communication interfaces, the
integration of these systems provide distributed and orchestrated functionality. The
main systems that make up the system’s architectural solution are the Ground Sta-
tion Clients, Network Communications System and Mission Operations Clients. Fig-

58

ure 3.15 presents an overview of the SatNet architecture and its systems and inter-
faces.

Figure 3.15 - SatNet architecture overview.

SOURCE: Pardavila (2013)

The elements of the SatNet architecture are shown briefly in Figure 3.15 and defined
as follows (PARDAVILA et al., 2016):

• A set of software clients for spacecraft operators to command remotely the
satellites. From now on, they will be defined as Mission Operations Clients
or M-Clients for short.

• A set of software clients for providing direct access to the services of the
ground station facilities. From now on, Ground Station Clients or G-Clients
for short.

• A cloud system for the coordination of the communications in between
these two types of clients. From now on, Network Communications System
or N-System. It is important to note that the N-System is not a single server
but a cloud-computing-based system. This way and depending on further
implementation decisions, this cloud system may evolve into a network of
interconnected servers that will provide the service required.

59

The N-System implements the following interfaces for permitting an automatic com-
munication among software entities, without the need of direct human interaction:

• G-Client Interface (G-Client-IF), that permits the ground station clients
to connect to the network services.

• M-Client Interface (M-Client-IF), that permits the mission operations
clients to connect to the network services.

• Direct Client Interface (Direct-IF), that permits the mission operations
clients to connect directly to the ground station clients.

The current implementation of the SatNet network provides only the M-Client-IF
and the G-Client-IF interfaces, being the Direct-IF left for future releases (PAR-

DAVILA et al., 2016). It provides all source code needed to connect ground stations
and control centers under apache version 2.0 license 11. On the website 12 it’s found
the user interface that gives access and control to the network.

3.2.7.2 SatNet Services

SatNet is based on services, these services are made available to meet the main func-
tionalities and the integration between the systems. SatNet provides the following
services (classified in accordance with three categories) (PARDAVILA, 2013):

• Management Services Category

– Registration Service.

– Configuration Service.

– Information Service.

• Scheduling Services Category

– Assisted Scheduling Service.

– Private Scheduling Service.

• Communication Services Category

– Assisted Communications Service.

11https://github.com/SatNet-project
12https://SatNet.aero.calpoly.edu

60

– Private Communications Service.

– Non-Scheduled Communications Service.

The SatNet network is designed to give a solution based on flexible computing in the
cloud. This solution allows the use of its resources in the cloud so that the CubeSat
type ground stations can have access.

3.2.7.3 SatNet Integration

SatNet still in development allows having a global ground station network, with
global coverage of the satellites willing to be a part of the network. SatNet currently
has an increasing number of integration of earth stations, the United States and
Spain are countries that are part of the project.

At present, some trial activities are taking place for the integration of the ground
station INPE in the SatNet network. The envisaged scenario is shown in Figure
3.16, where the current SatNet deployed network server is located at CalPoly where
it is already providing operational services. In the near future, two more servers
are planned to be deployed, namely: one at Vigo in Spain and the one prospec-
tively located at INPE so that it will provide coverage for the southern hemisphere
(PARDAVILA et al., 2016).

61

Figure 3.16 - SatNet integration.

SOURCE: Pardavila et al. (2016)

The integration process follows a list of steps and defines some keys parameters for
the new integrating ground station node to the main SatNet network (PARDAVILA

et al., 2014) : (i) Set new ground station location, (ii) Define new ground station
metadata, (iii) Define channel information for the new ground station and, (iv)
Configure network services for additional client node.

62

4 ESTABLISHMENT OF A REFERENCE ARCHITECTURE FOR
SATELLITES CONTROL SYSTEM

This chapter reports on the establishment of Reference Architecture for SCS (SCS-
RA). This reference architecture is aligned with the ProSA-RA process. We adopted
the systematic process ProSA-RA (NAKAGAWA et al., 2014) to establish the SCS-RA,
considering that it prioritizes the design, representation, and evaluation of reference
architectures and has been already applied in the establishment of many reference
architectures (NAKAGAWA et al., 2014). The establishment of SCS-RA involved the
development of different steps and according to ProSA-RA process. Next, we present
a detailed description of these steps and activities.

The organization of this chapter follows the steps of ProSA-RA. Section 4.1 details
the sources of information used to establish SCS-RA. Section 4.2 reports on the
requirements of the reference architecture elicited from these information sources.
Section 4.3 describes architectural views of SCS-RA. Finally, Section 4.4 presents a
architectural evaluation of SCS-RA.

4.1 Step RA-1: Information Source Investigation

In this first step, two main groups of information sources related to satellites which
control activities were identified: (i) CCSDS recommendations and reports; (ii) ECSS
standards. These groups are initiatives established to develop a coherent set of stan-
dards for use in all space activities. The following is a summary of the main guidelines
considered in this stage:

a) ECSS-E-ST-70C: It has some principles and requirements to apply in the
engineering of the ground segment and in the mission operations. It also
presents the general view and the elements of a space system (EUROPEAN

COOPERATION FOR SPACE STANDARDIZATION (ECSS), 2000).

b) CCSDS-520.1-M-1: It is a recommended practice which defines a reference
model for the mission operations. It provides a common base to support
the development of the CCSDS’ recommended standards (which specify the
mission service operations). It also provides a reference to keep consistency
of these standards (CCSDS, 2010a).

c) CCSDS-520.0-G-3: It presents a general view of the concepts of mission
service operations. It also defines a framework of mission service operations
to use for monitoring and controlling the satellites (CCSDS, 2010b).

63

d) CCSDS-521.1-R-1: It defines in an abstract way the common services to
monitor and control the satellites. These services offer support to mission
operations present in most systems. This standard defines specifications of
the interfaces of these services as to allow interoperability among agencies
through the installed software. It also allows the interoperability where
the collaborating agencies may share resources and obtain advantages of
shared installations (CCSDS, 2009).

e) CCSDS-522.0-R-2: It contains a high level formal specification to define a
model of a common object. The common object is applied to the mission
service operations defined in (CCSDS, 2010b). The specification defines a
standard for the services of the common object model and a standard for
the support services for the model of these objects (CCSDS, 2008).

f) CCSDS-311.0-M-1: It aims at providing a standardized approach to high
level description of architectures and a pool of conventions for space data
systems. It defines concepts; it presents advantages and examples of ar-
chitectural views. Among the objectives there is the goal to establish a
general view of the CCSD’s recommended methodologies, as to define and
develop the reference architecture to the domain. It was inspired by the
model RM-ODP and is compatible with the best software architecture
practices available at ANSI/IEEE 1471-2000 (INSTITUTO FOR ELECTRI-

CAL AND ELECTRONICS ENGINEERS, 2000). This recommendation presents
concepts and conventions representing the perspectives of: business, func-
tional, connectivity, communication and information views (THE CONSUL-

TATIVE COMMITTEE FOR SPACE DATA SYSTEMS, 2008).

g) ECSS-E-ST-40: It encompasses the software engineering aspects of a space
system. It aims at contributing to formulate the requirements of the space
environment. It presents a general view of engineering of the requirements
for the whole life cycle of the space systems projects (ECSS, 2009a).

Hence, SCS-RA should be consistent with these initiatives. Thus, the guidelines and
their contents that contribute to the definition of the architectural requirements were
first identified. An example of this is the API specification for cross support defined
in (THE CONSULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS, 2005), so the SCS-
RA should be compatible with this specification. Table 4.1 shows the reference and
contents of interest captured for the definition of SCS-RA.

64

Table 4.1 - Contents of interest captured for the definition of SCS-RA

Reference Contents of Interest
ECSS-E-ST-70C
(EUROPEAN CO-
OPERATION FOR
SPACE STANDARD-
IZATION (ECSS),
2000)

Ground Station Elements, decomposition, communication.

ECSS-E-ST-40C
(ECSS, 2009a) Requirements, software, process, software engineering.

ECSS-E-ST-70-
31C (EUROPEAN
COOPERATION
FOR SPACE STAN-
DARDIZATION
(ECSS), 2008)

Integration, monitoring and control data, data standards, activi-
ties, events.

CCSDS 910.4-B
(THE CONSULTA-
TIVE COMMITTEE
FOR SPACE DATA
SYSTEMS, 2005)

Cross support, SLE API, proxy, logical view, gateway.

CCSDS-520.1-M
(CCSDS, 2010a)

Operation, telecommand, decomposition, quality of services, ar-
chitecture, domain components, portability, interoperability, se-
curity.

CCSDS-521.1-R
(CCSDS, 2009)

Common services, inter-agency interoperability, operations model,
service directory.

CCSDS-522.0-R
(CCSDS, 2008)

Operations, objects, entity, structure, service recovery, gateway,
composition.

CCSDS-520.0-G
(CCSDS, 2010b)

Operations, telecommand, telemetry, components, interoperabil-
ity, API, independent platform, location service, schedule.

CCSDS-311.0-M
(THE CONSULTA-
TIVE COMMITTEE
FOR SPACE DATA
SYSTEMS, 2008)

Architecture, reference model, conventions, standardization, dis-
tributed system, architectural views, registry.

CCSDS-312.0-G
(THE CONSULTA-
TIVE COMMITTEE
FOR SPACE DATA
SYSTEMS, 2013)

Routing of queries, discovery, repository, registry, components
software.

SOURCE: Author

Besides these groups of information, other information sources were identified: (i)
SCS domain that comprises of researchers and experts in space technology, ground
station operators, satellites controllers, and systems engineers from INPE; (ii) RA
experts, involving researchers, professors, experienced architects, doctoral students
from Institute of Mathematics and Computer Sciences of University at São Paulo
(ICMC-USP); and (iii) systems in the domain, including , ESA’s SCOS-2000, GMV’s
Hifly, CalPoly’s SatNet and INPE’s SatCS. The mapping of the features these sys-

65

tems are shown in Table 4.2.

Table 4.2 - Mapping of the Features in Existing Systems

Feature SCOS-2000 SatNet Hifly SatCS
Telemetry ! ! ! !

Telecommand ! – ! !

Tracking ! ! ! !

Flight Dynamics ! – ! –
Rotors ! – ! –
Monitoring ! ! ! !

Simulation ! – ! –
Schedule ! ! ! !

Ranging ! – ! –
Attitude ! – ! –
Spacecraft ! ! ! !

Ground Station ! ! ! !

Antenna ! ! ! –
Maneuver ! – ! –

SOURCE: Author

4.2 Step RA-2: Architectural Analysis

In this step, we analyzed every information extracted from the last step and require-
ments for our RA were derived from them. In addition, the SCS-RA components
have been identified and defined.

4.2.1 Architectural Requirements of SCS Domain

The set of requirements was defined according to two groups: Architectural Domain
Requirements (ADR) and Technical Architectural Requirements (TAR). In total, 13
ADR and 8 TAR were established and are shown in Table 4.3.

Table 4.3 - SCS-RA Requirements

ID Description
Architectural Domain Requirements

Continued on next page

66

Table 4.3 – SCS-RA Requirements (cont.).
ID Description

ARD-01
The Reference Architecture must enable the development of SCS
to different types of mission and multi-mission.

ARD-02
The Reference Architecture must enable the development of SCS
that share ground segment resources.

ARD-03
The Reference Architecture must enable the development of SCS to
different types of satellite mass categories, including nanosatellites,
microsatellites, nanosatellites, picosatellites, and femtosatellites.

ARD-04
The Reference Architecture must enable the development of SCS
to control several satellites, constellations or clusters.

ARD-05
The Reference Architecture must enable the development of SCS
that provides and executes operations in different SCS.

ARD-06

The Reference Architecture must enable the development of SCS
to control satellites in any orbit, such as: Low Earth Orbit (LEO);
Medium Earth orbit (MEO); High Earth Orbit (HEO); and Geo-
stationary Orbit.

ARD-07
The Reference Architecture must enable the development of SCS
able to store, share, and distribute data acquired from platforms
and payloads.

ARD-08
The Reference Architecture must enable the development of SCS
to different organizational structures.

ARD-09
The Reference Architecture must enable the development of SCS
that monitor the health status of ground station resources and satel-
lites.

ARD-10
The Reference Architecture must enable the development of SCS
that supports the exchange of data standardized by the domain.

ARD-11
The Reference Architecture must enable the development of SCS
with the frequency bands of communication, such as, UHF, VHF
and Band S.

ARD-12
The Reference Architecture must enable the development of SCS
that can coordinate, monitor, and acquire data from different types
of ground resources.

ARD-13
The Reference Architecture must allow the development of SCS
that are compliant with applicable laws, regulations, and standards.

Technical Architectural Requirements
Continued on next page

67

Table 4.3 – SCS-RA Requirements (cont.).
ID Description

TAR-01
The Reference Architecture must enable the development of SCS
through plug-and-play software components.

TAR-02
The Reference Architecture must enable the development of SCS
with blocks developed in different programming languages.

TAR-03
The Reference Architecture must enable the development of inter-
operable SCS.

TAR-04
The Reference Architecture must enable the development of SCS
through dynamic architecture.

TAR-05
The Reference Architecture must enable the instantiation of SCS
through composition of components.

TAR-06
The Reference Architecture must enable the development of SCS
that allow the use of heterogeneous databases.

TAR-07
The Reference Architecture must enable the development of SCS
that make scalability easy.

TAR-08
The Reference Architecture must enable the development of SCS
with monitoring and management of quality attributes.

SOURCE: Author.

In addition to the requirements mentioned, there are several requirements to be
addressed, such as data security, performance and usability. These attributes are
needfuls requirements and not specific to a domain, so these requirements are also
considered in the development of SCS-RA.

4.2.2 Components of SCS Domain

A good exercise to comprehend complex domains is to execute and organize its de-
composition. Considering the complexities of the SCS’s domain and aiming at the
division of responsibilities, we observed the need to perform a conceptual decompo-
sition. To perform this decomposition we considered the architectural characteristics
and requirements anteriorly presented. The result of this analysis defined the fol-
lowing functional categories:

a) Coordination category: It is responsible for the discovery and for sharing
the resources.

b) Management category: It is responsible for managing the data flux and for
controlling operations.

68

c) Business category: It is responsible for the functionalities of the SCS’s
domain.

d) Persistence category: It is responsible for the persistence and for recovering
the data.

The conceptual decomposition aims at separating the complexity of the domain to
identify the components and their categorization. The decomposition of the domain
does not refer to the definition of architectural layers or to the modularization of
the domain.

Identification of the Domain’s components The identification of the components
consists in describing the functionalities of each identified component. Table 4.4
presents the previously defined functional categories and their components. The
identification and description of SCS components are detailed in the sequence.

Table 4.4 - Category

Category Components

Business
Telecommand, Telemetry, Tracking, Flight Dynamics, Space-
craft, Ground Station, Rotors, Antenna, Simulation, Monitor-
ing, Schedule, Ranging, Attitude, Maneuver

Management Gateway, Security, Routing, GUI, Registry
Coordination Discovery, Composity, Administrator, Mashup

SOURCE: Author

4.2.2.1 Registry Component

All running components must be registered. In this register, they need to inform
their location through an IP address, their access port, and available interfaces. The
Registry Component stores this data and provides it to the Discovery Component.
The information of the components is dynamic and the Registry Component needs
to update these data dynamically.

4.2.2.2 Mashup Component

When organizations are interoperating, some information must be provided in a
unified way. The Mashup Component is responsible for researching and providing

69

this information. The information refers to the satellites, ground stations and the
scheduling of operations.

4.2.2.3 Discovery Component

The SCS-RA components are independent, have execution responsibilities and, work
in a collaborative way. These components are registered during its execution and the
Discovery Component provides information from these components. The information
provided are: physical execution location; its access address; interfaces; etc.

4.2.2.4 Composition Component

The Composition Component is responsible for instantiating an SCS, which uses a
composition process. This process searches and selects components stored in reposi-
tories and the computational resources are set up. After the download and initiation
of components, the instance of SCS is provided for use.

Administrator Component: This component manages and monitors the computa-
tional resources(memory, CPU, and disk) of each component running. Resources
consumed by the components are assigned according to the requirements of each
component and can be changed at runtime.

4.2.2.5 Orbit Calculator Component

This component is responsible for projecting orbit parameters for the satellite and
its passes over ground stations. These parameters base themselves on the observed
data (determination of the state) and then propagate the orbit along time. The
determination of the orbit and the project for the positioning of the satellites is
done considering the Keplerian elements, such as the angular momentum, orbital
inclination, right ascension of the ascending node, eccentricity, argument of perigee,
etc.

The Keplerian elements are also included in the TLEs (Two Line Elements)1, which
correspond to a data format with two lines of 69 digits. With this format (TLE),
it is possible to define the orbit trajectory, through the application of formulas and
also considering the identification of the space element provided in a defined format
according to (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2007).

1https://www.celestrak.com/NORAD/elements/

70

4.2.2.6 Telemetry Component

The Telemetry Component does the functionalities of the platform telemetry and of
the payload telemetry. The platform telemetry is stored and decoded to verify the
state values of the many subsystems of a satellite. These values are used to monitor
and to control the functioning of the satellite. The payload telemetry is received,
stored and forwarded to the mission center.

4.2.2.7 Maneuver Component

The Maneuver Component refers to the process responsible for designing and gen-
erating the sequences of maneuvers and it is done sending remote control. These
sequences usually use propulsion shots to change the orbit of the satellite. The ma-
neuver is the key to maintain the orbit, the attitude, and the planning activities for
the maneuvers depend heavily on the satellite’s and the mission’s details.

4.2.2.8 Telecommand Component

The telecommand component consists in the activities of planning, monitoring and
sending the remote control to the ground stations. The telecommand is formed by
a data structure, which defines a data package. The telecommand has a schedule to
execute, a sequence of execution and it may be scheduled in many ground stations.

4.2.2.9 Schedule Component

The schedule component refers to the scheduling of all the SCS’s activities. These
activities consist of the scheduling of telemetry, remote control and maneuvers. The
scheduling process results in a chronological pool of scheduled activities. Through co-
operation among space agencies, the scheduling of activities is done in a distributed
and collaborative way.

4.2.2.10 Spacecraft Component

The spacecraft component contains all the functionalities and the specification of the
satellite. These are data such as: unique spacecraft identifier, its subsystems with its
operational parameters, mass values, attitude values, orbit values, etc. These values
are stored, recovered and afterwards they are compared during the monitoring and
controlling process of the satellite.

71

4.2.2.11 Ground Station Component

The ground station component has information and functionalities of the ground
stations, which do the linkage with the satellites. This information is necessary to do
the controlling operations of the satellites. Some relevant data are: the position with
the latitude and the longitude; the kind of station (fixed or mobile, tracking station
or payload reception station); kinds of transceiver, transmitter, modem, network
protocols, etc. The SCS is responsible for the monitoring of this equipment.

4.2.2.12 Tracking Component

The tracking component presents the satellite’s position almost in real-time. The po-
sitioning is relative to its global position. The satellite’s position is provided through
the Orbit Calculation component. The satellite is presented in a visual map with
the current position and the tracking of the next positions and passes.

4.2.2.13 Gateway Component

The Gateway component centralizes the functionalities of security, router and in-
terfaces for the operators, through the composition of these components. These
functionalities must be centralized to better the control and the managing.

4.3 Step RA-3: Architectural Synthesis

The architectural synthesis was conducted considering the objectives of the SCS-RA,
architectural requirements, and information sources previously identified. SCS-RA
is described using architectural views, which are an effective way to describe RA
(NAKAGAWA; MALDONADO, 2008; GUESSI et al., 2011). The use of views to describe
architectures is defined by ISO/IEC/IEEE 42010 (INSTITUTO FOR ELECTRICAL

AND ELECTRONICS ENGINEERS, 2007) and also used to describe space data systems
(THE CONSULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS, 2008). During this
step, the following views were considered and are described hereafter: enterprise,
structural, data flow, logical, and composition.

4.3.1 Enterprise View

The enterprise view is one of the views that has been already used to depict space
data systems (THE CONSULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS, 2008).
The ground segment has several forms of organization and involves several con-
stituent systems. Each space agency defines its physical structures (EUROPEAN CO-

72

OPERATION FOR SPACE STANDARDIZATION (ECSS), 2000) and a RA for SCS must
serve different organizational forms. SCS-RA is a distributed and dynamic archi-
tecture, which means that SCS are run in several places and have potential to dy-
namically change their running. This process happens through software components
that run independently of any networked computational structure. This means that
a SCS is the constitution of one or more software components running in different
organizational structures.

This view was designed using ArchiMate, an enterprise architecture modeling lan-
guage based on IEEE 1471 standard (INSTITUTO FOR ELECTRICAL AND ELECTRON-

ICS ENGINEERS, 2000) and maintained by Open Group2. Figure 4.1 shows how an
instance of a SCS based on SCS-RA is deployed in accordance with organizational
structures presented by ECSS standard in(EUROPEAN COOPERATION FOR SPACE

STANDARDIZATION (ECSS), 2000).

Figure 4.1 - Enterprise View of SCS-RA in organizational structures ECSS Standard.

SOURCE: Author

4.3.2 Structural View

The structural view makes it possible to delimit the context of the RA, as well as its
internal elements. The main structures of SCS-RA are components, which run inde-

2http://www.opengroup.org

73

pendently and could be developed by any programming language. SCS-RA defines
all components to serve the satellite control domain. During the instantiation of
SCS-RA, each SCS must define the most appropriate components for every mission.

This view was designed using UML components diagram, as shown in Figure 4.2.
This view has 21 components that encapsulate the SCS functionalities. In particular,
the gateway component consists of three sub-components (Security, GUI, and Rout-
ing). Each component has a textual description of their functionalities and APIs for
definition of provided and required interfaces.

Figure 4.2 - Structural View of SCS-RA.

SOURCE: Author

4.3.3 Data Flow View

The data flow among the components of SCS is identified in this view and is shown in
Figure 4.3, and it was also designed using the UML component diagram. For better
understanding, these components are classified into four categories: coordination,
management, business, and persistence. For legibility reasons, only telecommand,
telemetry, tracking, and schedule components are represented.

4.3.4 Logical View

The logical view provides a basis for understanding the structure and organization of
SCS-RA, and it is decomposed into components that interoperate through interfaces.

74

Figure 4.3 - Data Flow View.

SOURCE: Author

Components encapsulate the SCS functionalities and are decomposed into packages
that have several objects. ArchiMate was once again used to design this view and
Figure 4.4 shows the components of SCS and in particular the Spacecraft component
decomposition in packages and the objects that encompass the service package.

4.3.5 Composition View

SCS-RA enables the addition, deletion, and exchange of software components that
are selected to better meet the operational needs of a particular SCS. The instan-
tiation of an SCS is performed through the components composition process. This
process is performed visually, textually or through models by Composition compo-
nent. This component searches for components stored in repositories, components
required for a specified SCS are selected and computational resources are set up.
After the download and initiation of components, the instance of SCS is provided
for use. The illustration of this process is shown in the composition view of SCS-RA
in Figure 4.5.

75

Figure 4.4 - Logical View of SCS-RA.

SOURCE: Author

Figure 4.5 - Composition View of SCS-RA.

SOURCE: Author

76

4.4 Step RA-4: Architectural Evaluation

The last step to be accomplished for the construction of a RA refers to its evaluation.
To further complete this important step, we conducted the evaluation in different
ways. First, the reference architecture was verified by checking the requirements with
the architectural design. Second, a conceptual validation is presented in which the
SCS-RA components were used for mapping the existing SCS. Finally, an validation
through the RAModel was performed.

4.4.1 Requirements Mapping to the Architectural Design

In Step RA-2 requirements regarding SCS-RA are presented. As a verification these
requirements and our architectural design are compared in Table 4.5. For each re-
quirement we describe what part of the reference architecture addresses the require-
ment. During this mapping, we conclude that all requirements of SCS-RA have
correlation with the architectural design of our RA.

Table 4.5 - Requirements Mapping to the Architectural Design

Requirement Architectural Verification

TAR-01

The development of SCS through plug-and-play software com-
ponents is addressed in the SCS-RA part:

• Definition of components as main structure;

• Non-dependency of frameworks or application
servers to execute the components;

• Use of components with portability regarding the
platform.

Continued on next page

77

Table 4.5 – Requirements Mapping to the Architectural Design (cont.).
Requirement Architectural Verification

TAR-02

The development of SCS with blocks developed in different
programming languages is addressed in the SCS-RA part:

• Definition of components as independent of the pro-
gramming language;

• Definition of APIs as a way to provide the compo-
nents’ functionalities;

• Definition of open-source and standardized protocols
as access way to the component.

TAR-03

The development of interoperable SCS is addressed in the
SCS-RA part:

• Definition of components as independent of the pro-
gramming language;

• Definition of open-source and standardized protocols
as access way to the component.

TAR-04

The development of SCS through dynamic architecture is ad-
dressed in the SCS-RA part:

• Definition of instantiation in the components’ level;

• Configuration and definition of quality attributes in
components’ level;

• Instantiation of new components considering the
computational resources;

• Definition of the functionalities in the components’
level.

Continued on next page

78

Table 4.5 – Requirements Mapping to the Architectural Design (cont.).
Requirement Architectural Verification

TAR-05

The instantiation of SCS through composition of components
is addressed in the SCS-RA part:

• Creation of components repository;

• Creation of Composition component;

• Creation of Registry component;

• Registration of components during their execution.

TAR-06

The development of SCS that allow the use of heterogeneous
databases is addressed in the SCS-RA part:

• Definition of data persistence for each component;

• Each persistent component is responsible for defin-
ing its database.

TAR-07

The development of SCS that make scalability easy is ad-
dressed in the SCS-RA part:

• Definition of components as independent structures;

• Scalability in the components’ level;

• Horizontal scalability by functionalities defined in
components;

• Scalability done in different platforms.

Continued on next page

79

Table 4.5 – Requirements Mapping to the Architectural Design (cont.).
Requirement Architectural Verification

TAR-08

The development of SCS with monitoring and management
of quality attributes is addressed in the SCS-RA part:

• Configuration and definition of quality attributes in
components’ level;

• Definition of components as main structure;

• Requirements monitoring and controlling in compo-
nents’ level.

SOURCE: Author.

4.4.2 Validation of the SCS-RA by Mapping of the SCS-RA Compo-
nents to the Existing Systems

Comparison between the systems functionalities mentioned in Section 3.2 and the
architectural design: The experience embodied in successful real-world systems is an
important quality parameter to the definition of RA (BAYER et al., 2004). Table 4.6
shows this mapping.

Table 4.6 - Mapping of the SCS-RA components to the Existing Systems

SCS-RA Components SCOS-2000 SatNet Hifly SatCS
Telemetry ! ! ! !

Telecommand ! – ! !

Tracking ! ! ! !

Flight Dynamics ! – ! –
Rotors ! – ! –
Orbital Calculator ! – ! –
Monitoring ! ! ! !

Simulation ! – ! –
Composition – – – –
Schedule ! ! ! !

Mashup – – – –
Ranging ! – ! –
Attitude ! – ! –

Continued on next page

80

Table 4.6 – Mapping of the SCS-RA components to the(cont.).
SCS-RA Components SCOS-2000 SatNet Hifly SatCS
Spacecraft ! ! ! !

Ground Station ! ! ! !

Administrator ! – ! !

Antenna ! ! ! –
Registry – ! – –
Discovery – – – –
Maneuver ! – ! –
Gateway – ! – –
Routing – ! – –

SOURCE: Author.

This comparison showed us that just the Mashup, Discovery, and Composition com-
ponents are not directly related to the functionalities of these systems. However,
they are components that add value to integration and instantiation of systems.

4.4.3 Validation through the RAModel

The RAModel is a reference model specific to RA that provides a complete list of
elements needed for constituting a RA. These elements are classified in four groups
(NAKAGAWA et al., 2012): Domain, Application, Infrastructure, and Crosscutting. To
verify the relevant elements for SCS-RA, we accomplished a comparison with the
elements established by the RAModel. Table 4.7 illustrates part of such comparison.

Table 4.7 - Comparison between the elements of RAModel and SCS-RA.

Elements Description SCS-RA
Application Group

Functional
requirements

Set of functional requirements that are common in
systems developed using this architecture.

!

Goal and needs Intention of the reference architecture and needs
that could be covered by the reference architecture.

!

Constraints Constraints presented by the reference architec-
ture and/or constraints in specific part of a ref-
erence architecture.

!

Continued on next page

81

Table 4.7 – Comparison between the elements (cont.).
Elements Description SCS-RA
Domain Data Common data found in systems of the domain.

These data are presented in a higher level of ab-
straction, considering the higher level of abstrac-
tion of the reference architecture.

!

Limitations Limitations presented by the reference architecture
and/or limitations in specific part of a reference
architecture.

!

Risks Risks in using the reference architecture and/or
risks in using some part of such architecture.

- -

Scope Scope that is covered by the reference architecture,
i.e., the set of systems developed based on the ref-
erence architecture.

!

Domain Group
Legislations,
standards and
regulations

Laws, standards, and regulations existing in the
domain that should be present in systems resulted
from the reference architecture.

- -

Quality at-
tributes

Quality attributes, for instance, maintainability,
portability, and scalability, that are desired in sys-
tems resulted from the reference architecture.

!

System compli-
ance

Means to verify if systems developed from the
reference architecture follow existing legislations,
standards, and regulations.

- -

Infrastructure Group
General struc-
ture

General structure of the reference architecture,
represented sometimes by using existing architec-
tural styles.

!

Software ele-
ments

Elements of software present in the reference archi-
tecture, e.g., subsystems and classes, which could
be used to develop software systems.

!

Best practices
and guidelines

Well-experimented practices to develop systems of
the domain, These practices could be accompanied
by guidelines describing how to apply these prac-
tices.

!

Continued on next page

82

Table 4.7 – Comparison between the elements (cont.).
Elements Description SCS-RA
Hardware ele-
ments

Elements of hardware, such as server and devices,
which host systems resulted from the reference ar-
chitecture.

- -

Crosscutting Group
General struc-
ture

General structure of the reference architecture,
represented sometimes by using existing architec-
tural styles.

!

Internal commu-
nication

Means by which occur exchange of information
among internal parts of systems resulted from the
reference architecture.

!

Decisions Decisions, including description of the decision, op-
tions (alternatives), rationale, and tradeoffs, must
be reported during the development of the refer-
ence architecture.

- -

Domain Termi-
nology

Set of terms of the domain that are widely ac-
cepted by the community related to that domain
and are, therefore, used in the description of the
reference architecture.

- -

SOURCE: Author.

As a result, we can notice that SCS-RA conforms to almost all elements of RAModel.
Nevertheless, some of the missing elements refer to limitations of SCS-RA and other
factors such as risks, decisions, terminology, legislations and system compliance,
which are due to the particularities of the application domain and can still be further
added to this RA.

83

4.5 Final Remarks

This chapter presented SCS-RA, a reference architecture for SCS. The establishment
of SCS-RA was guided by ProSA-RA. Several sources of information were investi-
gated and requirements were defined according to two groups: Architectural Domain
Requirements and Technical Architectural Requirements. SCS-RA was described in
views, represented in semi-formal notations by ArchiMate and UML language, to
address different concerns and stakeholders. The following views were described:
enterprise, structural, data flow, logical, and composition.

SCS-Ra has the capacity to compose systems in which: components may be written
in different programming languages, components may be running concurrently in
a distributed, heterogeneous environment without shared address spaces, and ar-
chitectures may be changed at runtime. SCS-RA contributes to support the devel-
opment and evolution of SCS, contributing to improve interoperability, structuring
and maintaining SCS, and contributing to improve reuse of software components
when developed based on SCS-RA.

The evaluation of SCS-RA was accomplished through the requirements mapping
to the architectural design, mapping of the SCS-RA components to the existing
systems, and through the use RAModel. In addition to, the architectural evaluation,
we also conducted a case study to provide evidences on the viability of SCS-RA and
observe possible benefits of its adoption. This case study is discussed in the next
chapter.

84

5 CASE STUDY - USING SCS-RA FOR DEVELOPMENT OF MI-
CROSATELLITES CONTROL SYSTEM

In this chapter we present a case study of the use of SCS-RA in the development
of a SCS. We instantiated a concrete software architecture in conformance with our
RA, and we proceeded subsequently with the development of a software product for
a MicroSatellites Control System (MicroSatCS). The development of MicroSatCS
contributed to observe benefits of adopting SCS-RA and to supply evidence on its
viability.

We instantiated a concrete software architecture in conformance with our RA, and
we proceeded subsequently with the software development of a software product
for a MicroSatellites Control System. The MicroSatCS Development Process was
based on the life cycle defined by ECSS in EUROPEAN COOPERATION FOR
SPACE STANDARDIZATION (ECSS) (2004). Section 5.2 shows an overview of
The MicroSatCS Development Process. Section 5.3 briefly presents the Architectural
Design Process. Section 5.4 briefly presents the Software Design & Implementation
Process. Section 5.5 shows the Software Operation Process.

5.1 MicroSatCS Overview

Currently, as a consequence of considerable amount of projects and prospects of
the increasing number of microsatellites, a new control system for this particular
type of satellite needs to be developed. Thus, some characteristics were considered
during the development: (i) a large amount of small satellites imposes a greater
computational and operational capacity to the MicroSatCS; (ii) the operations in
shared ground stations increase the coordination burden for monitoring and control
of the satellites; (iii) the lifetime of small satellites is usually smaller when compared
to the larger ones; and (iv) the development of MicroSatCS must be compatible with
the limited budget for small satellites missions.

5.2 The MicroSatCS Development Process

In systems engineering, the conceptual design of a space system is constituted into
distinct phases, as presented in (NASA, 2007; EUROPEAN COOPERATION FOR SPACE

STANDARDIZATION (ECSS), 2004). Each phase is dominated by a main activity and
finishes with a review of the work done. The software development process for SCS,
when included in this context, should correlate to these phases.

The development of MicroSatCS was based on the life cycle defined by ECSS in EU-

85

ROPEAN COOPERATION FOR SPACE STANDARDIZATION (ECSS) (2004),
which consists of phases: 0: Mission analysis/needs identification; A: Feasibility; B:
Preliminary definition: C: Detailed definition; D: Qualification and production; E:
Operations/utilization; and F: Disposal. The transition of one phase to the next one
is controlled by reviews (System Requirements Review (SRR), Preliminary Design
Review (PDR), Critical Design Review (CDR), Qualification Review (QR), Accep-
tance Review (AR), and Operational Readiness Review (ORR)). These reviews are
relevant to the software engineering standard process defined by ECSS in ECSS
(2009b), which offers the possibility to anticipate the PDR in a Software Require-
ments Review (SWRR) and the CDR into a Design Dedicated Reviews (DDR). In
compliance with these standards, Figure 5.1 shows the MicroSatCS development life
cycle. The architectural design process was guided by SCS-RA, as detailed in the
sequence.

Figure 5.1 - MicroSatCS Development Life Cycle.

SOURCE: Adapted from ECSS (2009b).

86

5.3 Architectural Design Process

The main activity carried out during this process involved identifying and represent-
ing major system components and their communications. The components necessary
to meet the functional and non-functional requirements of MicroSatCS were iden-
tified from SCS-RA, which defines all components to the satellites control domain.
The components that make up MicroSatCS are shown in Figure 5.2 through of a
logical view.

Figure 5.2 - Logic View of MicroSatCS.

SOURCE: Author

MicroSatCS is a distributed system, its components have the capability of dynam-
ically changing their place of execution and to scale according to the performance
requirements and the capability of servers resources. This contributes to improve
interoperability, scalability, and sharing of terrestrial resources. Figure 5.3 shows a
deployment view considering our organizational structure, which has three ground
stations located in the cities of Cuibá in the state of Mato Grosso do Sul, Alcân-
tara in the state of Maranhão, and São José dos Campos in the state of São Paulo.
Besides that, the Science Center and SCC also in São José dos Campos.

87

Figure 5.3 - Deployment View of MicroSatCS.

SOURCE: Author

After the architectural design process has been completed, the difference between
estimated effort (which did not consider the use of SCS-RA) and real effort was
analyzed. This analysis considered mainly quantitative data and results achieved
showed a reduction of 65% in terms of person-hours effort. This reduction occurred
mainly during the definition of architectural requirements, in the definition of styles
and patterns, and in the production of architectural models.

5.4 Software Design & Implementation Process

This process consisted of designing software items, coding them, and also doing
integration. During the detailed design, an analysis was performed to define the
software component model. Component models have been introduced in different
domains (LAU; WANG, 2007; CRNKOVIC et al., 2011; LAU; WANG, 2005). For the
domain of space systems, some initiatives have been presented for satellite on-board
software (PANUNZIO, 2011; PANUNZIO; VARDANEGA, 2010). Domain components are
the most difficult kind of component for developing and are more costly because they
need a huge infrastructure for being deployed, but, productivity may increase 1000%
(HEINEMAN; COUNCILL, 2001).

The definition of the domain component for SCS considered the technical require-

88

ments of interoperability, independence, and scalability described in SCS-RA. Thus,
to meet these requirements in a satisfactory degree of completeness was defined a
Software Component Model for Satellites Control Domain (CubeSoft). CubeSoft
component model is an abstractly described component model, its definition is in-
tended to guide the component implementation process for SCS. CubeSoft is non-
proprietary, language and platform independent component architecture. It allows
application programmers to design and implement a distributed application inde-
pendent of specific programming languages, operating systems or vendor-specific
communication infrastructures. Figure 5.4 shows a feature diagram with the Cube-
Soft taxonomy.

Figure 5.4 - CubeSoft Taxonomy

SOURCE: Author

In this diagram, the features and subfeatures of CubeSoft are depicted. A detailed
description was accomplished in a component specification document. CubeSoft al-
lows the implementation of components in different programming languages, execu-
tion in separate and isolated process address spaces, scalability at component level,
portability of the execution platform through its execution environment. Moreover,
we defined additional architectural decisions to meet these requirements, as follows:

a) The environment for deployment and execution is defined through the
use of Open Container Initiative (OCI)1 or Unikernel2. CubeSofts for Mi-
croSatCS used the specifications OCI as execution environment, which has
portability in kernel level and favors the execution of components in inde-

1https://www.opencontainers.org
2http://unikernel.org/

89

pendent platforms. Quality attributes such as, isolation and security, are
the responsibility of this environment. Scalability was managed by Swarm
Cluster3;

b) Applications programming interfaces (APIs) are defined by Interface De-
scription Language (IDL) for RESTful and gRPC4. Access is via HTTP
protocol and the documentation was made using OPENAPI5 specification.
These standards are open and widely adopted, what can contribute to im-
prove interoperability;

c) Meta Information about the component must be made available during the
component deployment and execution process. Examples are: execution IP
address, computational resources, and configurations for deployment.

d) The application of SCS-RA enables developing components in different
technologies or reusing components. CubeSofts developed are: (i) Orbital
Calculator using Python6 and Flask7; (ii) Telemetry, Telecommand, Track-
ing, Flight Dynamic, Routing, Schedule, Ground Station, Composition,
Security, Mashup using Java8, Spring Framework9; and (iii) GUI using
JavaScript, NodeJs10, CSS, HTML, AngularJs11; Components reused are:
(i) Discovery and Registry from Netflix/eureka12; (ii) Administrator from
Rancher13; and (iii) Monitoring from Open MCT framework 14 (an open
source framework developed at NASA’s Ames Research Center);

e) CubeSoft must have an access address to make your available interfaces
available and their functionality . Access must be made through IP ad-
dressing and an access port. The IP address can be local or external for
access between hosts;

f) CubeSoft must provide mechanisms to perform the registration during its
execution. This registry contributes to identify your location and to manage
your computing resources.

3https://docs.docker.com/engine/swarm
4https://grpc.io
5https://www.openapis.org
6https://www.python.org/
7http://flask.pocoo.org
8http://www.java.com
9https://spring.io

10https://nodejs.org
11https://angularjs.org
12http://github.com/Netflix/eureka
13http://rancher.com
14https://nasa.github.io/openmct

90

5.5 Software Operation Process

This section briefly presents the MicroSatCS in operation. MicroSatCS was instan-
tiated visually from the Composition component, as shown in Figure 5.5. The in-
stantiation allows to define computational resources such as memory, CPU and disk
for each component. The components were stored in the Docker repository15.

Figure 5.5 - Instantiation of MicroSatCS.

SOURCE: Author

The GUI component provides the operations of MicroSatCS through a browser and
Figure 5.6 shows some typical operations of MicroSatCS and, in particular, the
tracking of UbatubaSat Picosatellite.

The computational resources consumed by the components during their execution,
such as capacities of memory, CPU, network, and storage, are assigned accord-
ing to each components requirements. The Administrator component monitors and
manages the computational resources of each component as Figure 5.7 shows, for
example, those being the resources consumed by Gateway Component in operation.

15https://hub.docker.com

91

Figure 5.6 - MicroSatCS and Tracking of Satellite.

SOURCE: Author

Figure 5.7 - Computational Resources - Gateway Component

SOURCE: Author

92

In the operation of satellites, it is very important to monitor the health status of the
systems for detecting any anomalies in the housekeeping data as soon as possible.
Monitoring Component can provide data visualization about such health status in
different ways.

The application of SCS-RA and use of CubeSoft enable developing components in
different technologies or reusing components. Thus, the Monitoring component was
developed from Open MCT framework16, an open source framework for mission
control. It is developed at NASA’s Ames Research Center in collaboration with
the Jet Propulsion Laboratory. Figure 5.8 shows the telemetry data of voltage of
Tancredo-I Picosatellite.

Figure 5.8 - Monitoring Component - Tancredo-I picosat telemetry in the UbatubaSat
Project.

SOURCE: Author

5.6 Final Remarks

In this section briefly presents the application of SCS-RA, showing its usefulness
and benefits, during the development of MicroSatCS, in particular during the de-

16https://nasa.github.io/openmct

93

sign, implementation and operation processes. Results indicate that SCS-RA can
contribute to the development of SCS software architectures. However, other case
studies are necessary and will be conducted to confirm the obtained results, identify
possible improvements for the reference architecture, and increase the confidence on
its adoption.

The next chapter concludes this thesis, summarizing the main contributions, dis-
cussing general limitations, and mentioning future work.

94

6 CONCLUSIONS AND FUTURE WORKS

6.1 Discussion

The establishment of SCS-RA requires a deep knowledge on diverse subjects from
different stakeholders, as well as, the need of an initial investment with regard to
time and cost. However, a significant reduction of time and effort was observed
during the comparison of the initial effort estimate, which did not consider the
use of SCS-RA, with the real effort of development with the use of SCS-RA. This
analysis considered mainly quantitative data and results achieved showed an effort
reduction of 65% in terms of person-hours during architectural design process. In
addition to the effort reduction observed in our analysis, a cost-benefit analysis could
be carried out through a particular economic model for RA (MARTÍNEZ-FERNÁNDEZ

et al., 2013).

Using SCS-RA, best practices of SCS development increase the productivity of de-
velopers. MicroSatCS functionalities were more easily built with components devel-
oped and provided from different providers. Hence, MicroSatCS has benefited from
reduced development and integration effort, besides reuse, which is an approach that
has several other benefits (LAU; WANG, 2007; LI et al., 2007; MILI et al., 1995).

6.2 Final Remarks

In this thesis, we presented a RA for SCS, referred to as SCS-RA. The main con-
tribution of SCS-RA lies in providing guidelines for the development and evolution
of SCS. Therefore, these systems could be easily built from this architecture, reduc-
ing time, efforts, and rework and improving interoperability and sharing of ground
resources among space organizations. SCS-RA was proposed following a systematic
process and during the evaluations performed, it was observed that SCS-RA is com-
plete, since it presents the most important elements that should be present in a RA.
In addition, the development of MicroSatCS contributed to observe the benefits of
adopting SCS-RA and to supply evidence on its viability.

An important contribution of this work is to make the reference architecture avail-
able for any government or research institution that intends to create a satellite
architecture control system. We deliver knowledge and expertise about this domain
encapsulated as a reference architecture, and make it available for world-wide adop-
tion and improvement, fostering the advancements of sciences and supporting the
development of space technologies for other countries.

95

Results achieved from usage of SCS-RA during the development of a Microsatel-
lite Control System for INPE, a Brazilian National Institute for Space Research,
showed a significant reduction of time and effort. Furthermore during operational
phase, benefits of interoperability, scalability, and sharing of ground resources were
observed. As a RA gathers knowledge acquired from a domain and structures it in
a reusable and extensible form (GRACIANO NETO et al., 2015), forthcoming software
products for SCS could be inherently interoperable, as they could be instantiated
from a common RA, following shared standards, and facilitating resources sharing.
As a consequence, several other SCS could be built from SCS-RA.

Besides the positive results obtained so far, we highlight the need to conduct a
more complete evaluation involving different integrated SCS. From this work, it can
be concluded that there are still challenges to be met, especially, in the descrip-
tion, maintenance, and sustainability of SCS-RA to be performed by several space
organizations.

6.3 List of Publications Attained

Excerpts of this thesis have been either published or submitted for the appreciation
of editorial boards of journals, conferences, symposiums, and workshops, according
to the abstracts and articles presented below.

Event: II Latin American IAA CubeSat Workshop. February 28 to March 2, 2016.
Ingleses Beach, Florianopolis, Brazil

Title: Integration of the INPE Ground Station into the SatNet Network

Authors: Ricardo Tubío-Pardavia, Jorge Enrique Espindola Diaz, Adair José
Rohling, Mauricio Gonçalves Vieira Ferreira, Walter Abrahao Dos Santos, Jordi
Puig-Suari, Fernando Aguado-Agelet.

Abstract: The researchers of the Ground Station at the National Institute for
Space Research (INPE) in Brazil have started working, together with the main
developers of the SATNet network, in the integration of their ground segment into
that very same network. This paper presents the description of that integration
process together with the results obtained and with a description of the current
and upcoming small satellite projects in Brazil and in Latin America. The SATNet
network aims at incorporating the capabilities of all the already deployed university
Ground Stations into a single, coherent and usable resource. The approach used
for this network is based on heterogeneity, allowing the integration of very different

96

ground stations into a single ground system.

Event: 7o Workshop em Engenharia e Tecnologia Espaciais 2016, September 23-24,
2016. São Jose dos Campos, Brazil.

Title: CubeSoft : Componentes de Software para Desenvolvimento de Sistemas de
Controle de Satélites

Authors: Adair José Rohling, Mauricio Gonçalves Vieira Ferreira, Walter Abrahao
Dos Santos.

Abstract: Aplicações do domínio de controle de satélites são complexas e estão
em constante evolução em consequência de avanços tecnológicos. Atender requisi-
tos de portabilidade, desenvolvimento e reúso de componentes torna-se um desafio,
principalmente para aplicações monolíticas que utilizam camadas como estrutura
principal de decomposição e para aplicações desenvolvidas em diferentes modelos de
componentes de software. Neste contexto, este trabalho propõe o uso de CubeSofts
como estrutura principal para aplicações deste domínio. CubeSofts são componentes
de software definidos através de unidades funcionais independentes encapsuladas em
containers. O estilo arquitetural microservices é aplicado na definição de CubeSofts
como estrutura principal das aplicações e containers são usados como ambiente de
execução para diferentes modelos de componentes. Uma arquitetura de software é
apresentada como resultado da aplicação de CubeSofts em sistemas de controle de
satélites.

Event: 26th Annual INCOSE International Symposium (IS2016) Edinburgh, July
18-21, 2016

Title: Concurrent Structured Analysis SE method applied to a solar irradiance
monitor satellite

Authors: Rodrigo Britto Maria, Halph Macedo Fraulob, Adrielle Chiaki, Gabriel
Gustavo Coronel Mariño, Adair José Rohling, Geilson Loureiro.

Abstract: The traditional Systems Engineering approach on systems development
leans toward the product in development, in all levels of abstraction, while the tra-
ditional concurrent engineering approach focuses on both product and organization
simultaneous development, although considering only lower levels of abstraction. For
complex systems, the Concurrent Structured Analysis method is a better fit for the
SE process, since it considers both the product and organization simultaneous de-

97

velopment, in all levels of abstraction. The underlying concepts of this method were
applied to the development of a solar irradiance monitor satellite. Several analyses
were performed on selected scenarios of the system life cycle processes to exemplify
the application of the concepts. The final outcome was a proposal design of the
product and the organization needed to implement its life cycle processes. It was
noted that the same scenario can influence the product and the organization, both
requiring to be considered in the analysis.

Event: Symposium on Applied Computing, Pau, France, April 9–13, 2018 (SAC’18).

Title: Externalizing Patterns for Simulations in Software Engineering of Systems-
of-Systems

Authors: Valdemar Vicente Graciano Neto, Wallace Manzano, Adair José Rohling,
Mauricio Gonçalves Vieira Ferreira, Tiago Volpato, Elisa Yumi Nakagawa.

Abstract: Systems-of-Systems (SoS) often support critical domains. They must
be trustworthy, i.e., they must keep their operation in progress, being not subject
to failures, as they can cause potential damages and hazards to human integrity.
Simulations are a recurrent approach in SoS development, as they can anticipate
potential failures, consequently increasing the level of trustworthiness and quality
exhibited by a SoS. Nevertheless, simulation is still software and demands engineer-
ing. Moreover, many simulation formalisms are not trivial of specifying, sometimes
tangling software an hardware details to program an executable simulation. Thus,
the aim of this paper is contributing for software engineering of SoS by externalizing
two patterns for the conception of SoS simulations. We evaluated our patterns by
applying them in a case study in two different domains. For both, patterns were
successfully applied during automatic generation of functional code, supporting the
execution of SoS simulations and prediction of SoS behavior at design-time.

Event: XIV Simpósio Brasileiro de Sistemas de Informação (SBSI 2018).

Title: A Study on Goals Specification for Systems-of-Information Systems: Design
Principles and Conceptual Model

Authors: Valdemar Vicente Graciano Neto, Flavio Horita, Everton Cavalcante,
Adair José Rohling, Jamal El-Hachem, Daniel Santos, Elisa Yumi Nakagawa.

Abstract: Software-intensive information systems can be aggregated to form
Systems-of-Information Systems (SoIS) and provide novel functionalities to achieve

98

high-level goals, also known as missions. Missions represent an important concern
in this context since they are related to both capabilities of constituent systems and
how they shall interact with each other within a SoIS. Due to such a relevant role,
we conducted an exploratory study to evaluate how a state-of-the-art language for
mission specification has supported mission (renamed as goal in this study) specifi-
cation for SoIS. This investigation has been carried out in the context of a space SoIS
composed of independent ground information systems, satellites and other systems
to provide territory monitoring and environmental data distribution. Results indi-
cate a lack of support for the specificities of SoIS goals, such as the representation of
interdependency among activities and dynamicity support. As main contributions,
this paper comes up with a set of design principles and a corresponding conceptual
model to be followed by languages tailored to support goal specification in SoIS.

Journal: Innovations in Systems and Software Engineering - A NASA Journal

Title: A Reference Architecture for Satellite Control Systems

Authors: Adair José Rohling, Valdemar Vicente Graciano Neto, Mauricio
Gonçalves Vieira Ferreira, Walter Abrahão Dos Santos, Elisa Yumi Nakagawa.

Abstract: Software for Satellite Control Systems (SCS) domain performs a rele-
vant role in space systems, being responsible for ensuring the functioning of the
satellites, from the orbit launch to the end of their lifetime. Systems in this domain
are complex and are constantly evolving due to technological advancement of satel-
lites, the significant increase of controlled satellites, and the interoperability among
space organizations. However, in order to meet such complexity and such evolution,
the architectures of these systems have been usually designed in an isolated way
by each organization, hence may be prone to recurrent efforts and difficulties of in-
teroperability. In parallel to this scenario, reference architecture, a special type of
software architecture that aggregates knowledge of a specific domain, has performed
an important role for the success in development, standardization, and evolution
of systems in several domains. Nevertheless, the usage of reference architecture has
not been explored in the SCS domain. Thus, this article presents a Reference Ar-
chitecture for Satellite Control Systems (SCS-RA). Results achieved from usage of
SCS-RA in the development of a Microsatellite Control System for National Insti-
tute for Space Research (INPE) showed a significant reduction of effort, benefits of
interoperability, scalability, and sharing of ground resources.

99

REFERENCES

ALMEIDA, E. S. de. RiDE: The RiSE process for domain engineering. PhD
Thesis (Ph.D. Thesis) — Federal University of Pernambuco, Recife-PE, Brazil,
2007. 39

AMERICA, P.; OBBINK, H.; OMMERING, R. van; LINDEN, F. van der. Copam:
A component-oriented platform architecting method family for product family
engineering. In: . Software product lines: experience and research
directions. Boston, MA: Springer US, 2000. p. 167–180. ISBN 978-1-4615-4339-8.
Available from: <https://doi.org/10.1007/978-1-4615-4339-8_9>. 39

ANGELOV, S.; GREFEN, P.; GREEFHORST, D. A classification of software
reference architectures: analyzing their success and effectiveness. In: JOINT
WORKING IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE
EUROPEAN CONFERENCE ON SOFTWARE ARCHITECTURE, 2009.
Proceedings... Cambridge: IEEE, 2009. p. 141–150. 27

. A framework for analysis and design of software reference architectures.
Information and Software Technology, v. 54, n. 4, p. 417–431, apr. 2012.
ISSN 0950-5849. Available from:
<http://dx.doi.org/10.1016/j.infsof.2011.11.009>. 29, 31

ANGELOV, S.; TRIENEKENS, J. J.; GREFEN, P. Towards a method for the
evaluation of reference architectures: experiences from a case. In: EUROPEAN
CONFERENCE ON SOFTWARE ARCHITECTURE (ECSA), 2., 2008.
Proceedings... Berlin: Springer, 2008. p. 225–240. ISBN 978-3-540-88029-5.
Available from: <http://dx.doi.org/10.1007/978-3-540-88030-1_17>. 31

ARZA, M.; DREIHAHN, H. SLE Routing – simplified station access for mission
operations. In: INTERNATIONAL CONFERENCE ON SPACE OPERATIONS
(SPACEOPS), 2012. Proceedings... Stockholm, 2012. Available from: <http://
www.spaceops2012.org/proceedings/documents/id1294305-Paper-001.pdf>.
2

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Campo CCSDS para
identificação global de espaçonaves: procedimentos de controle para
atribuição de códigos - CCSDS 320.0-B-5-S. São José dos Campos, 2007.
29 p. Access in: 19 dez. 2017. 70

101

https://doi.org/10.1007/978-1-4615-4339-8_9
http://dx.doi.org/10.1016/j.infsof.2011.11.009
http://dx.doi.org/10.1007/978-3-540-88030-1_17
http://www.spaceops2012.org/proceedings/documents/id1294305-Paper-001.pdf
http://www.spaceops2012.org/proceedings/documents/id1294305-Paper-001.pdf

ATKINSON, C.; BAYER, J.; BUNSE, C.; KAMSTIES, E.; LAITENBERGER, O.;
LAQUA, R.; MUTHIG, D.; PAECH, B.; WüST, J.; ZETTEL, J.
Component-based product line engineering with UML. Boston, MA, USA:
Addison-Wesley Longman Publishing, 2002. ISBN 0-201-73791-4. 40

ATKINSON, C.; BAYER, J.; MUTHIG, D. Component-based product line
development: the kobra approach. In: PROCEEDINGS OF THE FIRST
CONFERENCE ON SOFTWARE PRODUCT LINES : EXPERIENCE AND
RESEARCH DIRECTIONS: EXPERIENCE AND RESEARCH DIRECTIONS,
1.,2000. Proceedings... Norwell, MA: Kluwer Academic Publishers, 2000. p.
289–309. ISBN 0-79237-940-3. Available from:
<http://dl.acm.org/citation.cfm?id=355461.357556>. 40

BACHMANN, F.; BASS, L.; BUHMAN, C.; COMELLA-DORDA, S.; LONG, F.;
ROBERT, J.; SEACORD, R.; WALLNAU, K. Technical concepts of
component-based software engineering. 2. ed. Pittsburgh, PA, 2000.
Available from:
<http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5203>.
38

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software architecture in practice.
2. ed. Boston, MA, USA: Addison-Wesley Longman Publishing, 2003. ISBN
0321154959. 17, 28, 47

BAYER, J.; GANESAN, D.; GIRARD, J.-F.; KNODEL, J.; KOLB, R.; SCHMID,
K. Definition of reference architecture based on existing systems. [S.l.],
2004. Available from:
<http://publica.fraunhofer.de/dokumente/N-21572.html>. 31, 80

BOLEA-ALAMANAC, A. A. . L. A. . A. ISIS: ISU small satellite
interdisciplinary survey. 2001. Available from: <https:
//isulibrary.isunet.edu/opac/index.php?lvl=notice_display&id=4686>.
9, 11, 12

BORN, M.; HOFFMANN, A.; RENNOCH, A.; REZNIK, J.; RITTER, T.;
VOUFFO, A. The european corba components open source initiative. ERCIM
News n.55, Oct 2003. Available from:
<https://www.ercim.eu/publication/Ercim_News/enw55/rennoch.html>. 37

BOUWMEESTER, J.; GUO, J. Survey of worldwide pico- and nanosatellite
missions, distributions and subsystem technology. Acta Astronautica, v. 67,

102

http://dl.acm.org/citation.cfm?id=355461.357556
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5203
http://publica.fraunhofer.de/dokumente/N-21572.html
https://isulibrary.isunet.edu/opac/index.php?lvl=notice_display&id=4686
https://isulibrary.isunet.edu/opac/index.php?lvl=notice_display&id=4686
https://www.ercim.eu/publication/Ercim_News/enw55/rennoch.html

n. 7, p. 854 – 862, 2010. ISSN 0094-5765. Available from: <http:
//www.sciencedirect.com/science/article/pii/S0094576510001955>. 11

BRITO, P. H. da S.; GUERRA, P. A. de C.; RUBIRA, C. M. F. Estudo sobre
estilos arquiteturais para sistemas de software baseados em
componentes. [S.l.], March 2007. 17

BROWN, A. W.; SHORT, K. On components and objects: the foundations of
component-based development. In: INTERNATIONAL SYMPOSIUM ON
ASSESSMENT OF SOFTWARE TOOLS AND TECHNOLOGIES, 5., 1997.
Proceedings... [S.l.], 1997. p. 112–121. 33, 38, 39

BROY, M.; DEIMEL, A.; HENN, J.; KOSKIMIES, K.; PLASIL, F.;
POMBERGER, G.; PREE, W.; STAL, M.; SZYPERSKI, C. A. What
characterizes a (software) component? Software - Concepts and Tools, v. 19,
n. 1, p. 49–56, 1998. 33

CALPOLY. CubeSat design specification rev. 13. California, 2014. Available
from: <http://www.cubesat.org/s/cds_rev13_final2.pdf>. Access in: 05 Feb.
2016. 9, 10

CAMPBELL, A. T.; CHOU, S. T.; KOUNAVIS, M. E.; STACHTOS, V. D.;
VICENTE, J. Netbind: a binding tool for constructing data paths in network
processor-based routers. In: IEEE OPEN ARCHITECTURES AND NETWORK
PROGRAMMING PROCEEDINGS (OPENARCH), 2002. Proceedings... [S.l.],
2002. p. 91–103. 35

CASTRO, A.; PAGE, H.; WALKER, R.; EMMA, F.; AGUADO, F.; VAZQUEZ,
A. J. Connecting students with space: genso pre-operational activities and
preparation for geoid/humsat operations. ESA bulletin, v. 2012, p. 38–43, 02
2012. 56

CHAMOUN, J. P.; RISNER, S.; BEECH, T.; GARCIA, G. Bridging ESA and
NASA worlds: lessons learned from the integration of Hifly R©/SCOS-2000 in
NASA’s GMSEC. In: IEEE AEROSPACE CONFERENCE, 2006. Proceedings...
[S.l.]: IEEE, 2006. p. 1–8. ISSN 1095-323X. 3, 52, 55

CHEESMAN, J.; DANIELS, J. UML components - a simple process for
specifying component-based software. [S.l.]: Addison-Wesley, 2001.
(Component Software Series). 39

103

http://www.sciencedirect.com/science/article/pii/S0094576510001955
http://www.sciencedirect.com/science/article/pii/S0094576510001955
http://www.cubesat.org/s/cds_rev13_final2.pdf

CHIN, A.; COELHO, R.; NUGENT, R.; MUNAKATA, R.; PUIG-SUARI, J.
CubeSat: the pico-satellite standard for research and education. In: AIAA SPACE
CONFERENCE AND EXPOSITION, 2008. Proceedings... AIAA, 2008.
Available from: <https://doi.org/10.2514%2F6.2008-7734>. 10

CHIN, E.; BROOKS, L.; NUGENT, R.; PUIG-SUARI, D. J.; POLY, C.; OBISPO,
S. L.; CHIN, A.; COELHO, R.; BROOKS, L.; NUGENT, R.; JORDI, D.; SUARI,
P. Standardization promotes flexibility: a review of cubesats. In: AIAA
RESPONSIVE SPACE CONFERENCE, 6., 2008. Proceedings... [S.l.]: AIAA,
2008. p. 1–6. 11

CLEMENT, S. J.; MCKEE, D. W.; XU, J. Service-oriented reference architecture
for smart cities. In: IEEE SYMPOSIUM ON SERVICE-ORIENTED SYSTEM
ENGINEERING, 2017. Proceedings... [S.l.]: IEEE, 2017. p. 81–85. 3, 29

CLEMENTS, P. Documenting Software Architectures: Views and Beyond.
Addison-Wesley, 2003. (SEI series in software engineering). ISBN 9780201703726.
Available from: <https://books.google.com.br/books?id=ASc9HYPkr4sC>. 24

CLEMENTS, P.; COHEN, S.; DONOHOE, P.; NORTHROP, L. Control channel
toolkit: a software product line case study. Pittsburgh, PA, 2001. Available
from:
<http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5765>.
45, 46, 47

CLOUTIER, R.; MULLER, G.; VERMA, D.; NILCHIANI, R.; HOLE, E.; BONE,
M. The concept of reference architectures. Systems Engineering, v. 13, n. 1, p.
14–27, feb. 2010. ISSN 1098-1241. Available from:
<http://dx.doi.org/10.1002/sys.v13:1>. 3, 31

COM: Component Object Model Technologies. 2017. Available from:
https://www.microsoft.com/com/default.mspx. (Access in: 30 Oct. 2017). 35

CONSULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS (CCSDS).
Spacecraft monitor and control-core services, draft recommendation for
space data system standards, CCSDS-522.0-R-2, proposed red book .
[S.l.], Abr 2008. 121 p. 64, 65

. Mission operations common object model, draft recommendation
for space data system standards, CCSDS-521.1-R-1, proposed red book.
[S.l.], Abr 2009. 64, 65

104

https://doi.org/10.2514%2F6.2008-7734
https://books.google.com.br/books?id=ASc9HYPkr4sC
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5765
http://dx.doi.org/10.1002/sys.v13:1
https://www.microsoft.com/com/default.mspx

. Mission operations reference model, recommended practice,
CCSDS 520.1-M, magenta book. [S.l.], Jul 2010. 71 p. 63, 65

. Mission operations services concept, informational report,
CCSDS-520.0-G-3, green book. [S.l.], Dec 2010. 62 p. 63, 64, 65

CORBA component model specification version 4.0. 2016. Available from:
http://www.omg.org/spec/CCM/. (Access in: 30 Oct. 2017). 35

COUNCIL, N. R. Technology for small spacecraft. Washington, DC: The
National Academies Press, 1994. ISBN 978-0-309-05075-3. Available from:
<https://www.nap.edu/catalog/2351/technology-for-small-spacecraft>.
8, 12

CRNKOVIC, I.; CHAUDRON, M.; LARSSON, S. Component-based development
process and component lifecycle. In: INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING ADVANCES, 2006. Proceedings... [S.l.], 2006. p.
44–44. 33

CRNKOVIC, I.; SENTILLES, S.; VULGARAKIS, A.; CHAUDRON, M. R. V. A
classification framework for software component models. IEEE Transactions on
Software Engineering, v. 37, n. 5, p. 593–615, Sept 2011. ISSN 0098-5589. 34,
35, 36, 37, 88

DAVID, L. Cubesats: tiny spacecraft, huge payoffs. Set 2004. Available from:
<https:
//www.space.com/308-cubesats-tiny-spacecraft-huge-payoffs.html>.
Access in: 24 Nov. 2017. 11

DOBRICA, L.; NIEMELÄ, E. An approach to reference architecture design for
different domains of embedded systems. In: INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING RESEARCH AND PRACTICE, 2008.
Proceedings... [S.l.], 2008. p. 287–293. 31

DOWLING, J.; CAHILL, V. Self-managed decentralised systems using
k-components and collaborative reinforcement learning. In: ACM SIGSOFT
WORKSHOP ON SELF-MANAGED SYSTEMS, 1., 2004. Proceedings... New
York: ACM, 2004. p. 39–43. ISBN 1-58113-989-6. Available from:
<http://doi.acm.org/10.1145/1075405.1075413>. 35

105

http://www.omg.org/spec/CCM/
https://www.nap.edu/catalog/2351/technology-for-small-spacecraft
https://www.space.com/308-cubesats-tiny-spacecraft-huge-payoffs.html
https://www.space.com/308-cubesats-tiny-spacecraft-huge-payoffs.html
http://doi.acm.org/10.1145/1075405.1075413

D’SOUZA, D. F.; WILLS, A. C. Objects, components, and frameworks with
UML: the catalysis approach. Boston, MA, USA: Addison-Wesley Longman
Publishing, 1999. ISBN 0-201-31012-0. 39

DUBOS, G. F.; CASTET, J.-F.; SALEH, J. H. Statistical reliability analysis of
satellites by mass category: does spacecraft size matter? Acta Astronautica,
v. 67, n. 5, p. 584 – 595, 2010. ISSN 0094-5765. Available from: <http:
//www.sciencedirect.com/science/article/pii/S0094576510001347>. 9

DURO, N.; MOREIRA, F.; ROGADO, J.; REIS, J.; PECCIA, N. Technology
harmonization - developing a reference architecture for the ground segment
software. In: IEEE AEROSPACE CONFERENCE, 2005. Proceedings... [S.l.],
2005. p. 3968–3979. ISSN 1095-323X. 3, 41, 42

DVORAK, D. NASA study on flight software complexity. In: AIAA INFOTECH
AEROSPACE CONFERENCE, 2009. Proceedings... AIAA, 2009. Available
from: <https://doi.org/10.2514/6.2009-1882>. 2

ENTERPRISE JavaBeans Technology. 2017. Available from:
<http://www.oracle.com/technetwork/java/javaee/ejb/index.html>.
Access in: 30 Oct. 2017. 35

EUROPEAN COOPERATION FOR SPACE STANDARDIZATION (ECSS).
ECSS-E-ST-70C: space engineering – ground systems and operations –
part 1: principles and requirements. [S.l.], 2000. 8, 13, 15, 63, 65, 73

. ECSS-E-10 Part 1B - system engineering — part 1: requirements
and process. [S.l.], 2004. 85, 86

. ECSS-E-ST-70-31C: space engineering – ground systems and
operations – monitoring and control data. [S.l.], 2008. 65

. ECSS-E-ST-40: space engineering – software general
requirements. Noordwijk, The Netherlands, Mar 2009. 64, 65

. ECSS-E-ST-40C - software. Noordwijk, The Netherlands, Mar 2009. 86

EUROPEAN SPACE AGENCY (ESA). EGS-CC- european ground systems
common core. Oct. 2017. Available from: http://www.egscc.esa.int/. (Access
in: 02 Nov. 2017). 42, 45

. Global educational network for satellite operations / education /
ESA. Nov 2017. Available from: http://www.esa.int/Education/Global_

106

http://www.sciencedirect.com/science/article/pii/S0094576510001347
http://www.sciencedirect.com/science/article/pii/S0094576510001347
https://doi.org/10.2514/6.2009-1882
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.egscc.esa.int/
http://www.esa.int/Education/Global_Educational_Network_for_Satellite_Operations
http://www.esa.int/Education/Global_Educational_Network_for_Satellite_Operations

Educational_Network_for_Satellite_Operations. (Access in: 25 Nov. 2017).
56, 57

FASSINO, J.-P.; STEFANI, J.-B.; LAWALL, J. L.; MULLER, G. Think: a
software framework for component-based operating system kernels. In: GENERAL
TRACK OF THE ANNUAL CONFERENCE ON USENIX ANNUAL
TECHNICAL CONFERENCE, 2002. Proceedings... Berkeley, CA, USA:
USENIX Association, 2002. p. 73–86. ISBN 1-880446-00-6. Available from:
<http://dl.acm.org/citation.cfm?id=647057.713860>. 35

FERREIRA, M. G. V. Uma arquitetura flexível e dinâmica para objetos
distribuídos aplicada ao software de controle de satélites. 244 p. PhD
Thesis (Doctor in Applied Computation) — Instituto Nacional de Pesquisas
Espaciais (INPE), São José dos Campos, 2001-03-23 2001. Available from:
<http://urlib.net/dpi.inpe.br/lise/2003/01.16.09.56>. Access in: 24 nov.
2017. 15

FERRO, E.; GIROLAMI, M.; SALVI, D.; MAYER, C.; GORMAN, J.; GRGURIC,
A.; RAM, R.; SADAT, R. The UniversAAL platform for AAL (Ambient Assisted
Living). Journal of Intelligent Systems, p. 301–319, 2015. 3, 29

FILHO, N. F. D.; BARBOSA, E. F. A Contribution to the establishment of
reference architectures for mobile learning environments. IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje, v. 10, n. 4, p. 234–241, Nov
2015. ISSN 1932-8540. 3, 29

FORD, B.; BACK, G.; BENSON, G.; LEPREAU, J.; LIN, A.; SHIVERS, O. The
flux oskit: a substrate for kernel and language research. SIGOPS - Operating
Systems Review, v. 31, n. 5, p. 38–51, oct. 1997. ISSN 0163-5980. Available
from: <http://doi.acm.org/10.1145/269005.266642>. 35

FORTESCUE, P.; STARK, J.; SWINERD, G. Spacecraft systems
engineering. New York: Wiley, 2003. ISBN 9780470851029. Available from:
<http://onlinelibrary.wiley.com/book/10.1002/9781119971009>. 9

FURMENTO, N.; MAYER, A.; MCGOUGH, S.; NEWHOUSE, S.; FIELD, T.;
DARLINGTON, J. Optimisation of component-based applications within a grid
environment. In: ACM/IEEE CONFERENCE ON SUPERCOMPUTING, 2001.
Proceedings... New York: ACM, 2001. p. 30–30. ISBN 1-58113-293-X. Available
from: <http://doi.acm.org/10.1145/582034.582064>. 35

107

http://www.esa.int/Education/Global_Educational_Network_for_Satellite_Operations
http://www.esa.int/Education/Global_Educational_Network_for_Satellite_Operations
http://dl.acm.org/citation.cfm?id=647057.713860
http://urlib.net/dpi.inpe.br/lise/2003/01.16.09.56
http://doi.acm.org/10.1145/269005.266642
http://onlinelibrary.wiley.com/book/10.1002/9781119971009
http://doi.acm.org/10.1145/582034.582064

GALLAGHER, B. Using the architecture tradeoff analysis method to
evaluate a reference architecture: a case study. Pittsburgh, PA, 2000.
Available from:
<http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5109>.
31, 32

GALSKI, R. L. Capacidades técnologicas do inpe em rastreio e controle de
sátelites: diagnóstico da situação atual e tendências de curto e médio prazo. In:
MOREIRA, M. L. (Ed.). Coletânea do I curso de pós-graduação em gestão
estratégica da ciência e tecnologia em institutos públicos de pesquisa.
São José dos Campos: Instituto Nacional de Pesquisas Espaciais (INPE), 2012.
Available from:
<http://urlib.net/sid.inpe.br/mtc-m19/2011/04.15.11.27>. Access in: 24
nov. 2017. 15

GARLAN, D. Software architecture: a roadmap. In: CONFERENCE ON THE
FUTURE OF SOFTWARE ENGINEERING, 2000. Proceedings... New York,
NY, USA: ACM, 2000. p. 91–101. ISBN 1-58113-253-0. Available from:
<http://doi.acm.org/10.1145/336512.336537>. 17

GARLAN, D.; ALLEN, R.; OCKERBLOOM, J. Architectural mismatch: why
reuse is still so hard. IEEE Software, v. 26, n. 4, p. 66–69, July 2009. ISSN
0740-7459. 35, 36

GARLAN, D.; BACHMANN, F.; IVERS, J.; STAFFORD, J.; BASS, L.;
CLEMENTS, P.; MERSON, P. Documenting software architectures: views
and beyond. 2nd. ed. [S.l.]: Addison-Wesley Professional, 2010. ISBN
0321552687, 9780321552686. 19, 23

GÉDÉON, W. OSGi and apache felix 3.0 beginnerś guide : build your
very own OSGi applications using the flexible and powerful felix
framework. Birmingham, U.K: Packt Pub, 2010. ISBN 978-1-849511-38-4. 38

GENSSLER, T.; CHRISTOPH, A.; WINTER, M.; NIERSTRASZ, O.; DUCASSE,
S.; WUYTS, R.; ARÉVALO, G.; SCHöNHAGE, B.; MüLLER, P.; STICH, C.
Components for embedded software: the pecos approach. In: INTERNATIONAL
CONFERENCE ON COMPILERS, ARCHITECTURE, AND SYNTHESIS FOR
EMBEDDED SYSTEMS, 2002. Proceedings... New York, NY, USA: ACM,
2002. p. 19–26. ISBN 1-58113-575-0. Available from:
<http://doi.acm.org/10.1145/581630.581634>. 35

108

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5109
http://urlib.net/sid.inpe.br/mtc-m19/2011/04.15.11.27
http://doi.acm.org/10.1145/336512.336537
http://doi.acm.org/10.1145/581630.581634

GMV. hifly satellite control system. Nov 2017. Available from:
https://www.gmv.com/en/Products/hifly/. (Access in: 21 Nov. 2017.). 48, 50

GOETZELMANN, M.; TUCKER, L.; MECREDY, N.; SANMARTI, J. The design
of the european ground systems - common core (egs-cc). In: SPACEOPS
CONFERENCE, 2014. Proceedings... AIAA, 2014. Available from:
<https://doi.org/10.2514/6.2014-1768>. 43, 44

GRAAF, B.; DIJK, H. van; DEURSEN, A. van. Evaluating an Embedded
Software Reference Architecture - Industrial Experience Report. In: EUROPEAN
CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEERING,
9., 2005. Proceedings... [S.l.], 2005. p. 354–363. ISSN 1534-5351. 31, 32

GRACIANO NETO, V. V.; GARCÉS, L.; GUESSI, M.; OLIVEIRA, L. B. R. de;
OQUENDO, F. On the equivalence between reference architectures and
metamodels. In: INTERNATIONAL WORKSHOP ON EXPLORING
COMPONENT-BASED TECHNIQUES FOR CONSTRUCTING REFERENCE
ARCHITECTURES, 1., 2015. Proceedings... New York, NY, USA, 2015. p.
21–24. ISBN 978-1-4503-3445-7. Available from:
<http://doi.acm.org/10.1145/2755567.2755572>. 96

GRIFFITH, R.; KAISER, G. Manipulating managed execution runtimes to
support self-healing systems. SIGSOFT - Software Engineering Notes, v. 30,
n. 4, p. 1–7, may 2005. ISSN 0163-5948. Available from:
<http://doi.acm.org/10.1145/1082983.1083066>. 35

GUDMUNDSSON, V.; SCHULZE, C.; GANESAN, D.; LINDVALL, M.;
WIEGAND, R. Model-based testing of NASA’s GMSEC, a reusable framework for
ground system software. Innovations in Systems and Software Engineering
(ISSE), v. 11, n. 3, p. 217–232, 2015. 52

GUESSI, M.; BUENO, L.; OLIVEIRA, R.; NAKAGAWA, E. Y. Representation of
reference architectures: a systematic review. In: SOFTWARE ENGINEERING
AND KNOWLEDGE ENGINEERING, 2011. Proceedings... Montreal: ACM,
2011. p. 782–785. ISBN 1891706292. 72

GUESSI, M.; OLIVEIRA, L. B. R.; GARCÉS, L.; OQUENDO, F. Towards a
formal description of reference architectures for embedded systems. In:
INTERNATIONAL WORKSHOP ON EXPLORING COMPONENT-BASED
TECHNIQUES FOR CONSTRUCTING REFERENCE ARCHITECTURES, 1.,
2015. Proceedings... New York, NY, USA: ACM, 2015. p. 17–20. ISBN

109

https://www.gmv.com/en/Products/hifly/
https://doi.org/10.2514/6.2014-1768
http://doi.acm.org/10.1145/2755567.2755572
http://doi.acm.org/10.1145/1082983.1083066

978-1-4503-3445-7. Available from:
<http://doi.acm.org/10.1145/2755567.2755571>. 3, 29

HANDY, M. NASA technical reports server (NTRS) - GMSEC interface
specification document. [S.l.], Mar 2016. Available from: <https:
//ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160005641.pdf>.
Access in: (22 nov. 2017). 53, 55

HANSSON, H.; AKERHOLM, M.; CRNKOVIC, I.; TORNGREN, M. Saveccm - a
component model for safety-critical real-time systems. In: EUROMICRO
CONFERENCE, 30., 2004. Proceedings... Washington, DC, USA: IEEE, 2004.
p. 627–635. ISBN 0-7695-2199-1. Available from:
<https://doi.org/10.1109/EUROMICRO.2004.72>. 35

HEIDT, M. H.; PUIG-SUARI, P. J.; AUGUSTUS, P.; MOORE, S.; NAKASUKA,
P. S.; ROBERT, P.; TWIGGS, J. Cubesat: a new generation of picosatellite for
education and industry low-cost space experimentation. In: ANNUAL USU
CONFERENCE ON SMALL SATELLITES, 14., 2000. Proceedings... [S.l.],
2000. 11, 12

HEINEMAN, G. T.; COUNCILL, W. T. (Ed.). Component-based software
engineering: putting the pieces together. Boston, MA, USA: Addison-Wesley
Longman Publishing, 2001. ISBN 0-201-70485-4. 33, 88

HELANDER, J.; FORIN, A. Mmlite: a highly componentized system architecture.
In: ACM SIGOPS EUROPEAN WORKSHOP ON SUPPORT FOR
COMPOSING DISTRIBUTED APPLICATIONS, 8., 1998. Proceedings... New
York, NY, USA: ACM, 1998. p. 96–103. Available from:
<http://doi.acm.org/10.1145/319195.319210>. 35

HELVAJIAN, H.; JANSON, S. Small satellites: past, present, and future.
Aerospace Press, 2008. ISBN 9781884989223. Available from:
<https://books.google.com.br/books?id=aJMsPAAACAAJ>. 9

HERZUM, P.; SIMS, O. Business components factory: a comprehensive
overview of component-based development for the enterprise. New York,
NY, USA: John Wiley & Sons, 2000. ISBN 0471327603. 24

HOFMEISTER, C.; NORD, R. L.; SONI, D. Describing software architecture with
uml. In: WORKIN IFIP CONFERENCE ON SOFTWARE ARCHITECTURE, 1.,
1999. Proceedings... Deventer, The Netherlands, The Netherlands: Kluwer, 1999.

110

http://doi.acm.org/10.1145/2755567.2755571
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160005641.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160005641.pdf
https://doi.org/10.1109/EUROMICRO.2004.72
http://doi.acm.org/10.1145/319195.319210
https://books.google.com.br/books?id=aJMsPAAACAAJ

p. 145–160. ISBN 0-7923-8453-9. Available from:
<http://dl.acm.org/citation.cfm?id=646545.696368>. 24

INSTITUTO FOR ELECTRICAL AND ELECTRONICS ENGINEERS. IEEE
Recommended practice for architectural description of
software-intensive systems. [S.l.], 2000. i–23 p. Available from:
<http://dx.doi.org/10.1109/ieeestd.2000.91944>. 26, 64, 73

. Systems and software engineering - recommended practice for
architectural description of software-intensive systems (ISO/IEC 42010
IEEE Std 1471-2000). [S.l.], jul. 2007. c1–24 p. Available from:
<http://dx.doi.org/10.1109/ieeestd.2007.386501>. 17, 25, 72

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. CRC - Centro de
Rastreio e Controle de Satélites. nov 2017. Available from:
<http://www.inpe.br/crc/>. Access in: 29 nov. 2017. 17

IVERS, J.; CLEMENTS, P.; GARLAN, D.; NORD, R.; SCHMERL, B.; SILVA, O.
Documenting component and connector views with UML 2.0. Pittsburgh,
PA, 2004. Available from:
<http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7095>.
25

JOHNSON, E. J.; KUNZE, A. R. Ixp2400-2800 programming: the complete
microengine coding guide. [S.l.]: Intel Press, 2003. ISBN 097178616X. 35

JONES, T. C. Programming productivity : steps toward a science. New
York, United States: McGraw-Hill, 1986. 276 p. ISSN 0070328110. 3

KANG, K. C.; KIM, S.; LEE, J.; KIM, K.; SHIN, E.; HUH, M. Form: a
feature-oriented reuse method with domain-specific reference architectures.
Annals of Software Engineering, v. 5, n. 1, p. 143–168, jan. 1998. ISSN
1022-7091. Available from:
<http://dl.acm.org/citation.cfm?id=590631.590645>. 39

KARLIN, S.; PETERSON, L. Vera: an extensible router architecture. In: IEEE
OPEN ARCHITECTURES AND NETWORK PROGRAMMING, 2001.
Proceedings... [S.l.]: IEEE, 2001. p. 3–14. 35

KLEIN, J.; BUGLAK, R.; BLOCKOW, D.; WUTTKE, T.; COOPER, B. A
reference architecture for big data systems in the national security domain. In:
INTERNATIONAL WORKSHOP ON BIG DATA SOFTWARE ENGINEERING,

111

http://dl.acm.org/citation.cfm?id=646545.696368
http://dx.doi.org/10.1109/ieeestd.2000.91944
http://dx.doi.org/10.1109/ieeestd.2007.386501
http://www.inpe.br/crc/
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7095
http://dl.acm.org/citation.cfm?id=590631.590645

2., 2016. Proceedings... New York, NY, USA: ACM, 2016. p. 51–57. ISBN
978-1-4503-4152-3. Available from:
<http://doi.acm.org/10.1145/2896825.2896834>. 3, 29

KOTONYA, G.; ONYINO, W.; HUTCHINSON, J.; SAWYER, P.; CANAL, J.
Cots component-based system development. In: . Business
component-based software engineering. Boston, MA: Springer US, 2003. p.
227–245. ISBN 978-1-4615-1175-5. Available from:
<https://doi.org/10.1007/978-1-4615-1175-5_13>. 38

KOZACZYNSKI, W. Composite nature of component. Los Angeles, EUA:
Internacional Workshop on ComponentBased Software Engineering, May 1999. 33

KRUCHTEN, P. The 4+1 view model of architecture. IEEE Software, IEEE,
v. 12, n. 6, p. 42–50, nov. 1995. ISSN 0740-7459. Available from:
<http://dx.doi.org/10.1109/52.469759>. 23, 41

. The rational unified process: an introduction. 2. ed. Boston, MA,
USA: Addison-Wesley Longman Publishing, 2000. ISBN 0201707101. 27

KRUCHTEN, P.; OBBINK, H.; STAFFORD, J. The past, present, and future for
software architecture. IEEE Software, v. 23, n. 2, p. 22–30, mar. 2006. ISSN
0740-7459. Available from: <http://dx.doi.org/10.1109/MS.2006.59>. 27, 28

KRUEGER, C. W. Software reuse. ACM Computing Surveys, v. 24, n. 2, p.
131–183, jun. 1992. ISSN 0360-0300. Available from:
<http://doi.acm.org/10.1145/130844.130856>. 38

KRUGER, I. H.; MATHEW, R. Systematic development and exploration of
service-oriented software architectures. In: WORKING IFIP CONFERENCE ON
SOFTWARE ARCHITECTURE, 4., 2004. Proceedings... [S.l.], 2004. p.
177–187. 18

LARMAN, C. Applying UML and patterns : an introduction to
object-oriented analysis and design and iterative development. Upper
Saddle River, N.J: Prentice Hall PTR, 2005. ISBN 0131489062. 21

LAU, K.-K.; WANG, Z. A taxonomy of software component models. In:
EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND
ADVANCED APPLICATIONS, 2005. Proceedings... 2005. p. 88–95. ISBN
0-7695-2431-1. Available from:
<http://dx.doi.org/10.1109/EUROMICRO.2005.8>. 88

112

http://doi.acm.org/10.1145/2896825.2896834
https://doi.org/10.1007/978-1-4615-1175-5_13
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/MS.2006.59
http://doi.acm.org/10.1145/130844.130856
http://dx.doi.org/10.1109/EUROMICRO.2005.8

LAU, K. K.; WANG, Z. Software component models. IEEE Transactions on
Software Engineering, v. 33, n. 10, p. 709–724, Oct 2007. ISSN 0098-5589. 88,
95

LEVEQUE, K.; PUIG-SUARI, J.; TURNER, C. Global educational network for
satellite operations (genso). ANNUAL AIAA USU CONFERENCE ON
SMALL SATELLITES, 21., 2007, San Luis Obispo: California Polytechnic
State University, 2007. Available from:
<https://digitalcommons.usu.edu/smallsat/2007/all2007/73/>. 56, 57, 58

LI, J.; GUPTA, A.; ARVID, J.; BORRETZEN, B.; CONRADI, R. The empirical
studies on quality benefits of reusing software components. In: ANNUAL
INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS
CONFERENCE, 31., 2007. Proceedings... [S.l.], 2007. v. 2, p. 399–402. ISSN
0730-3157. 95

LOPEZ, T.; FRAGA, E. hifly anywhere remote web operations. In:
INTERNATIONAL CONFERENCE ON SPACE OPERATIONS, 2012.
Proceedings... Stockholm, Sweden, 2012. ISBN 978-1-62993-433-4. Available
from: <http://www.spaceops2012.org/proceedings/documents/
id1294607-Paper-002.pdf>. 48, 49

LOWE, C.; MACDONALD, M. Rapid model-based inter-disciplinary design of a
cubesat mission. Acta Astronautica, v. 105, n. 1, p. 321–332, 12 2014. ISSN
0094-5765. Date of Acceptance: 02/10/2014. 10, 11

MAGOUTIS, K.; BRUSTOLONI, J. C.; GABBER, E.; NG, W. T.;
SILBERSCHATZ, A. Building appliances out of components using pebble. In:
WORKSHOP ON ACEM SIGOPS EUROPEAN WORKSHOP: BEYOND THE
PC: NEW CHALLENGES FOR THE OPERATING SYSTEM, 9., 2000.
Proceedings... New York, NY, USA: ACM, 2000. p. 211–216. Available from:
<http://doi.acm.org/10.1145/566726.566769>. 35

MARTÍNEZ-FERNÁNDEZ, S. Towards supporting the adoption of software
reference architectures: an empirically-grounded framework. In:
INTERNATIONAL DOCTORAL SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING, 2013. Proceedings... 2013. p. 1–8. Available from:
<http://hdl.handle.net/2117/21144;http:
//umbc.edu/eseiw2013/idoese/program.shtml>. 3, 28

113

https://digitalcommons.usu.edu/smallsat/2007/all2007/73/
http://www.spaceops2012.org/proceedings/documents/id1294607-Paper-002.pdf
http://www.spaceops2012.org/proceedings/documents/id1294607-Paper-002.pdf
http://doi.acm.org/10.1145/566726.566769
http://hdl.handle.net/2117/21144; http://umbc.edu/eseiw2013/idoese/program.shtml
http://hdl.handle.net/2117/21144; http://umbc.edu/eseiw2013/idoese/program.shtml

MARTÍNEZ-FERNÁNDEZ, S.; AYALA, C. P.; FRANCH, X.; MARQUES, H. M.
Rearm: a reuse-based economic model for software reference architectures. In:
INTERNATIONAL CONFERENCE ON SOFTWARE REUSE, 13., 2013.
Proceedings... Berlin, Heidelberg, 2013. p. 97–112. ISBN 978-3-642-38977-1.
Available from: <https://doi.org/10.1007/978-3-642-38977-1_7>. 95

MARTÍNEZ-FERNÁNDEZ, S.; AYALA, C. P.; FRANCH, X.; NAKAGAWA,
E. Y. A survey on the benefits and drawbacks of AUTOSAR. In:
INTERNATIONAL WORKSHOP ON AUTOMOTIVE SOFTWARE
ARCHITECTURE, 1., 2015. Proceedings... [S.l.], 2015. p. 19–26. 3, 29

MAYORGA, A. An auto configuration system for the GMSEC architecture and
API. In: IEEE INTERNATIONAL CONFERENCE ON SPACE MISSION
CHALLENGES FOR INFORMATION TECHNOLOGY, 2., 2006.
Proceedings... [S.l.]: IEEE, 2006. p. 1–485. 52

MCAFFER, J.; VANDERLEI, P.; ARCHER, S. OSGi and equinox: creating
highly modular java systems. Upper Saddle River, NJ: Addison-Wesley, 2010.
(Eclipse Series). ISBN 978-0-321-58571-4. Available from: <https://www.
safaribooksonline.com/library/view/osgi-and-equinox/9780321561510/>.
38

MCCLURE, C. Software reuse techniques: adding reuse to the system
development process. Upper Saddle River, NJ, USA: Prentice-Hall, 1997. ISBN
0-13-661000-5. 33, 38

MICROSOFT. NET: architectural components | Microsoft Docs. 2017.
Available from:
<https://docs.microsoft.com/en-us/dotnet/standard/components>. Access
in: 30 Oct. 2017. 35

MILI, H.; MILI, F.; MILI, A. Reusing software: issues and research directions.
IEEE Transactions on Software Engineering, v. 21, n. 6, p. 528–562, Jun
1995. ISSN 0098-5589. 95

MONROE, R. T.; KOMPANEK, A.; MELTON, R.; GARLAN, D. Architectural
styles, design patterns, and objects. IEEE Software, v. 14, n. 1, p. 43–52, jan.
1997. ISSN 0740-7459. Available from:
<http://dx.doi.org/10.1109/52.566427>. 18

114

https://doi.org/10.1007/978-3-642-38977-1_7
https://www.safaribooksonline.com/library/view/osgi-and-equinox/9780321561510/
https://www.safaribooksonline.com/library/view/osgi-and-equinox/9780321561510/
https://docs.microsoft.com/en-us/dotnet/standard/components
http://dx.doi.org/10.1109/52.566427

MOREL, T.; LOPEZ, T.; CASAS, N. Deploying operational multi-satellite control
centres on virtual environments. In: INTERNATIONAL CONFERENCE ON
SPACE OPERATIONS, 2014. Proceedings... Pasadena, CA, 2014. 47, 50

NAKAGAWA, E. Y.; ANTONINO, P. O.; BECKER, M. Reference architecture
and product line architecture: a subtle but critical difference. In: EUROPEAN
CONFERENCE ON SOFTWARE ARCHITECTURE, 5., 2011. Proceedings...
Berlin, Heidelberg: Springer-Verlag, 2011. p. 207–211. ISBN 978-3-642-23797-3.
Available from: <http://dl.acm.org/citation.cfm?id=2041790.2041818>. 3,
28, 29, 30

NAKAGAWA, E. Y.; BECKER, M.; MALDONADO, J. C. Towards a process to
design product line architectures based on reference architectures. In:
INTERNATIONAL SOFTWARE PRODUCT LINE CONFERENCE, 17., 2013.
Proceedings... New York, NY, USA: ACM, 2013. p. 157–161. ISBN
978-1-4503-1968-3. Available from:
<http://doi.acm.org/10.1145/2491627.2491651>. 27, 28

NAKAGAWA, E. Y.; FERRARI, F. C.; SASAKI, M. M. F.; MALDONADO, J. C.
An aspect-oriented reference architecture for software engineering environments.
Journal of Systems and Software, v. 84, n. 10, p. 1670–1684, oct. 2011. ISSN
0164-1212. Available from: <http://dx.doi.org/10.1016/j.jss.2011.04.052>.
3, 29

NAKAGAWA, E. Y.; GUESSI, M.; MALDONADO, J. C.; FEITOSA, D.;
OQUENDO, F. Consolidating a process for the design, representation, and
evaluation of reference architectures. In: WORKING IEEE/IFIP CONFERENCE
ON SOFTWARE ARCHITECTURE, 2014. Proceedings... [S.l.], 2014. p.
143–152. 4, 31, 63

NAKAGAWA, E. Y.; MALDONADO, J. C. Reference architecture knowledge
representation: an experience. In: INTERNATIONAL WORKSHOP ON
SHARING AND REUSING ARCHITECTURAL KNOWLEDGE, 3., 2008.
Proceedings... 2008. p. 51–54. ISBN 978-1-60558-038-8. Available from:
<http://doi.acm.org/10.1145/1370062.1370077>. 72

NAKAGAWA, E. Y.; OQUENDO, F.; BECKER, M. RAModel: A reference model
for reference architectures. In: JOINT WORKING IEEE/IFIP CONFERENCE
ON SOFTWARE ARCHITECTURE AND EUROPEAN CONFERENCE ON
SOFTWARE ARCHITECTURE, 2012. Proceedings... [S.l.]: IEEE, 2012. p.
297–301. 31, 32, 33, 81

115

http://dl.acm.org/citation.cfm?id=2041790.2041818
http://doi.acm.org/10.1145/2491627.2491651
http://dx.doi.org/10.1016/j.jss.2011.04.052
http://doi.acm.org/10.1145/1370062.1370077

NAKAGAWA, E. Y.; OQUENDO, F.; MALDONADO, J. C. Reference
architectures. In: OUSSALAH, M. C. (Ed.). Software Architecture 1. New
York: John Wiley & Sons, 2014. p. 55–82. Available from:
<https://doi.org/10.1002%2F9781118930960.ch2>. 29

NASA. NASA systems engineering handbook revision 2. [S.l.], 2007.
Available from: <https:
//www.nasa.gov/connect/ebooks/nasa-systems-engineering-handbook>. 85

NASA. NASA mission operations and communications services. [S.l.],
2014. Available from: <https:
//deepspace.jpl.nasa.gov/files/dsn/6_NASA_MOCS_2014_10_01_14.pdf>. 2

. Deep space network services catalog. [S.l.], 2015. Available from:
<https://deepspace.jpl.nasa.gov/files/dsn/820-100-F1.pdf>. 2

NASA. Small spacecraft technology state of the art. [S.l.], 2015. Available
from: <https://www.nasa.gov/sites/default/files/atoms/files/state_of_
the_art-aug2016.pdf>. 9

NOGUERO, J.; JULIAN, G. G.; BEECH, T. W. Mission control system for earth
observation missions based on SCOS-2000. In: IEEE AEROSPACE
CONFERENCE, 2005. Proceedings... [S.l.]: IEEE, 2005. p. 4088–4099. ISSN
1095-323X. 51

OMMERING, R. van; LINDEN, F. van der; KRAMER, J.; MAGEE, J. The koala
component model for consumer electronics software. Computer, v. 33, n. 3, p.
78–85, mar. 2000. ISSN 0018-9162. Available from:
<http://dx.doi.org/10.1109/2.825699>. 35

OPENGROUP. ArchiMate 3.0.1 specification. Nov 2017. Available from:
<http://pubs.opengroup.org/architecture/archimate3-doc/toc.html>.
Access in: 30 Oct. 2017. 27

OSGITM Alliance - Architecture. Oct 2017. Available from:
<https://www.osgi.org/developer/architecture>. Access in: 30 Oct. 2017.
35, 37

OSORIO, R. V.; LEMOS, J. P.; BEECH, T. W.; JULIAN, G. G.; CHAUMON,
J. P. SCOS-2000 release 4.0 : Multi-mission/multi-domain capabilities in ESA
SCOS-2000 MCS kernel, 2006. In: IEEE AEROSPACE CONFERENCE, 2006.
Proceedings... [S.l.]: IEEE, 2006. p. 1–17. ISSN 1095-323X. 51, 52

116

https://doi.org/10.1002%2F9781118930960.ch2
https://www.nasa.gov/connect/ebooks/nasa-systems-engineering-handbook
https://www.nasa.gov/connect/ebooks/nasa-systems-engineering-handbook
https://deepspace.jpl.nasa.gov/files/dsn/6_NASA_MOCS_2014_10_01_14.pdf
https://deepspace.jpl.nasa.gov/files/dsn/6_NASA_MOCS_2014_10_01_14.pdf
https://deepspace.jpl.nasa.gov/files/dsn/820-100-F1.pdf
https://www.nasa.gov/sites/default/files/atoms/files/state_of_the_art-aug2016.pdf
https://www.nasa.gov/sites/default/files/atoms/files/state_of_the_art-aug2016.pdf
http://dx.doi.org/10.1109/2.825699
http://pubs.opengroup.org/architecture/archimate3-doc/toc.html
https://www.osgi.org/developer/architecture

OUSSALAH, M. Software architecture 2. [S.l.]: Wiley, 2014. (Computer
engineering series). ISBN 9781118945100. 3, 27, 28

PANUNZIO, M. Definition, realization and evaluation of a software
reference architecture for use in space applications. PhD Thesis (PhD) —
University of Bologna, Italy, 2011. 3, 29, 88

PANUNZIO, M.; VARDANEGA, T. A component model for on-board software
applications. In: EUROMICRO CONFERENCE ON SOFTWARE
ENGINEERING AND ADVANCED APPLICATIONS, 36., 2010. Proceedings...
[S.l.], 2010. p. 57–64. ISSN 1089-6503. 35, 88

. On software reference architectures and their application to the space
domain. In: FAVARO, J. M.; MORISIO, M. (Ed.). Safe and Secure Software
Reuse. Springer, 2013. (Lecture Notes in Computer Science, v. 7925), p. 144–159.
ISBN 978-3-642-38976-4. Available from:
<https://doi.org/10.1007/978-3-642-38977-1_10>. 3, 42

PARDAVILA, R. T. SATNet project Documentation. Nov 2013. Available
from: <https://github.com/satnet-project/documentation>. Access in: 25
Nov. 2017. 59, 60

PARDAVILA, R. T.; ESPINDOLA, J. E. D.; ROHLING, A. J.; FERREIRA, M.
G. V.; SANTOS, W. A.; PUIG-SUARI, J.; AGUADO, A. F. Integration of the
INPE ground station into the satnet network for supporting small satellites
programs in brazil. In: LATIN AMERICAN IAA CUBESAT WORKSHOP, 2.,
2016. Proceedings... Florianopolis, Brazil, 2016. 59, 60, 61, 62

PARDAVILA, R. T.; VAZQUEZ, A.; PUIG, J.; KURAHARA, N.; BELLARDO, J.
Towards an open-source ground stations network for cubesats. In: ANNUAL
CUBESAT DEVELOPERS WORKSHOP, 11., 2014. Proceedings... San Luis
Obispo: California Polytechnic State University, 2014. Available from: <http://
mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop2014/>.
58, 62

PECCHIOLI, M.; CARRANZA, J. M. The main concepts of the european ground
systems – common core (EGS-CC). In: GSAW-GROUND SYSTEM
ARCHITECTURES WORKSHOP. Proceedings... 2013. Available from:
<http://gsaw.org/past-proceedings/2013-2/>. Access in: 02 Nov. 2017. 43,
44

117

https://doi.org/10.1007/978-3-642-38977-1_10
https://github.com/satnet-project/documentation
http://mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop2014/
http://mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop2014/
http://gsaw.org/past-proceedings/2013-2/

. Highlights of the european ground system – common core initiative. In:
INTERNATIONAL CONFERENCE ON ACCELERATOR AND LARGE
EXPERIMENTAL PHYSICS CONTROL SYSTEMS, 2017. Proceedings... 2017.
Available from: <http://icalepcs2017.vrws.de>. Access in: 02 Nov. 2017. 44

PERRY, D. E.; WOLF, A. L. Foundations for the study of software architecture.
Software Engineering Notes., v. 17, n. 4, p. 40–52, oct. 1992. ISSN 0163-5948.
Available from: <http://doi.acm.org/10.1145/141874.141884>. 18

PISACANE, V. Fundamentals of space systems. [S.l.]: Oxford University
Press, 2005. (Applied Physics Laboratory series in science and engineering). ISBN
9780195162059. 7

POUR, G. Component-based software development approach: new opportunities
and challenges. In: TECHNOLOGY OF OBJECT-ORIENTED LANGUAGES
TOOLS, 1998. Proceedings... [S.l.], 1998. p. 376–383. 38

PRESSMAN, R. Software engineering : a practitioner’s approach. Boston,
Mass: McGraw Hill, 2001. ISBN 0-07-365578-3. 38, 39

PUIG-SUARI, J.; TURNER, C.; AHLGREN, W. Development of the standard
cubesat deployer and a cubesat class picosatellite. In: IEEE AEROSPACE
CONFERENCE, 2011. Proceedings... [S.l.]: IEEE, 2001. p. 1/347–1/353 vol.1. 8,
10

REID, S. European technology harmonisation on ground software systems:
reference architecture and ICDs. In: SPACEOPS CONFERENCE, 2012.
Proceedings... AIAA, 2012. Available from:
<https://doi.org/10.2514%2F6.2012-1295675>. 41

RODRíGUEZ, L. M. G.; AMPATZOGLOU, A.; AVGERIOU, P.; NAKAGAWA,
E. Y. A reference architecture for healthcare supportive home systems. In:
INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL
SYSTEMS, 28., 2015. Proceedings... [S.l.]: IEEE, 2015. p. 358–359. ISSN
1063-7125. 29

ROMAN, M.; MICKUNAS, M. D.; KON, F.; CAMPBELL, R. Legorb and
ubiquitous CORBA. In: IFIP/ACM WORKSHOP ON REFLECTIVE
MIDDLEWARE, 2000. Proceedings... [S.l.]: ACM, 2000. p. 1–2. 35

118

http://icalepcs2017.vrws.de
http://doi.acm.org/10.1145/141874.141884
https://doi.org/10.2514%2F6.2012-1295675

ROZANSKI, N.; WOODS, E. Software systems architecture: working with
stakeholders using viewpoints and perspectives. [S.l.]: Addison-Wesley
Professional, 2005. ISBN 0321112296. 41

ROZENFELD, P.; ORLANDO, V.; FERREIRA, M. Applying the 21st century
technology to the 20th century mission control. In: SPACEOPS CONFERENCE,
2002. Proceedings... AIAA, 2002. Available from:
<https://doi.org/10.2514%2F6.2002-t2-78>. 15, 17

SAMETINGER, J. Software engineering with reusable components. New
York, USA: Springer-Verlag, 1997. ISBN 3-540-62695-6. 33

SANTOS, J. F. M.; GUESSI, M.; GALSTER, M.; FEITOSA, D.; NAKAGAWA,
E. Y. A checklist for evaluation of reference architectures of embedded systems. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND
KNOWLEDGE ENGINEERING, 25., 2013. Proceedings... 2013. p. 451–454.
Available from: <http://dblp.org/rec/bib/conf/seke/SantosGGFN13>. 31, 32

SCHOLZ, A.; JUANG, J.-N. Toward open source cubesat design. Acta
Astronautica, v. 115, n. Supplement C, p. 384 – 392, 2015. ISSN 0094-5765.
Available from: <http:
//www.sciencedirect.com/science/article/pii/S0094576515002507>. 10

SHAMES, P.; YAMADA, T. Reference architecture for space data systems. In:
INTERNATIONAL SYMPOSIUM ON REDUCING THE COST OF
SPACECRAFT GROND SYSTEMS AND OPERATIONS, 5., 2003.
Proceedings... Jet Propulsion Laboratory, 2003. p. 8–11. Available from:
<https://descanso.jpl.nasa.gov/RCSGSO/program.html>. Access in: 03 Oct.
2017. 2, 3, 41

. Tools for Describing the Reference Architecture for Space Data
Systems. Jet Propulsion Laboratory, National Aeronautics and Space
Administration Pasadena, CA, 05 2004. Available from:
<https://trs.jpl.nasa.gov/handle/2014/38436>. Access in: 04 Nov. 2017. 2,
3

SHAW, M.; CLEMENTS, P. The golden age of software architecture. IEEE
Software, v. 23, n. 2, p. 31–39, March 2006. ISSN 0740-7459. 28

SHAW, M.; GARLAN, D. Software architecture: perspectives on an
emerging discipline. Upper Saddle River, NJ, USA: Prentice-Hall, 1996. ISBN
0-13-182957-2. 19, 27

119

https://doi.org/10.2514%2F6.2002-t2-78
http://dblp.org/rec/bib/conf/seke/SantosGGFN13
http://www.sciencedirect.com/science/article/pii/S0094576515002507
http://www.sciencedirect.com/science/article/pii/S0094576515002507
https://descanso.jpl.nasa.gov/RCSGSO/program.html
https://trs.jpl.nasa.gov/handle/2014/38436

SHETH, S.; ARORA, N.; MURPHY, C.; KAISER, G. The wehelp reference
architecture for community-driven recommender systems. In: INTERNATIONAL
WORKSHOP ON RECOMMENDATION SYSTEMS FOR SOFTWARE
ENGINEERING, 2., 2010. Proceedings... New York, NY, USA: ACM, 2010. p.
46–47. ISBN 978-1-60558-974-9. Available from:
<http://doi.acm.org/10.1145/1808920.1808930>. 3, 29

SHIROMA, W. A.; MARTIN, L. K.; AKAGI, J. M.; AKAGI, J. T.; WOLFE,
B. L.; FEWELL, B. A.; OHTA, A. T. Cubesats: a bright future for nanosatellites.
Central European Journal of Engineering, v. 1, n. 1, p. 9–15, Mar 2011. ISSN
2081-9927. Available from: <https://doi.org/10.2478/s13531-011-0007-8>. 9

SMITH, D.; BRISTOW, J.; WILMOT, J. A successful component architecture for
interoperable and evolvable ground data systems. In: SPACEOPS
CONFERENCE, 2006. Proceedings... AIAA, 2006. Available from:
<https://doi.org/10.2514%2F6.2006-5743>. 52, 54

SMITH, D.; GRUBB, T.; ESPER, J. Linking and combining distributed
operations facilities using NASA’s GMSEC systems architectures. In: SPACEOPS
CONFERENCE, 2008. Proceedings... [S.l.]: AIAA, 2008. 3

SORENSEN, T.; PILGER, E.; YOST, B.; NUNES, M.; DIFFERDING, J. Plug
and play mission operations. In: IEEE AEROSPACE CONFERENCE, 2012.
Proceedings... [S.l.]: IEEE, 2012. p. 1–13. ISSN 1095-323X. 2

SPACEWORKS ENTERPRISES. 2017 Nano/Microsatellite Market
Forecast. Atlanta, GA, 2017. Available from: <http://spaceworksforecast.
com/docs/SpaceWorks_Nano_Microsatellite_Market_Forecast_2017.pdf>. 1,
2

SPACEWORKS ENTERPRISES. Small satellite report - trends and market
observations. [S.l.], 2017. Available from: <http://spaceworksforecast.com>.
Access in: 02 Out. 2017. 13, 14

SULLIVAN, T.; SATHER, D.; NISHINAGA, R. A flexible satellite command and
control framework: developing responsive and agile space systems. In:
Crosslink R© Magazine - The Aerospace Corporation. Los Angeles, CA,
USA: [s.n.], 2009. ISSN 1527-5264. Available from:
<http://www.aerospace.org/crosslinkmag/summer-2009/
a-flexible-satellite-command-and-control-framework>. 3, 56

120

http://doi.acm.org/10.1145/1808920.1808930
https://doi.org/10.2478/s13531-011-0007-8
https://doi.org/10.2514%2F6.2006-5743
http://spaceworksforecast.com/docs/SpaceWorks_Nano_Microsatellite_Market_Forecast_2017.pdf
http://spaceworksforecast.com/docs/SpaceWorks_Nano_Microsatellite_Market_Forecast_2017.pdf
http://spaceworksforecast.com
http://www.aerospace.org/crosslinkmag/summer-2009/a-flexible-satellite-command-and-control-framework
http://www.aerospace.org/crosslinkmag/summer-2009/a-flexible-satellite-command-and-control-framework

SUTHERLAND, B. Modern warfare, intelligence and deterrence: the
technologies that are transforming them. Wiley, 2012. (The Economist).
ISBN 9781118240441. Available from: <https://profilebooks.com/
the-economist-modern-warfare-intelligence-and-deterrence.html>. 11

SWARTWOUT, M. CubeSat database. Nov 2017. Available from: <https:
//sites.google.com/a/slu.edu/swartwout/home/cubesat-database>. Access
in: 24 Nov. 2017). 10

SZYPERSKI, C. Component software : beyond object-oriented
programming. London: Addison-Wesley, 2011. ISBN 978-0321753021. 38

TAYLOR, R. N.; MEDVIDOVIC, N.; ANDERSON, K. M.; WHITEHEAD, E. J.;
ROBBINS, J. E.; NIES, K. A.; OREIZY, P.; DUBROW, D. L. A component- and
message-based architectural style for gui software. IEEE Transactions on
Software Engineering, v. 22, n. 6, p. 390–406, Jun 1996. ISSN 0098-5589. 20

THE CONSULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS. Cross
support reference model — Part 1: space link extension services. [S.l.],
2005. 95 p. p. 2, 64, 65

. Cross support concept — Part 1: space link extension services
CCSDS-910.3-G-3 . [S.l.], 2006. 100 p. p. 2

. Reference architecture for space data systems, recommended
practice, CCSDS 311.0-M-1. Washington, D.C, USA, 2008. 3, 41, 64, 65, 72

. Reference architecture for space information management,
informational report. Washington, D.C, USA, 2013. 3, 42, 65

THYAGARAJAN, K.; GUPTA, J.; GOEL, P.; JAYARAMAN, K. University small
satellite program—anusat. Acta Astronautica, v. 56, n. 1, p. 89 – 97, 2005. ISSN
0094-5765. 4th IAA International Symposium on Small Satellites for Earth
Observation. Available from: <http:
//www.sciencedirect.com/science/article/pii/S0094576504002863>. 11

TOMINAGA, J. Simulador de satélites para verificação de planos de
operações em voo. 174 p. Master Thesis (Mestrado em Computação Aplicada)
— Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2010. Available
from: <http://urlib.net/sid.inpe.br/mtc-m19@80/2010/05.24.18.55>.
Access in: 30 Nov. 2017. 16

121

https://profilebooks.com/the-economist-modern-warfare-intelligence-and-deterrence.html
https://profilebooks.com/the-economist-modern-warfare-intelligence-and-deterrence.html
https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database
https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database
http://www.sciencedirect.com/science/article/pii/S0094576504002863
http://www.sciencedirect.com/science/article/pii/S0094576504002863
http://urlib.net/sid.inpe.br/mtc-m19@80/2010/05.24.18.55

TRACZ, W. Software reuse myths. SIGSOFT Software Engineering Notes,
v. 13, n. 1, p. 17–21, jan. 1988. ISSN 0163-5948. Available from:
<http://doi.acm.org/10.1145/43857.43859>. 3

UML Unified Modeling Language, Specification V 2.5. Mar 2015. Available from:
<http://www.omg.org/spec/UML/2.5>. Access in: 05 Nov. 2017. 26

UNION OF CONCERNED SCIENTISTS (UCS). UCS Satellite Database.
[S.l.], 2017. Available from: <http:
//www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database>.
Access in: 03 Oct. 2017. 1

UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS (UNOOSA).
Online index of objects launched into outer space. 2017. Available from:
<http://www.unoosa.org/oosa/osoindex/search-ng.jspx>. Access in: 01
Nov. 2017. 1

WASSERMAN, A. I. Toward a discipline of software engineering. IEEE
Software, v. 13, n. 6, p. 23–31, nov. 1996. ISSN 0740-7459. Available from:
<http://dx.doi.org/10.1109/52.542291>. 18

WENTZEL, K. D. Software reuse - facts and myths. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, 16., 1994. Proceedings...
Los Alamitos, CA, USA: IEEE, 1994. p. 267–268. ISBN 0-8186-5855-X. Available
from: <http://dl.acm.org/citation.cfm?id=257734.257779>. 3

WERTZ, J.; LARSON, W. Space mission analysis and design. [S.l.]: Springer,
1999. (Space Technology Library). ISBN 9780792359012. 2, 8

WEYRICH, M.; EBERT, C. Reference architectures for the internet of things.
IEEE Software, v. 33, n. 1, p. 112–116, Jan 2016. ISSN 0740-7459. 3, 29

YACOUB, S.; AMMAR, H.; MILI, A. A model for classifying component
interfaces. In: WORKSHOP ON COMPONENT-BASED SOFTWARE
ENGINEERING, 1999. Proceedings... 1999. Available from: <https:
//www.bibsonomy.org/bibtex/25b53fc9d984583b54978ede7a4e51ad5/pbrada>.
33

ZHU, H. Software design methodology. Oxford: Elsevier, 2005. ISBN
9780750660754. 18, 19, 20, 21, 22, 23

122

http://doi.acm.org/10.1145/43857.43859
http://www.omg.org/spec/UML/2.5
http://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database
http://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database
http://www.unoosa.org/oosa/osoindex/search-ng.jspx
http://dx.doi.org/10.1109/52.542291
http://dl.acm.org/citation.cfm?id=257734.257779
https://www.bibsonomy.org/bibtex/25b53fc9d984583b54978ede7a4e51ad5/pbrada
https://www.bibsonomy.org/bibtex/25b53fc9d984583b54978ede7a4e51ad5/pbrada

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI) Manuais Técnicos (MAN)

Teses e Dissertações apresentadas nos
Cursos de Pós-Graduação do INPE.

São publicações de caráter técnico que
incluem normas, procedimentos, in-
struções e orientações.

Notas Técnico-Científicas (NTC) Relatórios de Pesquisa (RPQ)

Incluem resultados preliminares de
pesquisa, descrição de equipamentos,
descrição e ou documentação de progra-
mas de computador, descrição de sis-
temas e experimentos, apresentação de
testes, dados, atlas, e documentação de
projetos de engenharia.

Reportam resultados ou progressos de
pesquisas tanto de natureza técnica
quanto científica, cujo nível seja com-
patível com o de uma publicação em
periódico nacional ou internacional.

Propostas e Relatórios de Projetos
(PRP)

Publicações Didáticas (PUD)

São propostas de projetos técnico-
científicos e relatórios de acompan-
hamento de projetos, atividades e con-
vênios.

Incluem apostilas, notas de aula e man-
uais didáticos.

Publicações Seriadas Programas de Computador (PDC)

São os seriados técnico-científicos: bo-
letins, periódicos, anuários e anais de
eventos (simpósios e congressos). Con-
stam destas publicações o Internacional
Standard Serial Number (ISSN), que é
um código único e definitivo para iden-
tificação de títulos de seriados.

São a seqüência de instruções ou códi-
gos, expressos em uma linguagem de
programação compilada ou interpre-
tada, a ser executada por um computa-
dor para alcançar um determinado obje-
tivo. Aceitam-se tanto programas fonte
quanto os executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em periódi-
cos, anais e como capítulos de livros.

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CONTENTS
	1 INTRODUCTION
	1.1 Problem Statement and Justification for the Research
	1.2 Objectives
	1.3 Thesis Structure

	2 BACKGROUND
	2.1 Space System
	2.2 Satellites
	2.2.1 Historical Context
	2.2.2 Classification
	2.2.3 CubeSat
	2.2.4 Applications for Small Satellites
	2.2.5 Prospects for Small Satellites
	2.2.6 Small Satellites in Brazil

	2.3 Satellite Control
	2.3.1 Satellite Control Center
	2.3.1.1 INPE’s Satellites Control Center

	2.4 Software Architecture
	2.4.1 Architectural Style
	2.4.1.1 Data Flow Architectural Style
	2.4.1.2 Independent Component Architectural Style
	2.4.1.3 Call and Return Architectural Style
	2.4.1.4 Data-Center Architectural Style
	2.4.1.5 Virtual Machine Architectural Style

	2.4.2 Architectural View
	2.4.3 Architectural Representation

	2.5 Reference Architecture
	2.5.1 ProSA-RA: A Process to Build Reference Architectures
	2.5.1.1 Step RA-1: Information Source Investigation
	2.5.1.2 Step RA-2: Architectural Analysis
	2.5.1.3 Step RA-3: Architectural Synthesis
	2.5.1.4 Step RA-4: Architectural Evaluation

	2.6 Software Components
	2.6.1 Components Model
	2.6.1.1 Enterprise Java Beans (EJB)
	2.6.1.2 CORBA Component Model (CCM)
	2.6.1.3 Open Services Gateway Initiative (OSGi)

	2.7 Component-Based Development
	2.7.1 Component-Based Development Process

	3 RELATED WORK
	3.1 Reference Architecture for Space Systems
	3.2 Software Application for Satellites Control Systems
	3.2.1 The European Ground Systems – Common Core (EGS-CC)
	3.2.2 Control Channel Toolkit (CCT)
	3.2.3 Hifly
	3.2.4 Satellite Control and Operation System 2000 (SCOS-2000)
	3.2.5 Goddard Mission Services Evolution Center (GMSEC)
	3.2.6 Global Educational Network for Satellite Operations (Genso)
	3.2.7 Satellite Network (SatNet)
	3.2.7.1 SatNet Architecture
	3.2.7.2 SatNet Services
	3.2.7.3 SatNet Integration

	4 ESTABLISHMENT OF A REFERENCE ARCHITECTURE FOR SATELLITES CONTROL SYSTEM
	4.1 Step RA-1: Information Source Investigation
	4.2 Step RA-2: Architectural Analysis
	4.2.1 Architectural Requirements of SCS Domain
	4.2.2 Components of SCS Domain
	4.2.2.1 Registry Component
	4.2.2.2 Mashup Component
	4.2.2.3 Discovery Component
	4.2.2.4 Composition Component
	4.2.2.5 Orbit Calculator Component
	4.2.2.6 Telemetry Component
	4.2.2.7 Maneuver Component
	4.2.2.8 Telecommand Component
	4.2.2.9 Schedule Component
	4.2.2.10 Spacecraft Component
	4.2.2.11 Ground Station Component
	4.2.2.12 Tracking Component
	4.2.2.13 Gateway Component

	4.3 Step RA-3: Architectural Synthesis
	4.3.1 Enterprise View
	4.3.2 Structural View
	4.3.3 Data Flow View
	4.3.4 Logical View
	4.3.5 Composition View

	4.4 Step RA-4: Architectural Evaluation
	4.4.1 Requirements Mapping to the Architectural Design
	4.4.2 Validation of the SCS-RA by Mapping of the SCS-RA Components to the Existing Systems
	4.4.3 Validation through the RAModel

	4.5 Final Remarks

	5 CASE STUDY - USING SCS-RA FOR DEVELOPMENT OF MICROSATELLITES CONTROL SYSTEM
	5.1 MicroSatCS Overview
	5.2 The MicroSatCS Development Process
	5.3 Architectural Design Process
	5.4 Software Design & Implementation Process
	5.5 Software Operation Process
	5.6 Final Remarks

	6 CONCLUSIONS AND FUTURE WORKS
	6.1 Discussion
	6.2 Final Remarks
	6.3 List of Publications Attained

	REFERENCES

