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Abstract—Control of flexible structures is an open problem.
Such structures can be very different, for example, robot arm or
satellite solar panel. The common point between these structures
is their very light weight and large length. Light structure
control requires less energy but a much more complex control
system to deal with vibrations. In this paper a flexible rotatory
beam is modeled by Euler-Bernoulli hypothesis and its angular
position is controlled. This kind of model is, most of the time,
highly non-linear. As a result, controller designed by linear
control technique can have its performance and robustness
degraded. To deal with this problem, the State-Dependent Riccati
Equation (SDRE) method is used to design and test a position
control algorithm for the rigid-flexible non-linear model. The
matlab/simulink simulator model is based on the characteristics
of a real equipment. The control strategy uses a simple brushed
DC electric motor. This work serves to validate the numerical
simulator model and to verify the functionality of the control
algorithm designed. In future work, this controller will be tested
with the real rotatory beam to validate the model and the control
algorithm.

I. INTRODUCTION

Even if the design of flexible Euler-Bernoulli is a well-known
problem, it is still a subject of research (M. Saad and Saydy,
2012). Moreover, most of the time, equations are linearized.
Here, a first order non-linear kinematics is developped. The
SDRE method (Souza and Gonzales, 2012) is an approach
that can deal with non-linear plant; it linearizes the plant
around the instantaneous point of operation and produces a
constant state-space model of the system similar to LQR
(Souza, 2008) control technique. The process is repeated in
the next sampling periods therefore producing and controlling
several state dependent linear models out of a non-linear one.
For simplification, this work does not incorporate the Kalman
filter technique; since it is assumed that all the states are
known. Several simulations have proven the computationally
feasibility for real time implementation (P.K. Menon and
Cheng, 2002).

II. SDRE METHODOLOGY

Linear Quadratic Regulation (LQR) approach is well-
known and its theory has been extended for the synthesis of
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non-linear control laws for non-linear systems (Souza, 2008).
This is the case for satellite dynamics that are inherently
non-linear. Several methodologies exist for control design and
synthesis of these highly non-linear systems; these techniques
include a large number of linear design methodologies
(Isidori, 1995) such as Jacobian linearization and feedback
linearization used in conjunction with gain scheduling
(Shamma and Athens, 1990). Non-linear design techniques
have also been proposed including dynamic inversion and
sliding mode control (Slotine, 1996), recursive back stepping
and adaptive control (K. Zhou and Glover, 1996).

Comparing with Multi-objective Optimization Non-linear
control methods (I. Mainenti-Lopes and Sousa, 2012) the
SDRE method has the advantage of avoiding intensive
interaction calculation, resulting in simpler control algorithms
more appropriated to be implemented in a satellite on-board
computer.

The Non-linear Regulator problem (J. R. Cloutier
and Mracek, 1996) for a system represented by the SDRE
form with infinite horizon, can be formulated minimizing the
cost function given by

1 o0

J(zo,u) = 5/ (2T Q(z)x + uT R(z)u)dt (D)
to

with the state * € R™ and control © € R™ subject to the

non-linear system constraints given by

z = f(z)+ B(z)u
y = C(z)r + D(z)u (2)
z(0) = zg

where B € R™™ and C € R**" are the system input and
the output matrices respectively, and y € R°® where s is
the dimension of the output vector of the system. D is the
feedforward matrix and will be considered nul as in most of the
sistems there is no direct action of the control on the output.
x(0) represents the initial conditions vector and @) € R™"
and R € R™*™ are the weight matrices semi defined positive
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and defined positive respectively.

Applying a direct parameterization to transform the non-
linear system into State Dependent Coefficients (SDC) repre-
sentation (Souza and Gonzales, 2012), the dynamic equations
of the system with control can be writen in the form

&= A(z)x + B(z)u 3)

with f(x) = A(z)z , where A € R™" is the states matrix.
By and large A(x) is not unique. In fact there is an infinite
number of parameterizations for SDC representation. There
are at least two parameterizations for all 0 < a < 1 satisfying

ady(z)r + (1 - a)Ay(z)r+ (1 —a)f(x) = fz) @)

The choice of parameterizations must be made in accor-

dance with the control system of interest. However, this
choice should not violate the controllability of the sys-
tem, i.e., the matrix controllability state dependent [B(zx) +
A(z)B(z) A"~ (x)B(z)] must be full rank.
The State-Dependent Algebraic Riccati Equation (SDARE)
can be obtained applying the conditions for optimality of the
variational calculus. In order to simplify expressions of big
equations functions, A(x), B(x), R(z), Q(x) and P(z) can
be written without the reference to states x. As a result, the
Hamiltonian for the optimal control problem given by Eq.(1)
and Eq.(2) is

H(z,u,\) = %(:L‘TQLE +ul Ru) + \T(Az + Bu)  (5)

where A € R" is the Lagrange multiplier. Applying to the
Eq.(5) the necessary conditions for the optimal control given

by)\:f%,j:%—fj andO:%—g leads to
A=—-Qz— }xTa—Qx — 1uTa—Ru
2 Oz 2 Ox 6
_[oAx)", [oBu]", ©
ox ox
&= A(x)z + B(x)u (7
0 = R(x)u + B(z)\ ®)

Assuming the co-state in the form A = P(z)z, which is
dependent of the state, and using Eq.(8), the feedback control
law is obtained as

u(z) = —R™Y(z)BT (2)P(2)x )

Substituting this result into Eq.(7) gives

i = A(x)z — B(x)R™(z) BT (z) P(z)x (10)

To find the function P, A = P(z)z is differentiated with
respect the time along the path

A= Pz + PAx — PBR'BT Pz (1)

Substituting Eq.(11) in the first necessary condition of opti-
mal control Eq.(6) and arranging the terms more appropriately
results in

e 1 +0Q 1 ;0R
O—Px—f—zx 6a:+2u 6a:u

oA oBul"
T E— R
+x [ax] P;v—i—[ax} P
+(PA+ AP - PBR™'BP +Q)x

(12)

Two important relations are obtained to satisfy the equality
of Eq.(12). The first one is state-dependent algebraic Riccati
equation (SDARE) which solution is P(z) given by

PA+ATP—-PBR'BTP+Q =0 (13)

The second one is the necessary condition of optimality
which must be satisfied, given by

. 1 +0Q 1 0R
—p L oy L o0
0 T+ 290 oz + 2u &Uu

e [0A . o, (14)
X - x —
Ox Ox
Finally, the non-linear feedback control is by
u=—R Y (z)BT (2)P(2)x (15)

For some special cases, such as systems with little depen-
dence on the state or with few state variables, Eq.(13) can
be solved analytically. On the other hand, for more complex
systems, the numerical solution can be obtained using an
adequate sampling rate. It is assumed that the parameterization
of the coefficients dependent on the state is chosen so that the
pairs (A(z), B(z)) and (C(x), A(z)) are in the linear sense
for every = belonging to the neighborhood about the origin,
point to point, stabilizable and detectable, respectively. Then
the SDRE non-linear regulator produces a closed loop solution
that is locally asymptotically stable. An important factor of the
SDRE method is that it does not cancel the benefits that result
from the non-linearities of the dynamic system, because, it is
not require inversion and no dynamic feedback linearization
of the non-linear system.

III. ROTATORY BEAM’S MODEL
A. Beam definition

Figure (1) shows a representation of a flexible rotatory beam; it
consists of a beam fixed to the rotor motor at one end and free
at the other one. Euler-Bernoulli beam is used, this means that
deformations are considered small. Parameters of the beam are
the following: length L, linear density p, rigidity E'I, and the
rotor motor parameters are: angular position (), which is a
rotation along the x-axis so gravity has no influence, inertia .J,,,
, torque T',,, and radius r. The beam displacement is y(x, t)
and the deflection angle is «(z,t). To simplify notation, y
and « are used without referring to their variables and their
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Beam: L, El, p

Motor: r, Jm, bm

Fig. 1: Representation of the flexible rotatory beam

partial derivative relative to the time ¢ and the abscise = are
respectively written ¢ and /.

It can be noted than the deflection angle is related with de
displacement according to

8y(m, t) ’

(16)

B. Kinematics

Let M be a point of the beam. In the inertial reference system
R(X,Y, Z), coordinates of M are
—
ol = [’" * ””] a7
Y Ir

The velocity of this point is the derivative with respect to the
fix reference system Ry(Xo, Yo, Zo) . The beam is considered
inextensible, so © = 0.

— ——
dOM dOM —= —
_>
ST | T Ta | TS @ OMn
0 R (18)
_[ —yb }
(r+2)0+y R

C. Kinetic and potential energies

Kinetic energy of this system can be represented by two terms.
The first one due to the motor rotation and the other due to
the beam rigid-flexible motion.

1 .
Trotor = § Jm92

1 L
Theam = §P/ ﬁmdx
0

19)

Second or more order in displacement y such as the axial
displacement yo(x, t) wont be considered because of small de-
formations hypothesis. After doing some calculation, Eq.(19)
becomes.

1, 1 v
T= 592 Jm + =p(r + L)> + p/ y2da
0

s 20
s . (20)
+ 9p/ (r 4+ x)ydx + 7/ ydx
0 2 Jo
The potential energy of a flexible beam is given by

1 L

V= 7EIZ/ y"?dz 20
2 0

In order to use energies to write the equations of motion,
the beam deformation variable, that is, the displacement y, is
need to be known explicitely. To do that, the assumed modes
method is used.

D. Assumed modes

The motor rotation produces beam transverse vibrations.
Analysing an infinitesimal element of the beam and consider-
ing moments and forces acting on it, as shown in figure(2) is
obtained. Variable () is the shear force, variable M and p is
the linear density.

@ M+ M d
2 y(x)  yixedx) S F N ox *
X
®
s
y dx " 32}, Q+ g_de
pdxGs *

Fig. 2: Forces affecting the flexible beam

The application of the fundamental principle of the dynam-
ics leads to Eq.(22), where the first one is the force in the
direction of the axis y and the second one is the moment
along the axis z.

oQ 0%y oM

% — odp—2 -

or P or @ Ox

Moreover, for a prismatical beam, the rigidity (ET1,) is a
constant so

(22)

0%y
M =—-FI, 92
Combining Eq.(22) and Eq.(23) leads to the general equa-
tion for transverse vibration of an uniform beam.
4 2
Py p 0y _,
Oz* FEI, O0t?
Looking for a solution for this equation as a product of
temporal and spatial function of the form y(x,t) = ®(x)q(?)

given by

(23)

(24)

®(x) = Acos Bz + Bsin Sz 4+ C cosh Sz + D sinh Sz
q(t) = Ecoswt + Fsinwt

2

4 _ PY
5= EI,
(25)
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Boundary conditions at beam ends are essential to determine
the shape function ® and parameters A, B, C' and D. As the
beam is clamped to the rotor, displacement and deflection are
null at x = 0 (Eq.(26)). Likewise, the shear force and bending
moment are zero at x = L (Eq.(27)).

od
®(0)=0 — =0 (26)
Ox 0
%P 0%d
ot |, 2| _, =" @7

Substituting ® from Eq.(25) into Eq.(26) and Eq.(27) gives
a system of four equations. This system can be easily reduced
to one equation called characteristic equation.

cos BLcosh BL = —1 (28)

The solution of Eq.(28) is an infinite set of spatial natural
pulsations [3; where ¢ is the mode number. The shape function
® from Eq.(25) associated to the mode ¢, called ®;, can now
be written analytically. The first four mode shape are plotted
in Figure(3).

®,(x) = A; [cosh Bz — cos Bz + k;(sinh Sz — sin Sz))
sin SL — sinh BL

cos BL + cosh BL

(29)

E [ TIOIREY L si SURRTRRRR N U DRI i .....
5 4
Eo
b :
= === o .
a b mode 2| T S 8N
= minmode 3 g‘f.-.’
made 4 : :
2 T i i ;
0 20 40 £0 80 100

Bearn's length (%)

Fig. 3: First four shape function®(z)

A finite number, of modes n is assumed to shape the beam
deformation. The solution, Eq.(30), is a linear combination of
all these modes.

y(a,t) = > 0i(2)q(t) = 2"g=¢"® (30)
=1

Now that the displacement y(z,t) is known explicitely,
motion equations can be written using the Lagrange theory.

E. Dynamic equations

In this section, Lagrange theory is used to develop motion
equations. The generalized coordinates are the rigid motion,
0, and the flexible modes, g, denoted by p = [p1 pg]T =
[9 q} " External force F along the axis y is considered null
and along 0 is equal to I',.,,, , the rotor torque.
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dor or oV

— - — = F,, where i € [1,2

dt 9p;  Opi - Op; p, where i € [1,2]

Substituing the expression of the displacement of Eq.(30)

in kinetic and potential energies (Eq.(20) and Eq.(21) respec-
tively)

€19

1. 1 f L
T = 592 (Jm + gp(r + L)%+ p/ qT<I><I>qu:c>
0

(32)
oL 1 L
+ 9p/ (r + z)¢T ddz + 2 / qTod” ¢dx

0 0

1 L
V= 5EIZ / ¢T """ ¢dx (33)
0
and combining these results with Eq.(31) leads to the two
Lagrange equations, according to the generalized coordinates
0 and q:

0
L
(r + x)§" ®da

L
T, =0 (J + %p(r + L) +p / qT<I><I>qux>
i L
+ 29p/ ¢F oo gdx + p/
0 0 (34)
. L L
0= 9p/ (r + 2)®dz + ,0/ ®0T jdx
0 0

L L
+ 62 / odTgdx + EI / " " gdx
0 0

that can be expressed on a matrix format

|:F7'ot0r:| _ |:Jeq+qTMffq MTT}:| |:0:| + |:0 0 ] |:9:|
0 M,y Mys| |G) [0 Kyp) |g

[ el

—Mff(j@ 0 q
(35
with the following parameters
L
My =p / ®oTdx
0
L
M, = p/ (r+ z)@dx
0 (36)

L
Ks; = FEI / """ gda
0

1
Jeq =Jn+ gp(T + L)3
Finally, Eq.(35) can be written on a more compact manner
definning M, C, K and F, as matrix of mass, coriolis, rigidity
and external force respectively

Mp+Cop+Kp=F 37)
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F. Motor DC

This system is controlled with the voltage delivered by the
motor, thus, it is needed to express the rotor torque I';ot0 in
function of the motor supply voltage U,,.

A classical model for a DC motor, taking losses into acount,
is giving in Eq.(38). The parameters involved in this equation
are: the friction constant between the rotor and stator b,,,
the efficiencie of the motor 7,,, the efficiencie of gears 7,
the motor torque constant K, the transmission constant of
gears K, the back EMF constant K,,, and the motor armature
resistence R,,. All these parameters leads to the well known
motor equation

o K K. . .
I %(Um — KK ) — b6 (38)
Defining C,, as
KK
Cm = 7”’”77;% t2g (39)

it is now posTsible to explicit the vector of external forces F' =
[Frotor 0} as

e Lt 1

= LU,, — Np
where N and L are two matrix whose values can easily be

identified in this same equation. Substituing the result from
Eq.(40) in Eq.(37) gives

(40)

M(p)p+ (Co(p,p) + N)p+ Kp = LU,,

Thus, in the global matrix equation of the system appears

an additive damping term Np.
According to small deformation hypotesis, the non-linear term
q"Myq in the mass matrix M is really small, so it can be
negligible. Whereas, no terms in the coriolis matrix C, are
negligible since 6 and g are not necessarily small (M. Saad
and Saydy, 2012).

To check the validity of these assumptions Figure (4)
represents the impulse response (1 second, amplitude 5V) to
three different models: the linear model, the fully non-linear
model and the non-linear model without non-linear term in
the mass matrix M (partially non-linear). As it is possible to
notify, fully and partially non-linear model have almost the
same response whereas the linear model is quite different.

IV. SIMULATION STRATEGY
A. State space model

(41)

For purpose of simulation and control, this system is repre-
sented using the state space model.

& = A(x)x + Bu

) Ca (42)

where states vector x and control u are defined by

== inear

Hub extremity displacement (m)
o

015 S = Fully non linear  |....i
: : == Partially non linear :
N2k "1 SO ........... ........... FERERTRRTRTE: :
025 i L i 1 1 i
01 0.z 0.3 0.4 0.5 06
Time(s)

Fig. 4: Comparison between different plant models

i AT AT
=100 ¢ 0 4 =[p P (43)
So, reorganizing Eq.(41), the classic state space representa-
tion is obtained.

u=U,,

T T
i = 07L+1 In-i—l z+ O(n+1,1) U
MK —M"N(N + Nyotin) ML U
= A(x)x + BU,,

(44)

with n, the number of flexible modes, and I, the identity
matrix. Studing the equation above, matrix A depends on the
state and matrix B is a constant.

For the simulation it is considered that all states are available,
then C will be the identity matrix.

This representation is adequate to use the SDRE theory
explained in section II

B. SDRE implementation

The algorithm is desribed in the Figure (5). As the matrix A
depends on the states it must be determined on every step.
So, for every iteration of the simulation, states vector X is
measured , the Riccati solution P is obtained from Eq.(11),
the feedback control u is determined thanks to Eq.(15) and
then, the new matrix A is obtained.

Initial condition [ ) State space model .| States
x(0), x(0),u(0) % =A(x)x+ Bu T =
Feedback

u= —RBTP(x) x

T h 4

Riccati solution P (x)
P(x)A(x) + AT(x)P(x) — P(x)R'BTP(x) + Q(x) = 0

Fig. 5: SDRE algorithm

Implementation of this algorithm has been done using the
MATLAB-Simulink. Riccati equation has been determinated
via the LqrSim block (Campa, 2001). Figure(6) represents the
Simulink solution for the feedback control u.
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o A | Reshape Jo=
= Ltk B
* e i c states™states =]
x dq = L P e
Mon linear Reshape > Riccati Solution Terminator
Space State Model
creator states"comand
| Reshape o=
outputstates Igrysim = RrEE -v1st.rix
reshape row Jeflultipl ! EI)
J Reshape B u
-K.x
output*comand
Q4 J Reshape o=
o cutput*output .,.
- Terminator
-C- J Reshape o=
R comand*comand
LOR Solution T, -1
e~
-
theta w*
D IR - -
comand theta Subtract
|
q_flex Tl dehtax
dq -
L
Fig. 6: Simulink feedback calculus with SDRE algorithm
C. P f . ¢ Motor parameters values
. Performance requirements T 04896 m
. . 2
Due to the physical features of the system, maximum voltage Im 0.002 kg m
. . . p 0.1347 kgm~!
supply of the motor is 5V. Refering to performance objectives, B
. . . eam parameters values
those are temporal requirements since the model is non- . 0.004 kgmZs T
linear and frequency analysis is not possible. For the rigid EI, 0.54 Nm
. .. . —1
motion, only one overshoot of the beam angular position is Cm 0.1527 NV

accepted, afterwhat it shall be stabilized in the region +£2%
in a minimum setting time. To analyse the flexible motion the
displacement at beam’s extremity is measured. As small defor-
mation hypothesis may not be infringed, maximum overshoot
is +0.05m which corresponds to 10% of the beam length.
Table (I) sumarizes requirements defined in this section.

Parameter | Performance | Condition

0 overshoot only one

0 rise time minimum

y(z=1L) overshoot < 0.05m
Um voltage <5V

TABLE I: Performance requirements

V. SIMULATION RESULTS
A. Model values

Table (II) shows the values used for the simulation.

B. Vibration mode analysis

To know the vibration frequencies, an eigenvalue analysis
of the full system represented by Eq.(41) is done. For this

TABLE II: Model parameter values

analysis damping and external forces are considered null.
Results are shown in table (III).

Mode | 1 | 2 | 3 | 4 | 5
f(Hz) | 458 | 16.08 | 4270 | 83.00 | 136.88

TABLE III: Vibration frequencies

In this simulation, only the rigid mode and the first three
flexible modes are taking into acount.

C. Variation of parameters Q and R

SDRE technique is the generalized method of LQR for state
dependent equation. In this paper, LQR parameters, R and
@, are constant since they do not depend on the states. The
controller performance is directly related with these weights
R and Q.

From the cost function represented by Eq.(1) it can be
noted that matrix () is linked with the states x and matrix R
with the control signal U,,. In order to influence at each state

293



Proceedings of the 2013 International Conference on Systems, Control and Informatics

separately () matrix is chosen diagonal. Thus, each diagonal
term is related to one state and acts as a penalty: the higher
the value, less the influence of the state. The matrix R, (here
a scalar because there is only one control variable) allows
to size the control signal. In the same way as for @), a high
value of R penalises the control signal.

In order to choose these parameters a set of () and R
values are tested. It has been notified during experiments that
modifications on R influences almost only the control signal
and not the dynamic response. For these reason, to determine
@ and R values, first a set of () values are tested; then, using
the value that best matches the dynamical requirements, a set
of R values are experimented to find the one which fulfilled
the motor requirement: motor voltage U, < 5V.

From the results of this simulation it is possible to determine
the influence of each term inside ) on the output. The first one
related to € reduces the setting time but increases overshoot in
angle position and displacement. The second one, related to
flexible states does not show a significative influence. The third
one, related to the angular velocity helps to reduce slightly
overshoot in 6. Finally, the last one related to the derivative
of flexible states appears to reduce significatly displacement
overshoot. Table (IV) represents the evolution of ) values
from @1 to (4, which have been changed acording to the logic
described above to finally get Q4; the best @) fulfilling our
requirements. which is fully explicit in Eq.(45). The choosen
value for R is 5.

Q = diag(100, 1,1, 1,1, 320, 320, 320)
R=5
Responses for a step input of 60 ° are shown in figure (7),

and, figure (8) shows that the value of R = 5 enabled to fit
the condition U,,, < 5V.

(45)

Q6 la|lb] g
QT | 1 | 1|1 1
Q2100 |1 |1] 1
Q3| 100 | 1|5/ 320
Q4| 100 | 1| 1|32

TABLE 1V: Parameters Q tested

VI. CONCLUSIONS

In this paper, the model of a rotatory Euler-Bernoulli beam
is successfully built and the required performance objectives
and physical requirements are achieved. This study shows
how to implement a SDRE (State-Dependent Riccati Equation)
controller for simulation. This controller model can be useful
to simulate many other non-linear systems. The SDRE is tested
here with a simple model for a flexible rotatory beam. One
of the main interest of this work is that, changing values of
physical parameters such as beam length, or inertia, this model
can easily be extended to much more complex systems such
as satellite solar panels or robotic arm. In a future work this
controller will be tested with the real rotatory beam in order
to verify the real time implementation feasibility.

0.05

-0.05

Digplacemnent ()

NIRRT e, s S s 3

REI S T e, e . R 5,

95 ; ; ; ; ;
1 1.2 1.4 16 1.8 2
Tirne (=)

Fig. 7: Step response of the linear plant for differents Q

= :
£ 4 ;
= .
fal .
= :
E 0 i i : |
1 12 1.4 16 1.8
Timei(s)

Fig. 8: Control energy U, for R =5
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