Multicore and Many-core Architectures in a
Parallel O(N log N) Friends-of-Friends Algorithm
for Astronomical Object Classification

Otavio Migliavacca Madalosso®, Andrea Schwertner Charao®!,
Haroldo Fraga de Campos Velho®, Renata Sampaio da Rocha Ruiz®

Joao Vicente Ferreira Lima®

%Universidade Federal de Santa Maria, RS, Brazil
®National Institute for Space Research, Sao José dos Campos, SP, Brazil

Abstract

Friends-of-Friends (FoF) algorithms have been used for classifying
galaxies and clusters of galaxies for dark matter halos from N-body
simulations. Taking into account the large amount of data usually
processed by these algorithms, it is essential to develop efficient com-
putational techniques to extract meaningful information in a reason-
able time. In this work, we present an implementation of a FoF al-
gorithm with complexity of O(N log N). We compare its performance
against an existing O(N?) code, then we explore the parallelization
of both codes on two types of parallel architectures: a multicore pro-
cessor and a many-core GPU. In the parallel implementations, the
programming models are based on compiler directives, provided by
OpenMP and OpenACC standards. The results indicate that our com-
bined approaches are able to achieve significant speedups, even with
some limitations related to the work decomposition strategy and the
directive-based parallel programming model.

Keywords: Friends-of-Friends algorithm, parallel computer architec-
tures, astronomy.

1. Introduction

Computational analysis of astronomical data and N-body simulations
have been used to promote various advances in the understanding of rel-
evant issues in astrophysics. Such algorithm-based approaches play a key
role in the study of cosmic evolution, on topics such as the distribution of
dark matter in a large scale, the formation of halos of dark matter and the
formation and evolution of galaxies and clusters of galaxies [4, 2, 6].

'E-mail Corresponding Author: andrea@inf.ufsm.br

Data from simulations and data from astronomical observatories pro-
duce large data sets that need to be manipulated and analyzed. Taking
into account such amount of data, it is essential to develop efficient com-
putational techniques to extract meaningful information from a given data
source, in a reasonable time. In a previous work, Ruiz et al. [10, 9, 12]
implemented a parallel Friends-of-Friends algorithm for classifying galaxies
and clusters of galaxies for dark matter halos from N-body simulations. Such
implementation achieved a significant speedup when running on a 27-node
computer cluster, using the MPI (Message Passing Interface) standard for
communication among the processes distributed over the computing nodes.

The original, sequential Friends-of-Friends algorithm implemented by
Ruiz et al. has a high computational cost with O(N?) time complexity. Some
authors [11] suggest that the computational cost of this type of method can
be reduced in a Friends-of-Friends algorithm with lower, O(N log N) com-
plexity. One may also consider the hybridity of existing parallel architec-
tures, which currently offer multiple parallel opportunities as, for example,
computer clusters with multicore processors using many-core GPUs (Graph-
ics Processing Units) as co-processors.

In this work, we present an implementation of a FoF algorithm with
O(N log N) complexity. We explore its parallelization on two types of par-
allel architectures: a multicore processor and a many-core GPU. In the
parallel implementations, the programming models are based on compiler
directives, provided by OpenMP and OpenACC standards.

2. Friends-of-Friends Algorithm

One of the methods used in N-body simulations to determine structures
in the Universe is the percolation algorithm named “Friends-of-Friends”
(FoF) [5]. The basic idea of this algorithm is as follows: consider a sphere
of radius R around each particle of a given set. If within that sphere exist
other particles, they will be considered as belonging to the same halo and
be called “friends”. Then, we take a sphere around each friend and the
procedure continues using the rule “any friend of my friend is my friend”.
The procedure stops when no new friend can be added to the group. Time
complexity for such algorithm is O(NN?), which may be prohibitive for a large
number of particles.

The complexity of a FoF algorithm can be reduced using a hierarchical,
tree-based approach [11]. In our O(N log N) FoF algorithm, we use an oct-
tree [1] to represent a physical three-dimensional space, i.e., a cube in which
the particles are allocated. For each node of the oct-tree, there can be up

to 8 child nodes (or leaves) representing each sub-cube with a fraction of
its parent’s size. In our implementation, the root node of the tree contains
the values of the borders of the three-dimensional space. These strategies
reduce the search space and increase the performance of the FoF algorithm.

In the next paragraphs, we describe some key implementation issues for
our sequential, O(N log N) FoF algorithm.

2.1 Clustering

The purpose of the FoF algorithm is to find clusters of particles based
on physical proximity, i.e., having a linking length (distance between two
particles) within a given threshold. The algorithm takes particle coordinates
as input and calculates distances each time it reads a new particle from the
input set. This procedure adds a new particle to the tree while linking it to
a sub-cube.

As a particle deepens into the tree, the algorithm checks between nodes
that are semi-cube neighbors to which the new particle will be allocated.
Here lies a problem regarding nodes that are not “populated” (that is, a
node that is no leaf), because it does not have linked particles to check
for physical proximity. We solve these cases using what we called “border
zones” .

2.2 Border zones

Border zones were primarily designed to deal with the following case:
our hierarchical algorithm could erroneously identify two clusters, i.e. in
different sub-cubes, where there is actually a single one, because they are
both very close to the physical limits of the semi-cubes.

To deal with this case, we use an array of references to the particles lying
on the edges of each sub-cube. These limits are delimited by a difference
between the limits of each sub-cube and the threshold radius at which the
algorithm is running. This solution gave rise to a new case to be dealt with:
a situation when the border zone is greater than or equal to the area of the
cube itself, so the entire cube could be considered a border zone. In this
case, the tree can stop growing and simply allocate all the nodes in a new
array.

2.3 Relabeling

Another issue to be dealt with is when the algorithm links a particle
to a cluster, but afterwards it discovers that the particle should belong to
another cluster, that is, this new particle is a link between two clusters that

until now were distinct. This issue is solved by a function that “relabels”
all particles of the two clusters, so that both unite and start to be treated
as a single cluster. To do so, we maintain an array of references to particle
clusters.

2.4 Performance of FoF algorithms

We performed experiments to compare the performance of our O(N log V)
FoF algorithm against the original, O(N?) algorithm. All experiments were
executed on a server with one Intel Xeon E5620 2.4 GHz quad-core pro-
cessor, each core with two hardware threads (HT), 12 GB of DDR3 RAM,
running Debian 6 (Squeeze) operating system. In both cases, we used the
GNU C++ 4.6 compiler.

To exemplify our findings, we present here the results we obtained with
an input sample data set comprising 38761 particles. The expected output
of our FoF algorithm is to identify how many clusters with more than one
element exist in the sample. Both algorithms achieved the same result:
226 clusters. The original FoF' algorithm took 29496 ms to run, while the
O(N log N) algorithm took only 149 ms. This performance gain is due to our
hierarchical approach for processing the input data. In these experiments,
the algorithms are fully sequential, so they do not take advantage of the
parallel architecture.

3. Parallel Implementations

Our O(N log N) algorithm uses a domain decomposition approach which
is suitable for parallel processing, as each sub-cube can be treated indepen-
dently. The previous, parallel O(N?) FoF algorithm is also based on domain
decomposition [9], but is targeted to distributed parallel architectures, i.e.,
a cluster of computing nodes interconnected by a high speed network. Cur-
rent parallel architectures combine multiple parallelism opportunities as in,
for example, clusters equipped with multicore processors (usually up to 12
cores) and many-core GPUs (tipically with hundreds or thousands of cores).

Thread-based programming is the mainstream approach to take advan-
tage of multicore and GPU parallel architectures. There are many program-
ming models and tools supporting such abstraction, but they usually expose
the underlying parallel architecture to the programmer. Therefore, it is diffi-
cult to develop parallel code that performs well on multicore or GPUs, with-
out major modifications. An interesting approach towards this direction is
to use directive-based multithreaded parallel programming, as supported by
OpenMP and OpenACC standards. While they do require some knowledge

of the parallel architecture, they offer an appropriate model for incremental
parallelism of existing applications.

In the next paragraphs, we present and discuss our experiences on par-
allelizing our FoF algorithm using OpenMP and OpenACC, separately. We
focus on our O(N log) implementation, but we will also discuss the O(N?)
algorithm with both programming tools, as a means of comparison.

3.1 Multicore Implementation

The OpenMP [3, 8] standard provides a parallel programming model
targeted to parallel computer architectures where all processing elements
have access to a shared memory. OpenMP programs are thread-based and
follow a fork-join model. In such model, a master thread runs sequentially
until it reaches a parallel region, where a fork occurs, i.e., a number of
threads are created to run in parallel. When all threads finish execution
inside a parallel region, the execution flow continues on a single, master
thread.

Programming in OpenMP is essentially based on the insertion of com-
piler directives with clauses and options that guide the compiler to generate
parallel code. These directives specify parallel regions, work sharing, syn-
chronization and data access. The OpenMP specification is targeted to
programs written in Fortran and C/C++ languages. OpenMP programs
are portable across hardware architectures, only depending on the compiler
support.

In our sequential O(N log N) algorithm, there is an out-most loop which
guides the construction of the oct-tree. Each iteration is independent and
refers to a partition of the computational space. To compute border zones, it
is necessary to read data from neighboring sub-cubes, but there is no concur-
rent write operations and dependencies that could require synchronization.
In this case, our OpenMP-based parallelization was straightforward and re-
quired only a few extra lines of code. There is a limitation, though: due to
the nature of the oct-tree, the out-most loop have a fixed (8 iterations) size,
so the parallel version scales up to 8 threads.

Using the computing server described in Section , we performed experi-
ments with our parallel, OpenMP-based O(N log N) algorithm, in order to
evaluate its performance. As we mentioned before, the server is equipped
with a total of 8 hardware threads (4 cores with 2 hardware threads each).
Our input data set comprised 318133 particles (the same experimental setup
presented by Ruiz et al. [10]). Table 1 presents elapsed times for up to
8 threads)and their associated speedups. These results show that our ap-

Table 1: Performance of the OpenMP-based O(N log N) FoF implementa-
tion

of Threads Elapsed Time (ms) Speedup

1 (Serial) 39920 -

2 22131 1.80
4 14858 2.68
8 13433 2.97

proach is able to accelerate executions with the addition of a few lines of code
to the sequential version. However, the speedup degrades from 4 threads.

In order to better understand our results, we analyzed the execution of
our OpenMP code using a performance profiling tool (Intel VTune Amplifier
XE). Figure 1 shows a Gantt chart of an execution with 4 threads and its
accompanying CPU usage chart, as provided by the profiler. The darker
color represents running threads, so we can depict that there is a significant
amount of time where only a single thread is running (lighter color), as
the other threads have already finished computations. This is due to load
imbalances that arise from the spatial work decomposition approach. It is
worth noting that this behavior is highly dependent of the input data set
and it could be tackled with a dynamic work balancing strategy. However,
this would require significant changes on the algorithm and the parallel
implementation.

Qo
friendsofrien...
friendsofrien...
friendsofrien...
friendsofrien...

Thread

CPU Usage

Figure 1: Performance profile of a 4-thread execution (OpenMP)

For comparison purposes, we also applied OpenMP to the previously
developed O(N?) FoF algorithm. The code is mainly structured in nested

Table 2: Performance of the OpenMP-based O(N?) FoF implementation
of Threads Elapsed Time (ms) Speedup

1 (Serial) 697848 -

2 428542 1.63
4 309329 2.26
8 507271 1.37

loops which update an array (cluster indices) while reading x, y and z coordi-
nates for each input particle. We decided to apply OpenMP directives to the
inner-most loop, which has no dependencies between subsequent iterations.
This alternative was not expected to fully exploit the parallel architecture,
because some computations remain serial. The main goal was to assess how
much speedup (if any) could be achieved with minimal additions to the se-
quential code. In this direction, we could not apply OpenMP on upper loops
because it would require significant changes to the program, in order to deal
with data dependencies.

Table 2 presents the results we obtained with our OpenMP-based ver-
sion of the O(N?) FoF code. The elapsed time is always higher than the
O(N log N) version, but there is also some speedup, as the cost of minimal
additions to the sequential code.

3.2 GPU-based Implementation

OpenACC [7] is a standard for parallel programming proposed in 2011,
in a partnership between NVIDIA, Cray, Portland Group (PGI) and CAPS
Enterprise. Designed to ease programming in hybrid systems consisting of
CPU/GPU, this standard uses compiler directives to express parallelism, as
well as in OpenMP. It also requires compiler support for recognizing the
directives and generating optimized code for different architectures.

The OpenACC programming API comprises directives that specify loops
and regions in C/C++ or Fortran code, which will run on a system composed
of a host (CPU) and an accelerator device (GPU). These directives let you
create high-level programs that implement interactions between host and
accelerator, without having to explicitly initialize the accelerator, manage
data and transfer programs between host and GPU. All these details are
implicit in the programming model and are managed by the compiler that
supports OpenACC. Currently, there is only a few compilers that implement
the OpenACC standard. The PGI C++ compiler (pge++ 16.9) is our choice
for this work, as it is one of the most up to date OpenACC compilers.

Our OpenACC-based parallelization of the O(Nlog N) algorithm fo-
cused on the out-most loop of the program, as in OpenMP. The directives
for specifying parallel regions are similar to OpenMP, but there is a major
difference related to data management. Indeed, there are many options for
copying data to/from the GPU, as data transfer are a keystone to high per-
formance, hybrid CPU-GPU programs. This is less of an issue in OpenMP,
because all data resides in the main memory. Despite our efforts to add
OpenACC directives to our O(N log N) code, we did not succeed to compile
our parallelized code with pgc++, due to our heavy use of std::vector, a
standard object oriented data structure available in C+4. Currently, the
PGI C++ compiler do not allow a kernel region, i.e. a parallel region run-
ning on GPU, to access such data structure [13]. This limitation was not
known when we developed our sequential, C++ code. An alternative would
be to rewrite the code to replace the unsupported data structures, but this
goes in an opposite sense of the incremental parallelization programming
model advocated by OpenMP and OpenACC.

We then decided to focus on applying OpenACC to the previously devel-
oped O(N?) FoF algorithm. This code also uses some C-++ constructs, but
only adopts native one-dimensional C arrays as data structures. Our ap-
proach was to apply OpenACC directives to the same parallel region (inner-
most loop) as in our OpenMP-based version of the O(N?) code. The Ope-
nACC compiler default behavior is trying to decide about data transfers
to/from a parallel region, so we first tried this approach. However, it was
not successful as it led to incorrect results. We then applied data trans-
fer directives (present, copy, copy in) to manually guide the compiler to
generate the corresponding code.

After verifying correctness of our numeric results, we then measured ex-
ecution times in order to assess the performance of our OpenACC-based
version of the O(N?) code. We used the same experimental setup as de-
scribed in Section 3.1, with the addition of a NVIDIA Tesla M2050 GPU to
our server. The average elapsed time was of 446774 ms, which gives a 1,56
speedup from the sequential version which took 697848 ms to run. This is
not a significant speedup, but it is worth noting this was obtained at the
cost of only a few compiler directives.

4. Conclusions

Friends-of-Friends algorithms usually take large amount of data as input,
so it is important to develop efficient computational techniques to reduce
processing times. In this work, we explored two approaches to this prob-

lem: tree-based FoF computation to reduce the computational cost of an
original algorithm and parallel programming to take advantage of multicore
CPUs and many-core GPUs. We also explored a directive-based program-
ming paradigm, which fosters incremental parallelization without significant
changes to the existing codes.

Combining these approaches, we have been able to obtain significant
speedups, although our spatial decomposition strategy limits the scalability
of our O(N log N) algorithm. The directive-based approach to parallel pro-
gramming helped us to speed up executions with a few lines of extra code.
The OpenACC standard revealed more limitations than OpenMP, but even
so, the results support that the directive-based approach may be a good
start when parallelizing existing code.

Acknowledgments. The authors gratefully acknowledge financial sup-
port from the National Institute of Science and Technology for Astrophysics
(INCT-A), who granted the Scientific Initiation scholarship to the first au-
thor, and the CNPq, Brazilian agency for research support.

References

[1] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation
algorithm. Nature, 324:446-449, Dec. 1986.

[2] E. Bertschinger. Simulations of Structure Formation in the Universe.
Annual Review of Astronomy and Astrophysic, 36:599-654, 1998.

[3] L. Dagum and R. Menon. Openmp: an industry standard api for
shared-memory programming. Computational Science & Engineering,
IEEE, 5(1):46-55, 1998.

[4] G. Efstathiou, M. Davis, S. D. M. White, and C. S. Frenk. Numerical
techniques for large cosmological N-body simulations. Astrophysical
Journal Supplement Series, 57:241-260, Feb. 1985.

[5] J. P. Huchra and M. J. Geller. Groups of galaxies. I - Nearby groups.
Astrophysical Journal, 257:423-437, June 1982.

[6] A. Jenkins, C. S. Frenk, F. R. Pearce, P. A. Thomas, J. M. Colberg,
S. D. M. White, H. M. P. Couchman, J. A. Peacock, G. Efstathiou, and
A. H. Nelson. Evolution of Structure in Cold Dark Matter Universes.
The Astrophysical Journal, 499:20-40, May 1998.

[7]

OpenACC. The OpenACC application program interface, 2015. Avail-
able: http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf.

OpenMP.org. OpenMP specifications, 2015.

R. S. R. Ruiz, H. F. Campos Velho, A. Caretta, C., S. Charao A., and
P. Souto R. Grid Environment for Turbulent Dynamics in Cosmology.
Journal of Computacional Interdisciplinary Sciences, 2:87, 2011.

R. S. R. Ruiz, H. F. Campos Velho, and C. A. Caretta. Parallel
algorithm friends-of-friends to identify galaxies and cluster of galax-
ies for dark matter halos. In Proceedings... Workshop dos Cursos de
Computacao Aplicada do INPE, 9. (WORCAP)., Instituto Nacional de
Pesquisas Espaciais (INPE), 20009.

V. Springel, N. Yoshida, and S. D. M. White. GADGET: a code for col-
lisionless and gasdynamical cosmological simulations. New Astronomy,
6(2):79-117, 2001.

E. C. Vasconcellos, R. R. de Carvalho, R. R. Gal, F. L. LaBarbera, H. V.
Capelato, H. F. Campos Velho, M. Trevisan, and R. S. R. Ruiz. Deci-
sion Tree Classifiers for Star/Galaxy Separation. Astronomical Journal,
141:189, June 2011.

M. Wolfe. PGI C+4++4+ and OpenACC, 2015. Available:
https://www.pgroup.com/lit /articles/insider /v6n2al.htm.

